LAPACK examples

ex1_lapack_gebrd.F90

program ex1_lapack_gebrd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines GEBRD and ORGBR
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gebrd, orgbr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,    &
                         unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=3000, n=3000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gebrd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err3, err, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, tauq, taup, work, resid2
    real(stnd), allocatable, dimension(:,:) :: a, a2, resid, bd, pt, q
!
    integer      :: info_bd, info_q, info_pt, lwork, lwork_bd, lwork_q, lwork_pt,    &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: l
!
    logical(lgl) :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : BIDIAGONAL REDUCTION OF A REAL MATRIX.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    if ( m>=n ) then
        allocate( a(m,n), d(k), e(k-1_i4b), tauq(k), taup(k), pt(k,k), stat=iok )
    else
        allocate( a(m,n), d(k), e(k-1_i4b), tauq(k), taup(k), q(k,k), stat=iok )
    end if
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM DATA MATRIX .
!
    call random_number( a )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), bd(k,k), resid(k,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE DATA MATRIX.
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gebrd AND orgbr SUBROUTINES.
!
    lwork = -1
!
    call gebrd( m, n, a, m, d, e, tauq, taup, work2, lwork, info=info_bd )
!
    lwork_bd = int(work2(1))
!
    if ( m>=n ) then
!
        call orgbr( 'Q', m, n, n, a, m, tauq, work2, lwork, info=info_q )
!
        lwork_q = int(work2(1))
!
        call orgbr( 'P', n, n, m, pt, n, taup, work2, lwork, info=info_pt )
!
        lwork_pt = int(work2(1))
!
    else
!
        call orgbr( 'Q', m, m, n, q, m, tauq, work2, lwork, info=info_q )
!
        lwork_q = int(work2(1))
!
        call orgbr( 'P', m, n, m, a, m, taup, work2, lwork, info=info_pt )
!
        lwork_pt = int(work2(1))
!
    end if
!
    if ( min(info_bd,info_q,info_pt)==0 ) then
!
        lwork = max( lwork_bd, lwork_q, lwork_pt )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gebrd AND orgbr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE BIDIAGONAL REDUCTION OF RANDOM DATA MATRIX
!
!                        a = Q*BD*P**(t) .
!
!       WHERE Q AND P ARE ORTHOGONAL MATRICES AND BD IS A REAL BIDIAGONAL MATRIX.
!
        call gebrd( m, n, a, m, d, e, tauq, taup, work(:lwork_bd), lwork_bd, info=info_bd )
!
!       ON EXIT OF gebrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE BIDAGONAL MATRIX BD, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P.
!         taup AND tauq ARE THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P, RESPECTIVELY.
!
        if ( m>=n ) then
!
            pt(:n,:n) = a(:n,:n)
!
            call orgbr( 'Q', m, n, n, a, m, tauq, work(:lwork_q), lwork_q, info=info_q )
!
            call orgbr( 'P', n, n, m, pt, n, taup, work(:lwork_pt), lwork_pt, info=info_pt )
!
!           ON EXIT OF THESE orgbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           IF m>=n,    a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                       COLUMNS OF Q;
!                       pt CONTAINS THE n-BY-n ORTHOGONAL MATRIX P**(t).
!
        else
!
            q(:m,:m) = a(:m,:m)
!
            call orgbr( 'Q', m, m, n, q, m, tauq, work(:lwork_q), lwork_q, info=info_q )
!
            call orgbr( 'P', m, n, m, a, m, taup, work(:lwork_pt), lwork_pt, info=info_pt )
!
!           ON EXIT OF orgbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           IF m<n,     a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                       ROWS OF P**(t);
!                       q CONTAINS THE m-BY-m ORTHOGONAL MATRIX Q.
!
        end if
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_bd,info_q,info_pt)/=0 ) then
!
!       ANORMAL EXIT FROM gebrd OR orgbr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to GEBRD or ORGBR subroutines, Info=', min(info_bd,info_q,info_pt)
!                
    else if ( do_test ) then
!
        bd(:k,:k) = zero
!
        if ( m>=n ) then
!
!           BD IS UPPER BIDIAGONAL.
!
            do l = 1_i4b, n-1_i4b
                bd(l,l)       = d(l)
                bd(l,l+1_i4b) = e(l)
            end do
!
            bd(n,n) = d(n)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION Q**(t)*a - BD*P**(t),
!
            resid(:n,:n) = matmul( transpose(a(:m,:n)), a2(:m,:n) )   &
                           - matmul( bd(:n,:n), pt(:n,:n) )
!
            resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
            err1 = norm( resid2(:n) )/(norm( a2 )*real(n,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - Q**(t)*Q.
!
            call unit_matrix( a2(:n,:n) )
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:m,:n)), a(:m,:n) ) )
            err2 = maxval( resid(:n,:n) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - P**(t)*P.
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( pt(:n,:n), transpose(pt(:n,:n)) ) )
            err3 = maxval( resid(:n,:n) )/real(n,stnd)
!
        else
!
!           BD IS LOWER BIDIAGONAL.
!
            do l = 1_i4b, m-1_i4b
                bd(l,l)       = d(l)
                bd(l+1_i4b,l) = e(l)
            end do
!
            bd(m,m) = d(m)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION Q**(t)*a - BD*P**(t),
!
            resid(:m,:n) = matmul( transpose(q(:m,:m)), a2(:m,:n) )  &
                           - matmul( bd(:m,:m), a(:m,:n) )
!
            resid2(:n) = norm( resid(:m,:n), dim=2_i4b )
            err1 = maxval( resid2(:n) )/(norm( a2 )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - Q**(t)*Q.
!
            call unit_matrix( a2(:m,:m) )
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( transpose(q(:m,:m )), q(:m,:m ) ) )
            err2 = maxval( resid(:m,:m) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - P**(t)*P.
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( a(:m,:n), transpose(a(:m,:n)) ) )
            err3 = maxval( resid(:m,:m) )/real(n,stnd)
!
        endif
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( m>=n ) then
        deallocate( a, pt, d, e, tauq, taup )
    else
        deallocate( a, q, d, e, tauq, taup )
    end if
!
    if ( do_test ) then
        deallocate( a2, bd, resid, resid2 )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_bd,info_q,info_pt)==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_bd,info_q,info_pt)==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed bidiagonal decomposition a = Q*BD*P**(t) = ', err1
        write (prtunit,*) 'Orthogonality of the computed Q orthogonal matrix                 = ', err2
        write (prtunit,*) 'Orthogonality of the computed P orthogonal matrix                 = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the bidiagonal reduction of a ', &
       m, ' by ', n,' real matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gebrd
! ===============================
!
end program ex1_lapack_gebrd

ex1_lapack_gels.F90

program ex1_lapack_gels
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELS
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gels
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=2000, n=1000, p=min(m,n), k=max(m,n), nrhs=400
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gels'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)              :: err, eps, elapsed_time, work2(1)
    real(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer      :: info, lwork, iok, istart, iend, irate, imax, itime, mrhs
!
    logical(lgl)   :: do_test
!
    character :: trans
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : FULL RANK REAL LINEAR LEAST SQUARES PROBLEM AND SEVERAL RIGHT HAND-SIDES
!               USING THE QR OR QL DECOMPOSITION OF THE COEFFICENT MATRIX a . IT IS
!               ASSUMED THAT a IS OF FULL RANK.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   If trans='N' THE LINEAR SYSTEM INVOLVES a AND If trans='T' THE LINEAR
!   SYSTEM INVOLVES a**(t). IN BOTH CASES, THE RANK OF a IS ASSUMED TO BE
!   min(m,n) .
!
    trans = 'N'
!
    mrhs = merge( m, n, trans=='N' )
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), b(k,nrhs), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM COEFFICIENT MATRIX a .
!
    call random_number( a(:m,:n) )
!
!   GENERATE A m-by-nrhs (trans='N') OR n-by-nrhs (trans='T')
!   REAL RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( b(:mrhs,:nrhs) )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(mrhs,nrhs), res(mrhs,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:mrhs,:nrhs) = b(:mrhs,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gels SUBROUTINE.
!
    lwork = -1
!
    call gels( trans, m, n, nrhs, a, m, b, k, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY gels SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMAL NORM SOLUTION TO THE LINEAR LEAST SQUARES PROBLEM .
!
        call gels( trans, m, n, nrhs, a, m, b, k, work, lwork, info )
!
!       THE ROUTINE RETURNS THE MINIMUM NORM SOLUTION OF THE LINEAR
!       LEAST SQUARE PROBLEM. HOWEVER, THE COEFFICIENT MATRIX a IS
!       ASSUMED OF FULL RANK.
!
!       ON EXIT OF gels :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT the iTH DIAGONAL ELEMENT OF THE TRIANGULAR
!                        FACTOR OF a IS ZERO AND a DOES NOT HAVE FULL RANK.
!
!       ON EXIT OF gels :
!
!         a IS OVERWRITTEN BY DETAILS OF ITS QR (m>=n) OR LQ (m<n) FACTORIZATIONS.
!
!         b IS OVERWRITTEN BY THE n-by-nrhs (trans='N') OR
!           m-by-nrhs (trans='T') SOLUTION.
!
!           If m >= n AND trans='N', THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF ELEMENTS n+1:m IN THAT COLUMN.
!
!           If m < n AND trans='T', THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF ELEMENTS m+1:n IN THAT COLUMN.
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gels SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELS subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN (trans='N')
!       OR ROW (trans='T') VECTORS OF a .
!
        if ( trans=='N' ) then
            res = b2 - matmul( a2, b(:n,:nrhs) )
            err = maxval( sum(abs(matmul(transpose(a2),res)),   dim=1) )/ sum( abs(a2) )
        else
            res = b2 - matmul( transpose(a2), b(:m,:nrhs) )
            err = maxval( sum(abs(matmul(a2,res)),   dim=1) )/ sum( abs(a2) )
        end if
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, a2, b2, res )
    else
        deallocate( a, b )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns/rows of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares real problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gels
! ==============================
!
end program ex1_lapack_gels

ex1_lapack_gelsd.F90

program ex1_lapack_gelsd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELSD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gelsd
!
    use Statpack, only : lgl, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=4000, n=2000, p=min(m,n), k=max(m,n), nrhs=400
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gelsd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)              :: err, eps, rcond, elapsed_time, work2(1)
    real(stnd)              :: s(p)
    real(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer              :: info, lwork, liwork, rank, iok, iwork2(1), &
                            istart, iend, irate, imax, itime
    integer, allocatable :: iwork(:)
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : MINIMUM-NORM SOLUTION OF A REAL LINEAR LEAST SQUARES PROBLEM
!               WITH SEVERAL RIGHT HAND-SIDES USING A SVD DECOMPOSITION OF THE
!               COEFFICIENT MATRIX. THE SVD IS COMPUTED WITH THE DIVIDE AND CONQUER
!               METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), b(k,nrhs), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM COEFFICIENT MATRIX a .
!
    call random_number( a(:m,:n) )
!
!   GENERATE A m-by-nrhs REAL RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( b(:m,:nrhs) )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(m,nrhs), res(m,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:m,:nrhs) = b(:m,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   THE EFFECTIVE RANK OF a, rank, IS DETERMINED BY TREATING AS ZERO THOSE
!   SINGULAR VALUES WHICH ARE LESS THAN rcond TIMES THE LARGEST SINGULAR VALUE.
!
    rcond = 0.0000001_stnd
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gelsd SUBROUTINE.
!
    lwork = -1
!
    call gelsd( m, n, nrhs, a, m, b, k, s, rcond, rank, work2, lwork, iwork2, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
        liwork = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY gelsd SUBROUTINE.
!
        allocate( work(lwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMAL NORM SOLUTION TO THE LINEAR LEAST SQUARES PROBLEM .
!
        call gelsd( m, n, nrhs, a, m, b, k, s, rcond, rank, work, lwork, iwork, info )
!
!       THE ROUTINE RETURNS THE SOLUTION AND SINGULAR VALUES OF THE LINEAR
!       LEAST SQUARE PROBLEM.
!
!       ON EXIT OF gelsd :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT the SVD ALGORITHM FAILED TO CONVERGE.
!                        AND i SUBDIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        BIDIAGONAL MATRIX DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF gelsd :
!
!         a IS DESTROYED.
!
!         b IS OVERWRITTEN BY THE n-by-nrhs SOLUTION.
!           If m >= n AND rank = n, THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF ELEMENTS n+1:m IN THAT COLUMN.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a
!           IN DECREASING ORDER.
!
!         rank IS OVERWRITTEN BY THE EFFECTIVE RANK OF a, i.e.
!              THE NUMBER OF SINGULAR VALUES WHICH ARE GREATER
!              THAN rcond*s(1) .
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gelsd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELSD subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN VECTORS OF a .
!
        res = b2 - matmul( a2, b(:n,:nrhs) )
        err = maxval( sum(abs(matmul(transpose(a2),res)),   dim=1) )/ sum( abs(a2) )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, a2, b2, res )
    else
        deallocate( a, b )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares real problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gelsd
! ===============================
!
end program ex1_lapack_gelsd

ex1_lapack_gelss.F90

program ex1_lapack_gelss
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELSS
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gelss
!
    use Statpack, only : lgl, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=4000, n=2000, p=min(m,n), k=max(m,n), nrhs=400
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gelss'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)              :: err, eps, rcond, elapsed_time, work2(1)
    real(stnd)              :: s(p)
    real(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer              :: info, lwork, rank, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : MINIMUM-NORM SOLUTION OF A REAL LINEAR LEAST SQUARES PROBLEM
!               WITH SEVERAL RIGHT HAND-SIDES USING A SVD DECOMPOSITION OF THE
!               COEFFICIENT MATRIX. THE SVD IS COMPUTED WITH THE GOLUB-REINSCH
!               METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), b(k,nrhs), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM COEFFICIENT MATRIX a .
!
    call random_number( a(:m,:n) )
!
!   GENERATE A m-by-nrhs REAL RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( b(:m,:nrhs) )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(m,nrhs), res(m,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:m,:nrhs) = b(:m,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   THE EFFECTIVE RANK OF a, rank, IS DETERMINED BY TREATING AS ZERO THOSE
!   SINGULAR VALUES WHICH ARE LESS THAN rcond TIMES THE LARGEST SINGULAR VALUE.
!
    rcond = 0.0000001_stnd
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gelss SUBROUTINE.
!
    lwork = -1
!
    call gelss( m, n, nrhs, a, m, b, k, s, rcond, rank, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
!
!       ALLOCATE WORK VARIABLE NEEDED BY gelss SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMAL NORM SOLUTION TO THE LINEAR LEAST SQUARES PROBLEM .
!
        call gelss( m, n, nrhs, a, m, b, k, s, rcond, rank, work, lwork, info )
!
!       THE ROUTINE RETURNS THE SOLUTIONS AND SINGULAR VALUES OF THE LINEAR
!       LEAST SQUARE PROBLEM.
!
!       ON EXIT OF gelss :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT the SVD ALGORITHM FAILED TO CONVERGE
!                        AND i SUBDIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        BIDIAGONAL MATRIX DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF gelss :
!
!         a IS OVERWRITTEN BY THE FIRST min(n,m) RIGHT SINGULAR
!           VECTORS OF a STORED ROW-WISE (e.g. IN THE FIRST min(n,m)
!           ROWS OF a).
!
!         b IS OVERWRITTEN BY THE n-by-nrhs SOLUTION.
!           If m >= n AND rank = n, THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF ELEMENTS n+1:m IN THAT COLUMN.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a
!           IN DECREASING ORDER.
!
!         rank IS OVERWRITTEN BY THE EFFECTIVE RANK OF a, i.e.
!              THE NUMBER OF SINGULAR VALUES WHICH ARE GREATER
!              THAN rcond*s(1) .
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gelss SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELSS subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN VECTORS OF a .
!
        res = b2 - matmul( a2, b(:n,:nrhs) )
        err = maxval( sum(abs(matmul(transpose(a2),res)),   dim=1) )/ sum( abs(a2) )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, a2, b2, res )
    else
        deallocate( a, b )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares real problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gelss
! ===============================
!
end program ex1_lapack_gelss

ex1_lapack_gelsy.F90

program ex1_lapack_gelsy
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELSY
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES
! ============
!
    use Lapack_interfaces, only : gelsy
!
    use Statpack, only : lgl, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=4000, n=2000, p=min(m,n), k=max(m,n), nrhs=400
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gelsy'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)              :: err, eps, rcond, elapsed_time, work2(1)
    real(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer, allocatable :: jpvt(:)
    integer              :: info, lwork, rank, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : MINIMUM-NORM SOLUTION OF A REAL LINEAR LEAST SQUARES PROBLEM
!               WITH SEVERAL RIGHT HAND-SIDES USING A COMPLETE ORTHOGONAL
!               FACTORIZATION OF THE COEFFICIENT MATRIX.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), b(k,nrhs), jpvt(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM COEFFICIENT MATRIX a .
!
    call random_number( a(:m,:n) )
!
!   GENERATE A m-by-nrhs REAL RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( b(:m,:nrhs) )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(m,nrhs), res(m,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:m,:nrhs) = b(:m,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   INITIALIZE PERMUTATION VECTOR FOR COMPLETE PIVOTING OF THE
!   COLUMNS OF a .
!
    jpvt(:n) = 0
!
!   rcond IS USED TO DETERMINE THE EFFECTIVE RANK OF a, WHICH IS DEFINED
!   AS THE ORDER OF THE LARGEST LEADING TRIANGULAR SUBMATRIX R11 IN THE 
!   QR FACTORIZATION WITH PIVOTING OF A, WHOSE ESTIMATED CONDITION NUMBER
!   IS < 1/rcond .
!
    rcond = 0.0000001_stnd
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gelsy SUBROUTINE.
!
    lwork = -1
!
    call gelsy( m, n, nrhs, a, m, b, k, jpvt, rcond, rank, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY gelsy SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMUM-NORM SOLUTION TO THE LINEAR LEAST SQUARES PROBLEM .
!
        call gelsy( m, n, nrhs, a, m, b, k, jpvt, rcond, rank, work, lwork, info )
!
!       THE ROUTINE RETURNS THE SOLUTION OF THE LINEAR
!       LEAST SQUARE PROBLEM.
!
!       ON EXIT OF gelsy :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!       ON EXIT OF gelsy IF info = 0 :
!
!         a IS OVERWRITTEN BY DETAILS OF ITS COMPLETE ORTHOGONAL
!           FACTORIZATION.
!
!         b IS OVERWRITTEN BY THE n-by-nrhs MINIMUM-NORM SOLUTION.
!
!         rank IS OVERWRITTEN BY THE EFFECTIVE RANK OF a.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gelsy SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELSY subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN VECTORS OF a .
!
        res = b2 - matmul( a2, b(:n,:nrhs) )
        err = maxval( sum(abs(matmul(transpose(a2),res)),   dim=1) )/ sum( abs(a2) )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, jpvt, a2, b2, res )
    else
        deallocate( a, b, jpvt )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares real problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gelsy
! ===============================
!
end program ex1_lapack_gelsy

ex1_lapack_gesdd.F90

program ex1_lapack_gesdd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESDD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesdd
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=3000, n=3000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gesdd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, err3, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: s, work
    real(stnd), allocatable, dimension(:,:) :: a, a2, c, resid
!
    integer                            :: info, lwork, iok, istart, iend, irate, imax, itime
    integer, allocatable, dimension(:) :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobz
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : FULL SVD OF A REAL MATRIX USING THE DIVIDE AND CONQUER METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), c(k,k), s(k), iwork(8*k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n RANDOM DATA MATRIX .
!
    call random_number( a )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), resid(m,k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   DETERMINE THE WORK TO DO AND HOW THE SINGULAR VECTORS WILL BE STORED.
!   WITH THE ARGUMENTS BELOW, THE SINGULAR VECTORS ARE COMPUTED AND
!   STORED AS IN SUBROUTINE svd_cmp2 IN STATPACK.
!
    jobz  = 'O'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gesdd SUBROUTINE.
!
    lwork = -1
!
    call gesdd( jobz, m, n, a, m, s, c, k, c, k, work2, lwork, iwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1)) + 10
!
!       ALLOCATE WORK VARIABLE NEEDED BY gesdd SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       gesdd COMPUTES THE SINGULAR VALUE DECOMPOSITION (SVD) OF A REAL
!       m-BY-n MATRIX a. THE SVD IS WRITTEN
!
!                       a = U * S * V**(t)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m ORTHOGONAL MATRIX, AND
!       V IS AN n-BY-n ORTHOGONAL MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
        call gesdd( jobz, m, n, a, m, s, c, k, c, k, work, lwork, iwork, info )
!
!       THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!       SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE.
!
!       ON EXIT OF gesdd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF gesdd IF JOBZ='O':
!
!         IF m>=n,    a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!                     STORED COLUMNWISE);
!                     c CONTAINS THE n-BY-n ORTHOGONAL MATRIX V**(t).
!
!         IF m<n,     a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     ROWS OF V**(t) (THE RIGHT SINGULAR VECTORS,
!                     STORED ROWWISE);
!                     c CONTAINS THE m-BY-m ORTHOGONAL MATRIX U.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesdd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESDD subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
        if ( m>=n ) then
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) = matmul(a2(:m,:k),transpose(c(:k,:k))) - a(:m,:k)*spread(s,dim=1,ncopies=m)
            a2(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( a2(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:n,:n) )
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:m,:n)), a(:m,:n) ) )
            err2 = maxval( resid(:n,:n) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( c(:n,:n), transpose(c(:n,:n)) ) )
            err3 = maxval( resid(:n,:n) )/real(n,stnd)
!
        else
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) =  matmul(a2(:m,:n),transpose(a(:k,:n))) - c(:k,:k)*spread(s,dim=1,ncopies=k) 
            a2(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( a2(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:m,:m) )
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( transpose(c(:m,:m )), c(:m,:m ) ) )
            err2 = maxval( resid(:m,:m) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( a(:m,:n), transpose(a(:m,:n)) ) )
            err3 = maxval( resid(:m,:m) )/real(n,stnd)
!
        end if
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, c, s, iwork, a2, resid )
    else
        deallocate( a, c, s, iwork )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all singular values and vectors of a ', &
       m, ' by ', n,' real matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gesdd
! ===============================
!
end program ex1_lapack_gesdd

ex1_lapack_gesv.F90

program ex1_lapack_gesv
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesv
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=4000, nrhs=4000
!
    character(len=*), parameter :: name_proc='Example 1 of gesv'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, eps, elapsed_time
    real(stnd), dimension(:,:), allocatable :: a, b, x, res
!
    integer(i4b), dimension(:), allocatable :: ipiv
    integer                                 :: info, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : SOLUTION OF A LINEAR SYSTEM WITH A REAL COEFFICIENT
!               MATRIX AND SEVERAL RIGHT HAND-SIDES.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = sqrt( epsilon( err ) )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), b(n,nrhs), x(n,nrhs), ipiv(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX a .
!
    call random_number( a )
!
!   GENERATE A n-by-nrhs RANDOM SOLUTION MATRIX x .
!
    call random_number( x )
!
!   COMPUTE THE MATRIX-MATRIX PRODUCT b = a*x .
!
    b = matmul( a, x )
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE THE SOLUTION MATRIX FOR REAL LINEAR SYSTEM
!
!            a*x = b .
!
!   WHERE a IS A n-BY-n MATRIX AND b IS A n-BY-nrhs MATRIX.
!
!   THE LU DECOMPOSITION WITH PARTIAL PIVOTING AND ROW INTERCHANGES
!   IS USED TO FACTOR a AS
!
!          a = P*L*U
!
!   WHERE P IS PERMUTATION MATRIX, L IS UNIT LOWER TRIANGULAR, AND U IS
!   UPPER TRIANGULAR. THE FACTORED FORM OF a IS THEN USED TO SOLVE THE
!   SYSTEM OF EQUATIONS.
!
    call gesv( n, nrhs, a, n, ipiv, b, n, info )
!
!   ON EXIT OF gesv :
!
!      info    = 0 :  INDICATES SUCCESSFUL EXIT
!      info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!      info=i  > 0 :  INDICATES THAT THE SOLUTION CAN NOT BE COMPUTED BECAUSE
!                     THE MATRIX IS SINGULAR
!
!   ON EXIT OF gesv IF info = 0:
!
!       a IS OVERWRITTEN BY THE FACTORS L AND U OF ITS FACTORIZATION.
!       THE UNIT DIAGONAL ELEMENTS OF L ARE NOT STORED. 
!
!       ipiv STORES THE PIVOT INDICES THAT DEFINE THE PERMUTATION MATRIX P.
!       ROW i OF THE MATRIX WAS INTERCHANGED WITH ROW ipiv(i).
!
!       b IS OVERWRITTEN WITH THE SOLUTION MATRIX x.
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesv SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESV subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!
    else if ( do_test ) then
!
!       ALLOCATE WORK ARRAY .
!
        allocate( res(n,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CHECK THE RESULTS FOR SMALL RESIDUALS.
!
        res(:n,:nrhs) = b(:n,:nrhs) - x(:n,:nrhs)
        err = maxval( sum( abs(res), dim=1 ) /    &
                      sum(abs(x),    dim=1 )      )
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate( res )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate( a, b, x, ipiv )
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed solutions = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solutions of a linear real system of size ', &
       n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gesv
! ==============================
!
end program ex1_lapack_gesv

ex1_lapack_gesvd.F90

program ex1_lapack_gesvd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESVD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesvd
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=3000, n=3000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gesvd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, err3, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: s, work
    real(stnd), allocatable, dimension(:,:) :: a, a2, c, resid
!
    integer        :: info, lwork, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!
    character      :: jobu, jobvt
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : FULL SVD OF A REAL MATRIX USING THE QR IMPLICIT METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), c(k,k), s(k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM DATA MATRIX .
!
    call random_number( a )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), resid(m,k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   DETERMINE THE WORK TO DO AND HOW THE SINGULAR VECTORS WILL BE STORED.
!   WITH THE ARGUMENTS BELOW, THE SINGULAR VECTORS ARE COMPUTED AND
!   STORED AS IN SUBROUTINE svd_cmp2 IN STATPACK.
!
    if ( m>=n ) then
!
        jobu  = 'O'
        jobvt = 'S'
!
    else
!
        jobu  = 'S'
        jobvt = 'O'
!
    end if
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gesvd SUBROUTINE.
!
    lwork = -1
!
    call gesvd( jobu, jobvt, m, n, a, m, s, c, k, c, k, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gesvd SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       gesvd COMPUTES THE SINGULAR VALUE DECOMPOSITION (SVD) OF A REAL
!       m-BY-n MATRIX a. THE SVD IS WRITTEN
!
!                       a = U * S * V**(t)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m ORTHOGONAL MATRIX, AND
!       V IS AN n-BY-n ORTHOGONAL MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
        call gesvd( jobu, jobvt, m, n, a, m, s, c, k, c, k, work, lwork, info )
!
!       THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!       SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE.
!
!       ON EXIT OF gesvd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE
!                        AND i OFF-DIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        BIDIAGONAL FORM OF a DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF gesvd WITH THE VALUES SPECIFIED FOR jobu AND jobvt:
!
!         IF m>=n,    a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!                     STORED COLUMNWISE);
!                     c CONTAINS THE n-BY-n ORTHOGONAL MATRIX V**(t).
!
!         IF m<n,     a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     ROWS OF V**(t) (THE RIGHT SINGULAR VECTORS,
!                     STORED ROWWISE);
!                     c CONTAINS THE m-BY-m ORTHOGONAL MATRIX U.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesvd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESVD subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
        if ( m>=n ) then
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) = matmul(a2(:m,:k),transpose(c(:k,:k))) - a(:m,:k)*spread(s,dim=1,ncopies=m)
            a2(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( a2(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:n,:n) )
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:m,:n)), a(:m,:n) ) )
            err2 = maxval( resid(:n,:n) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( c(:n,:n), transpose(c(:n,:n)) ) )
            err3 = maxval( resid(:n,:n) )/real(n,stnd)
!
        else
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) =  matmul(a2(:m,:n),transpose(a(:k,:n))) - c(:k,:k)*spread(s,dim=1,ncopies=k) 
            a2(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( a2(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:m,:m) )
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( transpose(c(:m,:m )), c(:m,:m ) ) )
            err2 = maxval( resid(:m,:m) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( a(:m,:n), transpose(a(:m,:n)) ) )
            err3 = maxval( resid(:m,:m) )/real(n,stnd)
!
        end if
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, c, s, a2, resid )
    else
        deallocate( a, c, s )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all singular values and vectors of a ', &
       m, ' by ', n,' real matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gesvd
! ===============================
!
end program ex1_lapack_gesvd

ex1_lapack_gesvdx.F90

program ex1_lapack_gesvdx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESVDX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 04/12/2016
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesvdx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix, merror,  &
                         allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=2000, n=1000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of gesvdx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, err3, eps, elapsed_time, vl, vu
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: s, work
    real(stnd), allocatable, dimension(:,:) :: a, a2, u, vt
!
    integer                            :: info, lwork, il, iu, ns, iok,     &
                                          istart, iend, irate, imax, itime
    integer, allocatable, dimension(:) :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobu, jobvt, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : FULL OR PARTIAL SVD OF A REAL MATRIX USING AN ASSOCIATED EIGENVALUE PROBLEM
!               AND THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = false
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), u(m,k), vt(k,n), s(k), iwork(12*k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM DATA MATRIX .
!
    call random_number( a )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAY.
!
        allocate( a2(m,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   DETERMINE THE WORK TO DO AND HOW MANY SINGULAR TRIPLETS
!   WILL BE COMPUTED AND STORED.
!
!   IF jobu  = 'V', LEFT SINGULAR VECTORS WILL BE COMPUTED.
!   IF jobu  = 'N', LEFT SINGULAR VECTORS WILL NOT BE COMPUTED.
!   IF jobvt = 'V', RIGHT SINGULAR VECTORS WILL BE COMPUTED.
!   IF jobvt = 'N', RIGHT SINGULAR VECTORS WILL NOT BE COMPUTED.
!
    jobu  = 'V'
    jobvt = 'V'
!
!   range DETERMINED HOW MANY SINGULAR VALUES AND VECTORS WILL BE COMPUTED.
!
!   IF range='A' ALL SINGULAR VALUES WILL BE FOUND,
!   IF range='V' ALL SINGULAR VALUES IN THE HALF OPEN INTERVAL (vl,vu] WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH SINGULAR VALUES IN ASCENDING ORDER WILL BE FOUND.
!
!   IN EACH CASE, THE ASSOCIATED SINGULAR VECTORS WILL BE ALSO COMPUTED.
!
!    range = 'A'
    range = 'I'
!
    vl = zero
    vu = zero
!
    il = k - 100 + 1
    iu = k
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gesvdx SUBROUTINE.
!
    lwork = -1
!
    call gesvdx( jobu, jobvt, range, m, n, a, m, vl, vu, il, iu, ns,   &
                 s, u, m, vt, k, work2, lwork, iwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gesvdx SUBROUTINE.
!
        allocate( work(lwork), stat = iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       gesvdx COMPUTES THE SINGULAR VALUE DECOMPOSITION (SVD) OF A REAL
!       m-BY-n MATRIX a BY SOLVING AN ASSOCIATE EIGENVALUE PROBLEM. THE SVD
!       IS WRITTEN
!
!                       a = U * S * V**(t)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m ORTHOGONAL MATRIX, AND
!       V IS AN n-BY-n ORTHOGONAL MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
!       THE ADVANTAGE OF gesvdx SUBROUTINE COMPARED TO OTHER SVD SUBROUTINES
!       AVAILABLE IN LAPACK (E.G. gesvd OR gesdd) IS THAT gesvdx IS ABLE TO COMPUTE
!       A PARTIAL SVD DECOMPOSITION OR SELECTED SINGULAR TRIPLETS OF THE INPUT
!       REAL MATRIX WHILE THE OTHER SUBROUTINES DO NOT OFFER THIS POSSIBILITY.
!       HOWEVER, BEWARE THAT THE gesvdx SUBROUTINE IS AVAILABLE ONLY IN LAPACK 3.6.0
!       AND ABOVE.
!
        call gesvdx( jobu, jobvt, range, m, n, a, m, vl, vu, il, iu, ns,   &
                     s, u, m, vt, k, work, lwork, iwork, info )
!
!       THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!       SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE.
!
!       ON EXIT OF gesvdx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT i EIVENVECTORS FAILED TO CONVERGE.
!         info=n*2+1  :  INDICATES THAT AN INTERNAL ERROR OCCURRED.
!
!       ON EXIT OF gesvdx WITH THE VALUES SPECIFIED ABOVE FOR jobu ('V'),
!       jobvt ('V') AND range ('A'):
!
!         u IS OVERWRITTEN WITH THE FIRST  min(m,n)
!         COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!         STORED COLUMNWISE);
!
!         vt IS OVERWRITTEN WITH THE FIRST min(m,n)
!         ROWS OF V**(t) (THE RIGHT SINGULAR VECTORS,
!         STORED ROWWISE);
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
!       FOR range='I' OR range='V', ns IS THE NUMBER OF SINGULAR TRIPLETS
!       COMPUTED AND STORED BY THE SUBROUTINE IN ARGUMENTS u, vt AND s.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
 !
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesvdx SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESVDX subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:ns) - U(:m,:ns)*S(:ns,:ns).
!
        a(:m,:ns)     = matmul(a2(:m,:n),transpose(vt(:ns,:n))) - u(:m,:ns)*spread(s(:ns),dim=1,ncopies=m)
        a2(:ns,1_i4b) = norm( a(:m,:ns), dim=2_i4b )
!
        err1          =  maxval( a2(:ns,1_i4b) )/( sum( abs(s(:ns)) )*real(m,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:ns,:ns) )
!
        a(:ns,:ns) = abs( a2(:ns,:ns) - matmul( transpose(u(:m,:ns)), u(:m,:ns) ) )
!
        err2       = maxval( a(:ns,:ns) )/real(m,stnd)
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
        a(:ns,:ns) = abs( a2(:ns,:ns) - matmul( vt(:ns,:n), transpose(vt(:ns,:n)) ) )
!
        err3 = maxval( a(:ns,:ns) )/real(n,stnd)
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, s, u, vt, iwork, a2 )
    else
        deallocate( a, s, u, vt, iwork )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
!
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
!
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', ns,' singular values and vectors of a ', &
       m, ' by ', n,' real matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_gesvdx
! ================================
!
end program ex1_lapack_gesvdx

ex1_lapack_orgbr.F90

program ex1_lapack_orgbr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines GEBRD and ORGBR
!   in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!    The program also shows the use of subroutines BD_SVD2 in module SVD_Procedures.
!                                                                              
! LATEST REVISION : 20/03/2017
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gebrd, orgbr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,    &
                         unit_matrix, bd_svd2, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=3000, n=3000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of orgbr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err3, err, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, tauq, taup, work, resid2
    real(stnd), allocatable, dimension(:,:) :: a, a2, resid, pt, q
!
    integer      :: info_bd, info_q, info_pt, lwork, lwork_bd, lwork_q, lwork_pt,    &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: l
!
    logical(lgl) :: bd_is_upper, failure, do_test
!   
    character    :: sort='d'
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : BIDIAGONAL REDUCTION AND SVD DECOMPOSITION OF A REAL MATRIX.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
    bd_is_upper = m>=n
!
!   ALLOCATE WORK ARRAYS.
!
    if ( bd_is_upper ) then
        allocate( a(m,n), d(k), e(k), tauq(k), taup(k), pt(k,k), stat=iok )
    else
        allocate( a(m,n), d(k), e(k), tauq(k), taup(k), q(k,k), stat=iok )
    end if
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM DATA MATRIX .
!
    call random_number( a )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), resid(m,k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE DATA MATRIX.
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gebrd AND orgbr SUBROUTINES.
!
    lwork = -1
!
    call gebrd( m, n, a, m, d, e(2_i4b:k), tauq, taup, work2, lwork, info=info_bd )
!
    lwork_bd = int(work2(1))
!
    if ( bd_is_upper ) then
!
        call orgbr( 'Q', m, n, n, a, m, tauq, work2, lwork, info=info_q )
!
        lwork_q = int(work2(1))
!
        call orgbr( 'P', n, n, m, pt, n, taup, work2, lwork, info=info_pt )
!
        lwork_pt = int(work2(1))
!
    else
!
        call orgbr( 'Q', m, m, n, q, m, tauq, work2, lwork, info=info_q )
!
        lwork_q = int(work2(1))
!
        call orgbr( 'P', m, n, m, a, m, taup, work2, lwork, info=info_pt )
!
        lwork_pt = int(work2(1))
!
    end if
!
    if ( min(info_bd,info_q,info_pt)==0 ) then
!
        lwork = max( lwork_bd, lwork_q, lwork_pt )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gebrd AND orgbr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE BIDIAGONAL REDUCTION OF RANDOM DATA MATRIX
!
!                        a = Q*BD*P**(t) .
!
!       WHERE Q AND P ARE ORTHOGONAL MATRICES AND BD IS A REAL BIDIAGONAL MATRIX.
!
        call gebrd( m, n, a, m, d, e(2_i4b:k), tauq, taup, work(:lwork_bd), lwork_bd, info=info_bd )
!
!       ON EXIT OF gebrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE BIDAGONAL MATRIX BD, RESPECTIVELY. BD IS UPPER
!         BIDIAGONAL IF m>=n AND LOWER-BIDIAGONAL IF m<n .
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P.
!         taup AND tauq ARE THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P, RESPECTIVELY.
!
!       NOW COMPUTE THE SINGULAR VALUE DECOMPOSITION (SVD) OF THE REAL
!       m-BY-n MATRIX a. THE SVD IS WRITTEN
!
!                       a = U * S * V**(t)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m ORTHOGONAL MATRIX, AND
!       V IS AN n-BY-n ORTHOGONAL MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
        if ( bd_is_upper ) then
!
            pt(:n,:n) = a(:n,:n)
!
            call orgbr( 'Q', m, n, n, a, m, tauq, work(:lwork_q), lwork_q, info=info_q )
!
            call orgbr( 'P', n, n, m, pt, n, taup, work(:lwork_pt), lwork_pt, info=info_pt )
!
!           ON EXIT OF THESE orgbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           IF m>=n,    a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                       COLUMNS OF Q;
!                       pt CONTAINS THE n-BY-n ORTHOGONAL MATRIX P**(t).
!
!           COMPUTE ALL SINGULAR VALUES AND VECTORS OF THE REAL MATRIX a. THE SINGULAR
!           VALUES ARE ALSO THE SINGULAR VALUES OF THE UPPER BIDIAGONAL MATRIX BD.
!
            call bd_svd2( bd_is_upper, d, e, failure, a, pt, sort=sort )
!
!           THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!           SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE:
!
!           IF m>=n,  a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!                     STORED COLUMNWISE);
!                     pt CONTAINS THE n-BY-n ORTHOGONAL MATRIX V**(t).
!
!           d IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
        else
!
            q(:m,:m) = a(:m,:m)
!
            call orgbr( 'Q', m, m, n, q, m, tauq, work(:lwork_q), lwork_q, info=info_q )
!
            call orgbr( 'P', m, n, m, a, m, taup, work(:lwork_pt), lwork_pt, info=info_pt )
!
!           ON EXIT OF orgbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           IF m<n,     a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                       ROWS OF P**(t);
!                       q CONTAINS THE m-BY-m ORTHOGONAL MATRIX Q.
!
!           COMPUTE ALL SINGULAR VALUES AND VECTORS OF THE REAL LOWER BIDIAGONAL MATRIX BD,
!           WHICH ARE ALSO THE SINGULAR VALUES AND VECTORS OF a .
!
            call bd_svd2( bd_is_upper, d, e, failure, q, a, sort=sort )
!
!           THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!           SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE:
!
!           IF m<n,   a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     ROWS OF V**(t) (THE RIGHT SINGULAR VECTORS,
!                     STORED ROWWISE);
!                     q CONTAINS THE m-BY-m ORTHOGONAL MATRIX U.
!
!           d IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
        end if
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_bd,info_q,info_pt)/=0 ) then
!
!       ANORMAL EXIT FROM gebrd OR orgbr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to GEBRD or ORGBR subroutines, Info=', min(info_bd,info_q,info_pt)
!                
    else if ( do_test ) then
!
        if ( bd_is_upper ) then
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) = matmul(a2(:m,:k),transpose(pt(:k,:k))) - a(:m,:k)*spread(d,dim=1,ncopies=m)
            a2(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( a2(:k,1_i4b) )/( sum( abs(d) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:n,:n) )
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:m,:n)), a(:m,:n) ) )
            err2 = maxval( resid(:n,:n) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid(:n,:n) = abs( a2(:n,:n) - matmul( pt(:n,:n), transpose(pt(:n,:n)) ) )
            err3 = maxval( resid(:n,:n) )/real(n,stnd)
!
        else
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) =  matmul(a2(:m,:n),transpose(a(:k,:n))) - q(:k,:k)*spread(d,dim=1,ncopies=k) 
            a2(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( a2(:k,1_i4b) )/( sum( abs(d) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:m,:m) )
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( transpose(q(:m,:m )), q(:m,:m ) ) )
            err2 = maxval( resid(:m,:m) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid(:m,:m) = abs( a2(:m,:m) - matmul( a(:m,:n), transpose(a(:m,:n)) ) )
            err3 = maxval( resid(:m,:m) )/real(n,stnd)
!
        endif
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( m>=n ) then
        deallocate( a, pt, d, e, tauq, taup )
    else
        deallocate( a, q, d, e, tauq, taup )
    end if
!
    if ( do_test ) then
        deallocate( a2, resid )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_bd,info_q,info_pt)==0 .and. .not.failure ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_bd,info_q,info_pt)==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all singular values and vectors of a ', &
       m, ' by ', n,' real matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_orgbr
! ===============================
!
end program ex1_lapack_orgbr

ex1_lapack_orgtr.F90

program ex1_lapack_orgtr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines SYTRD and ORGTR
!   in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!    The program also shows the use of subroutine SYMTRID_QRI2 in module EIG_Procedures.
!                                                                              
! LATEST REVISION : 20/03/2017
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sytrd, orgtr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,    &
                         unit_matrix, symtrid_qri2, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=2000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of orgtr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, tau, work, resid2
    real(stnd), allocatable, dimension(:,:) :: a, a2, resid
!
    integer      :: info_trd, info_q, lwork, lwork_trd, lwork_q,   &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: l
!
    logical(lgl) :: failure, do_test
!   
    character    :: uplo, sort='d'
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX USING THE QR METHOD BY COMBINING LAPACK AND
!               STATPACK SUBROUTINES.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = false
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), d(n), e(n), tau(n-1_i4b), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND
!   FROM IT A SELF-ADJOINT MATRIX a .
!
    call random_number( a )
    a = a + transpose( a ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE SYMMETRIC MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!   WITH SUBROUTINES sytrd AND orgtr FROM LAPACK AND symtrid_qri2 FROM
!   STATPACK.
!
!   THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!   IS WRITTEN
!
!                       a = U * D * U**(t)
!
!   WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!   THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!   THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
!   FIRST REDUCE THE SYMMETRIC MATRX a TO TRIDIAGONAL FORM WITH
!   SUBROUTINES sytrd AND orgtr FROM LAPACK.
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR sytrd AND orgtr SUBROUTINES.
!
    lwork = -1
!
    call sytrd( uplo, n, a, n, d, e(:n-1_i4b), tau, work2, lwork, info=info_trd )
!
    lwork_trd = int(work2(1))
!
    call orgtr( uplo, n, a, n, tau, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    if ( min(info_trd,info_q)==0 ) then
!
        lwork = max( lwork_trd, lwork_q )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY sytrd AND orgtr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CALL sytrd AND orgtr TO REDUCE THE MATRIX a TO TRIDIAGONAL FORM
!
!                      a = Q*TRID*Q**(t)
!
!       WHERE Q IS ORTHOGONAL AND TRID IS A SYMMETRIC TRIDIAGONAL MATRIX.
!
        call sytrd( uplo, n, a, n, d, e(:n-1_i4b), tau, work(:lwork_trd), lwork_trd, info=info_trd )
!
!       ON EXIT OF sytrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE SYMMETRIC TRIDIAGONAL MATRIX, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q IN ITS UPPER TRIANGLE IF uplo='U'.
!         tau CONTAINS THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q.
!
        call orgtr( uplo, n, a, n, tau, work(:lwork_q), lwork_q, info=info_q )
!
!       ON EXIT OF THIS orgtr CALL:
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         a IS OVERWRITTEN WITH THE n-BY-n ORTHOGONAL MATRIX Q.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
!       NEXT COMPUTE ALL EIGENVALUES AND EIGENVECTORS OF THE REAL SYMMETRIC MATRIX a WITH
!       SUBROUTINE symtrid_qri2 FROM STATPACK, USING TRID AND Q COMPUTED FROM LAPACK SUBROUTINES.
!       THE EIGENVALUES OF a ARE ALSO THE EIGENVALUES OR THE TRIDIAGONAL MATRIX TRID.
!
        call symtrid_qri2( d(:n), e(:n), failure, a(:n,:n), sort=sort )
!
!       THE ROUTINE RETURNS THE EIGENVALUES AND THE EIGENVECTORS OF a.
!
!       ON EXIT OF symtrid_qri2:
!
!           failure= false :  INDICATES SUCCESSFUL EXIT.
!           failure= true  :  INDICATES THAT THE ALGORITHM DID NOT CONVERGE AND
!                             THAT FULL ACCURACY WAS NOT ATTAINED IN THE EIGENDECOMPOSITION 
!                             OF THE INTERMEDIATE TRIDIAGONAL FORM TRID OF a.
!
!           a IS OVERWRITTEN WITH THE EIGENVECTORS, STORED COLUMNWISE;
!
!           d IS OVERWRITTEN WITH THE EIGENVALUES OF a.
!
!           IF SORT = 'a' OR 'A', THE EIGENVALUES ARE SORTED INTO ASCENDING ORDER.
!           IF SORT = 'd' OR 'D', THE EIGENVALUES ARE SORTED INTO DESCENDING ORDER.
!           THE EIGENVECTORS ARE REARRANGED ACCORDINGLY.
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_trd,info_q)/=0 ) then
!
!       ANORMAL EXIT FROM sytrd AND orgtr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to SYTRD or ORGTR subroutines, Info=', min(info_trd,info_q)
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a2(:n,:n),a(:n,:n)) - a(:n,:n)*spread(d,1,n)
        resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid2(:n) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:n,:n) )
!
        resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:n,:n )), a(:n,:n) ) )
        err2 = maxval( resid(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, a2, resid, resid2, d, e, tau )
    else
        deallocate( a, d, e, tau )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_trd,info_q)==0 .and. .not.failure  ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_trd,info_q)==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_orgtr
! ===============================
!
end program ex1_lapack_orgtr

ex1_lapack_ormbr.F90

program ex1_lapack_ormbr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines GEBRD and ORMBR
!   in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!    The program also shows the use of subroutines BD_SVD and BD_INVITER
!    in module SVD_Procedures.
!                                                                              
! LATEST REVISION : 27/05/2017
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gebrd, ormbr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,  &
                         bd_svd, bd_inviter, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=3000, n=3000, nvec=2000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of ormbr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err3, err, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, singval, e2, tauq, taup, work
    real(stnd), allocatable, dimension(:,:) :: a, a2, leftvec, rightvec
!
    integer      :: info_bd, info_q, info_p, lwork, lwork_bd, lwork_q, lwork_p,  &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: maxiter=4, l
!
    logical(lgl) :: failure, bd_is_upper, do_test
!   
    character    :: sort='d'
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : BIDIAGONAL REDUCTION AND PARTIAL SVD DECOMPOSITION OF A REAL MATRIX
!               USING AN INVERSE ITERATION METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    bd_is_upper = m>=n
    do_test     = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), leftvec(m,nvec), rightvec(n,nvec), d(k), e(k), &
              tauq(k), taup(k), singval(k), e2(k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM DATA MATRIX .
!
    call random_number( a )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAY.
!
        allocate( a2(m,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE DATA MATRIX.
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gebrd AND orgbr SUBROUTINES.
!
    lwork = -1
!
    call gebrd( m, n, a, m, d(:k), e(2_i4b:k), tauq, taup, work2, lwork, info=info_bd )
!
    lwork_bd = int(work2(1))
!
    call ormbr( 'Q', 'L', 'N', m, nvec, n, a, m, tauq, leftvec, m, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    call ormbr( 'P', 'L', 'N', n, nvec, m, a, m, taup, rightvec, n, work2, lwork, info=info_p )
!
    lwork_p = int(work2(1))
!
    if ( min(info_bd,info_q,info_p)==0 ) then
!
        lwork = max( lwork_bd, lwork_q, lwork_p )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gebrd AND ormbr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE BIDIAGONAL REDUCTION OF RANDOM DATA MATRIX a = Q*BD*P**(t)
!       WHERE Q AND P ARE ORTHOGONAL MATRICES AND BD IS A REAL BIDIAGONAL MATRIX.
!
        call gebrd( m, n, a, m, d(:k), e(2_i4b:k), tauq, taup, work(:lwork_bd), lwork_bd, info=info_bd )
!
!       ON EXIT OF gebrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE BIDAGONAL MATRIX BD, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P.
!         taup AND tauq ARE THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P, RESPECTIVELY.
!
!       MAKE A COPY OF THE BIDIAGONAL MATRIX.
!
        singval(:k) = d(:k)
        e2(:k)      = e(:k)
!
!       COMPUTE ALL SINGULAR VALUES OF THE REAL BIDIAGONAL MATRIX BD.
!
        call bd_svd( bd_is_upper, singval(:k), e2(:k), failure, sort=sort  )
!
        if ( .not. failure ) then
!
!           COMPUTE THE FIRST nvec SINGULAR VECTORS OF THE BIDIAGONAL MATRIX BY maxiter INVERSE ITERATIONS.
!
            call bd_inviter( bd_is_upper, d(:k), e(:k), singval(:nvec), leftvec(:k,:nvec),   &
                             rightvec(:k,:nvec), failure, maxiter=maxiter )
!
!           NOW COMPUTE THE FIRST nvec SINGULAR VECTORS OF THE FULL m-BY-n MATRIX a BY BACK-TRANSFORMATION WITH
!           LAPACK SUBROUTINE ormbr.
!
            if ( bd_is_upper ) then
                leftvec(k+1_i4b:m,:nvec) = zero
            else
                rightvec(k+1_i4b:n,:nvec) = zero
            end if
!
            call ormbr( 'Q', 'L', 'N', m, nvec, n, a, m, tauq, leftvec, m, work(:lwork_q), lwork_q, info=info_q )
!
            call ormbr( 'P', 'L', 'N', n, nvec, m, a, m, taup, rightvec, n, work(:lwork_p), lwork_p, info=info_p )
!
!           ON EXIT OF THESE ormbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT.
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!
!           leftvec  IS OVERWRITTEN WITH THE FIRST nvec LEFT SINGULAR VECTORS of a STORED COLUMNWISE.
!           rightvec IS OVERWRITTEN WITH THE FIRST nvec RIGHT SINGULAR VECTORS of a STORED COLUMNWISE.
!
        end if
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_bd,info_q,info_p)/=0 ) then
!
!       ANORMAL EXIT FROM gebrd OR ormbr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to GEBRD or ORMBR subroutines, Info=', min(info_bd,info_q,info_p)
!                
    else if ( do_test .and. .not.failure ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*rightvec - leftvec*diag(singval(:nvec)),
!       WHERE leftvec AND rightvec ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
        a(:m,:nvec) =  matmul(a2,rightvec) - leftvec*spread( singval(:nvec),dim=1,ncopies=m )
!
        a2(:nvec,1_i4b) = norm( a(:m,:nvec), dim=2_i4b )
        err1 =  maxval( a2(:nvec,1_i4b) )/( sum( abs(singval(:k)) )*real(m,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - leftvec**(t)*leftvec.
!
        call unit_matrix( a2(:nvec,:nvec) )
!
        a(:nvec,:nvec) = abs( a2(:nvec,:nvec) - matmul( transpose(leftvec(:m,:nvec)), leftvec(:m,:nvec) ) )
        err2 = maxval( a(:nvec,:nvec) )/real(m,stnd)
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - rightvec**(t)*rightvec.
!
        a(:nvec,:nvec) = abs( a2(:nvec,:nvec) - matmul( transpose(rightvec(:n,:nvec)), rightvec(:n,:nvec) ) )
        err3 = maxval( a(:nvec,:nvec) )/real(n,stnd)
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, a2, leftvec, rightvec, d, e, tauq, taup, singval, e2 )
    else
        deallocate( a, leftvec, rightvec, d, e, tauq, taup, singval, e2 )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_bd,info_q,info_p)==0 .and. .not.failure ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_bd,info_q,info_p)==0 .and. .not.failure ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all singular values and ', nvec, ' singular vectors of a ', &
       m, ' by ', n,' real matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_ormbr
! ===============================
!
end program ex1_lapack_ormbr

ex1_lapack_ormtr.F90

program ex1_lapack_ormtr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines (x)SYTRD and (x)ORMTR
!   in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!    The program also shows the use of subroutines SYMTRID_QRI and TRID_INVITER
!    in module EIG_Procedures.
!                                                                              
! LATEST REVISION : 29/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sytrd, ormtr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,     &
                         symtrid_qri, trid_inviter, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000, nvec=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of ormtr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, tau, eigval, e2, work, resid
    real(stnd), allocatable, dimension(:,:) :: a, eigvec, a2
!
    integer      :: info_trd, info_q, lwork, lwork_trd, lwork_q, iok,   &
                    istart, iend, irate, imax, itime
    integer(i4b) :: l, maxiter=2
!
    logical(lgl) :: failure, failure2, do_test
!   
    character    :: uplo, sort='d'
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : TRIDIAGONAL REDUCTION OF A REAL SYMMETRIC MATRIX AND
!               EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL
!               SYMMETRIC MATRIX USING THE INVERSE ITERATION METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = false
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), eigvec(n,nvec), d(n), e(n), tau(n-1_i4b),  &
              eigval(n), e2(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND
!   FROM IT A SELF-ADJOINT MATRIX a .
!
    call random_number( a )
    a = a + transpose( a ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(nvec), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE SYMMETRIC MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR sytrd AND ormtr SUBROUTINES.
!
    lwork = -1
!
    call sytrd( uplo, n, a, n, d, e, tau, work2, lwork, info=info_trd )
!
    lwork_trd = int(work2(1))
!
    call ormtr( 'L', uplo, 'N', n, nvec, a, n, tau, eigvec, n, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    if ( info_trd==0 .and. info_q==0 ) then
!
        lwork = max( lwork_trd, lwork_q )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY sytrd AND ormtr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CALL sytrd TO REDUCE THE MATRIX a TO TRIDIAGONAL FORM
!
!                      a = Q*TRID*Q**(t)
!
!       WHERE Q IS ORTHOGONAL AND TRID IS A SYMMETRIC TRIDIAGONAL MATRIX.
!
        call sytrd( uplo, n, a, n, d, e, tau, work(:lwork_trd), lwork_trd, info=info_trd )
!
!       ON EXIT OF sytrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE SYMMETRIC TRIDIAGONAL MATRIX, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q IN ITS UPPER TRIANGLE IF uplo='U'.
!         tau CONTAINS THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q.
!
!       MAKE A COPY OF THE TRIDIAGONAL MATRIX.
!
        eigval(:n) = d(:n)
        e2(:n)     = e(:n)
!
!       COMPUTE ALL THE EIGENVALUES OF THE SYMMETRIC TRIDIAGONAL MATRIX WITH SUBROUTINE symtrid_qri.
!
        call symtrid_qri( eigval, e2, failure, sort=sort )
!
        if ( .not.failure ) then
!
!           COMPUTE THE FIRST nvec EIGENVECTORS OF THE SELF-ADJOINT MATRIX a BY
!           maxiter INVERSE ITERATIONS ON THE INTERMEDIATE TRIDIAGONAL MATRIX
!           AND BACK-TRANSFORMATION WITH LAPACK SUBROUTINE ormtr.
!
            call trid_inviter( d(:n), e(:n), eigval(:nvec), eigvec(:n,:nvec), failure, maxiter=maxiter )
!
            call ormtr( 'L', uplo, 'N', n, nvec, a, n, tau, eigvec, n, work(:lwork_q), lwork_q, info=info_q )
!
!           ON EXIT OF THIS ormtr CALL:
!
!             info= 0     :  INDICATES SUCCESSFUL EXIT
!             info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!             eigvec IS OVERWRITTEN WITH THE FIRST nvec EIGENVECTORS OF a STORED COLUMNWISE.
!
        end if
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    failure2 = info_trd/=0 .or. info_q/=0
!
    if ( failure2 ) then
!
!       ANORMAL EXIT FROM sytrd OR ormtr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Errors in the calls to SYTRD or ORMTR subroutines, Info=',  &
                          info_trd, info_q
!
        if ( info_trd<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in SYTRD'')') - info_trd
!
        end if
!
        if ( info_q<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in ORMTR'')') - info_q
!
        end if
!
    else if ( do_test .and. .not.failure ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*eigvec - eigvec*diag(eigval(:nvec))
!       WHERE eigval ARE THE EIGENVALUES AND eigvec THE EIGENVECTORS OF a.
!
        a(:n,:nvec) = matmul( a2, eigvec ) - eigvec*spread( eigval(:nvec), dim=1, ncopies=n )
!
        resid(:nvec) = norm( a(:n,:nvec), dim=2_i4b )
        err1 = maxval( resid(:nvec) )/( norm(a2)*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - eigvec**(t)*eigvec
!       WHERE eigvec are THE EIGENVECTORS OF THE MATRIX a.
!
        call unit_matrix( a(:nvec,:nvec) )
!
        a2(:nvec,:nvec) = abs( a(:nvec,:nvec) - matmul( transpose( eigvec ), eigvec ) )
        err2 = maxval( a2(:nvec,:nvec) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, a2, eigvec, d, e, tau, eigval, e2, resid )
    else
        deallocate( a, eigvec, d, e, tau, eigval, e2 )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. .not.failure .and. .not.failure2 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. .not.failure .and. .not.failure2 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors vectors    = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all eigenvalues and', nvec, ' eigenvectors of a', &
       n, ' by', n,' real symmetric matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_ormtr
! ===============================
!
end program ex1_lapack_ormtr

ex1_lapack_posv.F90

program ex1_lapack_posv
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine POSV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : posv
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, norm, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=4000, m=n+10, nrhs=4000
!
    character(len=*), parameter :: name_proc='Example 1 of posv'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, eps, elapsed_time
    real(stnd), dimension(:,:), allocatable :: a, b, c, x, res
!
    integer :: info, iok, istart, iend, irate, imax, itime
!
    logical(lgl) :: do_test
!
    character :: uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : SOLUTION OF A LINEAR SYSTEM WITH A REAL SYMMETRIC DEFINITE POSITIVE COEFFICIENT
!               MATRIX AND SEVERAL RIGHT HAND-SIDES.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = sqrt( epsilon( err ) )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( c(m,n), a(n,n), b(n,nrhs), x(n,nrhs), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM REAL SYMMETRIC POSITIVE DEFINITE MATRIX a .
!
    call random_number( c )
!
    a = matmul( transpose(c), c )
!
!   GENERATE A n-by-nrhs RANDOM SOLUTION MATRIX x .
!
    call random_number( x )
!
!   COMPUTE THE MATRIX-MATRIX PRODUCT b = a*x .
!
    b = matmul( a, x )
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE THE SOLUTION MATRIX FOR SYMMETRIC POSITIVE DEFINITE SYSTEM
!
!            a*x = b .
!
!   FIRST SPECIFY IF UPPER OR LOWER TRIANGLE OF a IS STORED .
!
    uplo = 'U'
!
    call posv( uplo, n, nrhs, a, n, b, n, info )
!
!   ON EXIT OF posv :
!
!      info    = 0 :  INDICATES SUCCESSFUL EXIT
!      info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!      info=i  > 0 :  INDICATES THAT THE SOLUTION CAN NOT BE COMPUTED BECAUSE
!                     THE MATRIX IS SINGULAR
!
!   THE ROUTINE RETURNS THE SOLUTION VECTORS IN b.
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
!   CHECK THAT THE LAPACK ROUTINE HAS BEEN SUCCESSFUL.
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM posv SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to POSV subroutine, Info=', info
        write (prtunit,*)
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        else if (info>0) then
!
            write (prtunit,'(''Zero diagonal value detected in upper ''//   &
                             ''triangular factor at position '',i7)') info
!
        end if
!
    else if ( do_test ) then
!
!       ALLOCATE WORK ARRAY .
!
        allocate( res(n,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CHECK THE RESULTS FOR SMALL RESIDUALS.
!
        res(:n,:nrhs) = b(:n,:nrhs) - x(:n,:nrhs)
        err = maxval( norm(res, dim=2_i4b ) /    &
                      norm(x,  dim=2_i4b  ) )/real(n,stnd)
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate( res )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate( a, b, c, x )
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed solutions = ', err
    end if
!
    write (prtunit,*)
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for solving a positive definite symmetric linear system of size ', &
       n, ' with', nrhs, ' right hand side vectors is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_posv
! ==============================
!
end program ex1_lapack_posv

ex1_lapack_spev.F90

program ex1_lapack_spev
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SPEV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : spev
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,   &
                         triangle, merror, allocate_error, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer(i4b), parameter :: prtunit = 6, n=3000, p=(n*(n+1))/2
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of spev'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, elapsed_time
    real(stnd), dimension(:),   allocatable :: a_packed, w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, eigvec, resid
!
    integer(i4b)   :: info, iok, i, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX IN PACKED STORAGE USING THE QR IMPLICIT METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS .
!
    allocate( a_packed(p), eigvec(n,n), w(n), work(3*n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM SELF-ADJOINT MATRIX a IN PACKED FORM.
!
    call random_number( a_packed(:p) )
!
!   MAKE a POSITIVE DEFINITE ASSUMING THAT THE UPPER TRIANGLE OF
!   THE SELF-ADJOINT MATRIX IS STORED IN PACKED FORM.
!
    do i = 1_i4b, n
        a_packed(i+((i-1_i4b)*i/2_i4b)) = real( n, stnd )
    end do
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a(n,n), resid(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       UNPACKED AND SAVE RANDOM SELF-ADJOINT MATRIX a 
!       ASSUMING THAT THE UPPER TRIANGLE OF THE SELF-ADJOINT
!       MATRIX IS STORED IN PACKED FORM.
!
        a(:n,:n) = unpack( a_packed(:p), mask=triangle( true, n, n, extra=1_i4b), field=zero )
!
        do i = 1_i4b, n
             a(i+1_i4b:n,i) = a(i,i+1_i4b:n)
        end do
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz = 'V'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!   IN PACKED STORAGE WITH SUBROUTINE spev FROM LAPACK.
!   THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!   IS WRITTEN
!
!                   a = U * D * U**(t)
!
!   WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!   THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!   THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
    call spev( jobz, uplo, n, a_packed, w, eigvec, n, work, info )
!
!   ON EXIT OF spev :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE
!                        AND i OFF-DIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        TRIDIAGONAL FORM OF a DID NOT CONVERGE TO ZERO.
!
!   ON EXIT OF spev :
!
!         eigvec IS OVERWRITTEN WITH THE EIGENVECTORS OF a IF 
!         jobz='V' (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER.
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM spev SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SPEV subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a(:n,:n),eigvec(:n,:n)) - eigvec(:n,:n)*spread(w,1,n)
        resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid2(:n) )/( norm( a )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a(:n,:n) )
!
        resid(:n,:n) = abs( a(:n,:n) - matmul( transpose(eigvec(:n,:n)), eigvec(:n,:n) ) )
        err2 = maxval( resid(:n,:n) )/real( n, stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a_packed, eigvec, w, a, resid, resid2 )
    else
        deallocate( a_packed, eigvec, w )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix in packed storage is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_spev
! ==============================
!
end program ex1_lapack_spev

ex1_lapack_spevd.F90

program ex1_lapack_spevd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SPEVD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : spevd
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,   &
                         triangle, merror, allocate_error, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer(i4b), parameter :: prtunit = 6, n=3000, p=(n*(n+1))/2
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of spevd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), dimension(:),   allocatable :: a_packed, w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, eigvec, resid
!
    integer(i4b)                            :: info, lwork, liwork, iok, i, istart, &
                                               iend, irate, imax, itime
    integer(i4b)                            :: iwork2(1)
    integer(i4b), dimension(:), allocatable :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX IN PACKED STORAGE USING THE DIVIDE AND CONQUER METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS .
!
    allocate( a_packed(p), eigvec(n,n), w(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM SELF-ADJOINT MATRIX a IN PACKED FORM.
!
    call random_number( a_packed(:p) )
!
!   MAKE a POSITIVE DEFINITE ASSUMING THAT THE UPPER TRIANGLE OF
!   THE SELF-ADJOINT MATRIX IS STORED IN PACKED FORM.
!
    do i = 1_i4b, n
        a_packed(i+((i-1_i4b)*i/2_i4b)) = real( n, stnd )
    end do
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a(n,n), resid(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       UNPACKED AND SAVE RANDOM SELF-ADJOINT MATRIX a 
!       ASSUMING THAT THE UPPER TRIANGLE OF THE SELF-ADJOINT
!       MATRIX IS STORED IN PACKED FORM.
!
        a(:n,:n) = unpack( a_packed(:p), mask=triangle( true, n, n, extra=1_i4b), field=zero )
!
        do i = 1_i4b, n
             a(i+1_i4b:n,i) = a(i,i+1_i4b:n)
        end do
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz = 'V'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR spevd SUBROUTINE.
!
    lwork  = -1
    liwork = -1
!
    call spevd( jobz, uplo, n, a_packed, w, eigvec, n, work2, lwork, iwork2, liwork, info )
!
    if ( info==0 ) then
!
       lwork  = int(work2(1)) + 10
       liwork = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY syevd SUBROUTINE.
!
        allocate( work(lwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!       IN PACKED STORAGE WITH SUBROUTINE spevd FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call spevd( jobz, uplo, n, a_packed, w, eigvec, n, work, lwork, iwork, liwork, info )
!
!       ON EXIT OF spevd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF spevd :
!
!         eigvec IS OVERWRITTEN WITH THE EIGENVECTORS OF a IF 
!         jobz='V' (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER.
!
        deallocate ( work, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM spevd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SPEVD subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a(:n,:n),eigvec(:n,:n)) - eigvec(:n,:n)*spread(w,1,n)
        resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid2(:n) )/( norm( a )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a(:n,:n) )
!
        resid(:n,:n) = abs( a(:n,:n) - matmul( transpose(eigvec(:n,:n)), eigvec(:n,:n) ) )
        err2 = maxval( resid(:n,:n) )/real( n, stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a_packed, eigvec, w, a, resid, resid2 )
    else
        deallocate( a_packed, eigvec, w )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix in packed storage is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_spevd
! ===============================
!
end program ex1_lapack_spevd

ex1_lapack_spevx.F90

program ex1_lapack_spevx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SPEVX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : spevx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix, triangle
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer(i4b), parameter :: prtunit = 6, n=3000, p=(n*(n+1))/2
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of spevx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd), dimension(:),   allocatable :: a_packed, w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, z, resid
!
    integer(i4b)                            :: info, i, il, iu, m, iok, istart, iend, irate, imax, itime
    integer(i4b), dimension(:), allocatable :: iwork, ifail
!
    logical(lgl)   :: do_test
!
    character  :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX IN PACKED STORAGE USING THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a_packed(p), z(n,n), w(n), work(8*n), iwork(5*n), ifail(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM SELF-ADJOINT MATRIX a IN PACKED FORM.
!
    call random_number( a_packed(:p) )
!
!   MAKE a POSITIVE DEFINITE ASSUMING THAT THE UPPER TRIANGLE OF
!   THE SELF-ADJOINT MATRIX IS STORED IN PACKED FORM.
!
    do i = 1_i4b, n
        a_packed(i+((i-1_i4b)*i/2_i4b)) = real( n, stnd )
    end do
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a(n,n), resid(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       UNPACKED AND SAVE RANDOM SELF-ADJOINT MATRIX a 
!       ASSUMING THAT THE UPPER TRIANGLE OF THE SELF-ADJOINT
!       MATRIX IS STORED IN PACKED FORM.
!
        a(:n,:n) = unpack( a_packed(:p), mask=triangle( true, n, n, extra=1_i4b), field=zero )
!
        do i = 1_i4b, n
             a(i+1_i4b:n,i) = a(i,i+1_i4b:n)
        end do
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu] WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'A'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = 1
    iu = n
!
!   COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!   IN PACKED STORAGE WITH SUBROUTINE spevx FROM LAPACK.
!   THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!   IS WRITTEN
!
!                       a = U * D * U**(t)
!
!   WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!   THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!   THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
    call spevx( jobz, range, uplo, n, a_packed, vl, vu, il, iu, abstol,   &
                m, w, z, n, work, iwork, ifail, info                      )
!
!   ON EXIT OF spevx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT i EIGENVECTORS FAILED TO CONVERGE AND
!                        THEIR INDICES ARE STORED IN ARRAY ifail.
!
!   ON EXIT OF spevx :
!
!         a_packed IS OVERWITTEN BY DETAILS OF ITS TRIDIAGONAL FACTORIZATION.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
   if ( info/=0 ) then
!
!       ANORMAL EXIT FROM spevx SUBROUTINE, PRINT A WARNING.
!
       write (prtunit,*) 'Error in the call to SPEVX subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a(:n,:n),z(:n,:n)) - z(:n,:n)*spread(w,1,n)
        resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid2(:n) )/( norm( a )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a(:n,:n) )
!
        resid(:n,:n) = abs( a(:n,:n) - matmul( transpose(z(:n,:n)), z(:n,:n) ) )
        err2 = maxval( resid(:n,:n) )/real( n, stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a_packed, z, w, work, iwork, ifail, a, resid, resid2 )
    else
       deallocate( a_packed, z, w, work, iwork, ifail )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix in packed storage is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_spevx
! ===============================
!
end program ex1_lapack_spevx

ex1_lapack_stemr.F90

program ex1_lapack_stemr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines (x)SYTRD, (x)STEMR
!   and (x)ORMTR in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!   The (x)STEMR subroutines will work properly only with IEEE arithmetic.                                                                        
!                                                     
! LATEST REVISION : 31/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sytrd, ormtr, stemr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,     &
                         merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000, neig=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of stemr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, vl, vu, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, tau, w, work, resid
    real(stnd), allocatable, dimension(:,:) :: a, z, a2
!
    integer      :: info_trd, info_q, info_mrrr, lwork, liwork, lwork_trd, lwork_mrrr, lwork_q,   &
                    iok, istart, iend, irate, imax, itime, il, iu, m, nzc
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: isuppz, iwork
!
    logical      :: tryrac
    logical(lgl) :: do_test, failure
!   
    character    :: uplo, jobz, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : TRIDIAGONAL REDUCTION OF A REAL SYMMETRIC MATRIX AND,
!               OPTIONALLY, neig EIGENVALUES AND EIGENVECTORS OF A REAL
!               SYMMETRIC MATRIX USING THE MRRR METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), z(n,neig), d(n), e(n), w(n),    &
              isuppz(2*n), tau(n-1_i4b), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND
!   FROM IT A SELF-ADJOINT MATRIX a .
!
    call random_number( a )
    a = a + transpose( a ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(neig), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE SYMMETRIC MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   FIRST DETERMINE THE WORK TO DO FOR stemr SUBROUTINE.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu) WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'I'
!
    vl = zero
    vu = zero
!
    il = n - neig + 1
    iu = n
!
!   tryrac = .true. INDICATES THAT THE CODE WILL TRY TO COMPUTE THE EIGENVALUES OF THE TRIDIAGONAL MATRIX
!                   TO HIGH RELATIVE ACCURACY IF POSSIBLE. IF tryrac IS SET TO .false. THE CODE IS NOT REQUIRED
!                   TO GARANTEE RELATIVELY ACCURATE EIGENVALUES AND CAN USE A FASTEST METHOD.
!
    tryrac = .true.
!
!   nzc IS AN UPPER BOUND FOR THE NUMBER OF EIGENVECTORS TO BE FOUND. nzc DEPENDS ON THE VALUE OF RANGE, IF:
!
!       range='A' THEN nzc>=n;
!       range='V' THEN nzc>=THE NUMBER OF EIGENVALUES IN (VL,VU],
!       range='I' THEN nzc>=iu-il+1 .
!
!   IF nzc=-1, THEN THE stemr SUBROUTINE WILL RETURN THE ESTIMATE OF nzc IN z(1,1) WITHOUT DOING ANY COMPUTATION.
!
    nzc = neig
!
!   NOW COMPUTE OPTIMAL WORKSPACE FOR sytrd, stemr AND ormtr SUBROUTINES.
!
    lwork = -1
!
    call sytrd( uplo, n, a, n, d, e, tau, work2, lwork, info=info_trd )
!
    lwork_trd = int(work2(1))
!
    call ormtr( 'L', uplo, 'N', n, neig, a, n, tau, z, n, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    liwork = -1
!
    call stemr( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, n, nzc,    &
                isuppz, tryrac, work2, lwork, iwork2, liwork, info=info_mrrr    )
!
    lwork_mrrr = int(work2(1))
!
    if ( info_trd==0 .and. info_q==0 .and. info_mrrr==0 ) then
!
        lwork = max( lwork_trd, lwork_q, lwork_mrrr )
        liwork = iwork2(1)
!
!       ALLOCATE OPTIMAL WORK VARIABLES NEEDED BY sytrd, stemr AND ormtr SUBROUTINES.
!
        allocate( work(lwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CALL sytrd TO REDUCE THE MATRIX a TO TRIDIAGONAL FORM
!
!                      a = Q*TRID*Q**(t)
!
!       WHERE Q IS ORTHOGONAL AND TRID IS A SYMMETRIC TRIDIAGONAL MATRIX.
!
        call sytrd( uplo, n, a, n, d, e, tau, work(:lwork_trd), lwork_trd, info=info_trd )
!
!       ON EXIT OF sytrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE SYMMETRIC TRIDIAGONAL MATRIX, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q IN ITS UPPER TRIANGLE IF uplo='U'.
!         tau CONTAINS THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q.
!
!
!       COMPUTE neig EIGENVALUES AND EIGENVECTORS OF THE SYMMETRIC TRIDIAGONAL MATRIX WITH SUBROUTINE stemr.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC TRIDIAGONAL MATRIX TRID
!       IS WRITTEN
!
!                       TRID = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF TRID; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF TRID.
!
        call stemr( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, n, nzc, isuppz, tryrac,     &
                    work(:lwork_mrrr), lwork_mrrr, iwork, liwork, info=info_mrrr )
!
!       ON EXIT OF stemr :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF stemr :
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF THE TRIDIAGONAL MATRIX (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF THE TRIDIAGONAL MATRIX IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
!       COMPUTE THE FIRST m EIGENVECTORS OF THE SELF-ADJOINT MATRIX a BY
!       BACK-TRANSFORMATION WITH LAPACK SUBROUTINE ormtr.
!
        call ormtr( 'L', uplo, 'N', n, m, a, n, tau, z, n, work(:lwork_q), lwork_q, info=info_q )
!
!       ON EXIT OF THIS ormtr CALL:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS OF a STORED COLUMNWISE.
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    failure = info_trd/=0 .or. info_q/=0 .or. info_mrrr/=0
!
    if ( failure ) then
!
!       ANORMAL EXIT FROM sytrd, stemr OR ormtr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Errors in the calls to SYTRD, STEMR or ORMTR subroutines, Info=', &
                           info_trd, info_mrrr, info_q
!
        if ( info_trd<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in SYTRD'')') - info_trd
!
        end if
!
        if ( info_mrrr<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in STEMR'')') - info_mrrr
!
        end if
!
        if ( info_q<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in ORMTR'')') - info_q
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*eigvec - eigvec*diag(eigval(:m))
!       WHERE eigval ARE THE EIGENVALUES AND eigvec THE EIGENVECTORS OF a.
!
        a(:n,:m) = matmul( a2, z(:n,:m) ) - z(:n,:m)*spread( w(:m), dim=1, ncopies=n )
!
        resid(:m) = norm( a(:n,:m), dim=2_i4b )
        err1 = maxval( resid(:m) )/( norm(a2)*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - eigvec**(t)*eigvec
!       WHERE eigvec are THE EIGENVECTORS OF THE MATRIX a.
!
        call unit_matrix( a(:m,:m) )
!
        a2(:m,:m) = abs( a(:m,:m) - matmul( transpose( z(:n,:m) ), z(:n,:m) ) )
        err2 = maxval( a2(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, d, e, tau, w, isuppz, a2, resid )
    else
        deallocate( a, z, d, e, tau, w, isuppz )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. .not.failure ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. .not.failure ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors vectors    = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m,' eigenvalues and eigenvectors of a', &
       n, ' by', n,' real symmetric matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_stemr
! ===============================
!
end program ex1_lapack_stemr

ex1_lapack_syev.F90

program ex1_lapack_syev
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syev
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,   &
                         merror, allocate_error, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of syev'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), dimension(:),   allocatable :: w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, a2, resid
!
    integer        :: info, lwork, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX USING THE QR IMPLICIT METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS .
!
    allocate( a(n,n), w(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND FROM IT
!   A SELF-ADJOINT MATRIX a .
!
    call random_number( a )
    a = a + transpose( a ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM SELF-ADJOINT MATRIX a .
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz = 'V'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syev SUBROUTINE.
!
    lwork = -1
!
    call syev( jobz, uplo, n, a, n, w, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY syev SUBROUTINE.
!
        allocate( work(lwork), stat = iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!       WITH SUBROUTINE syev FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syev( jobz, uplo, n, a, n, w, work, lwork, info )
!
!       ON EXIT OF syev :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE
!                        AND i OFF-DIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        TRIDIAGONAL FORM OF a DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF syev :
!
!         a IS OVERWRITTEN WITH THE EIGENVECTORS OF a IF 
!         jobz='V' (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syev SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYEV subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a2(:n,:n),a(:n,:n)) - a(:n,:n)*spread(w,1,n)
        resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid2(:n) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:n,:n) )
!
        resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:n,:n)), a(:n,:n) ) )
        err2 = maxval( resid(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, w, a2, resid, resid2 )
    else
        deallocate( a, w )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_syev
! ==============================
!
end program ex1_lapack_syev

ex1_lapack_syevd.F90

program ex1_lapack_syevd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEVD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevd
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,   &
                         merror, allocate_error, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of syevd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), dimension(:),   allocatable :: w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, a2, resid
!
    integer                            :: info, lwork, liwork, iok, istart, iend, irate, imax, itime
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX USING THE DIVIDE AND CONQUER METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), w(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND FROM IT
!   A SELF-ADJOINT MATRIX a .
!
    call random_number( a )
    a = a + transpose( a ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM SELF-ADJOINT MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz = 'V'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevd SUBROUTINE.
!
    lwork  = -1
    liwork = -1
!
    call syevd( jobz, uplo, n, a, n, w, work2, lwork, iwork2, liwork, info )
!
    if ( info==0 ) then
!
       lwork  = int(work2(1)) + 10
       liwork = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY syevd SUBROUTINE.
!
        allocate( work(lwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!       WITH SUBROUTINE syevd FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevd( jobz, uplo, n, a, n, w, work, lwork, iwork, liwork, info )
!
!       ON EXIT OF syevd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF syevd :
!
!         a IS OVERWRITTEN WITH THE EIGENVECTORS OF a IF 
!         jobz='V' (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER.
!
        deallocate ( work, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYEVD subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a2(:n,:n),a(:n,:n)) - a(:n,:n)*spread(w,1,n)
        resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid2(:n) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:n,:n) )
!
        resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:n,:n)), a(:n,:n) ) )
        err2 = maxval( resid(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, w, a2, resid, resid2 )
    else
        deallocate( a, w )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_syevd
! ===============================
!
end program ex1_lapack_syevd

ex1_lapack_syevr.F90

program ex1_lapack_syevr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEVR
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of syevr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), dimension(:),   allocatable :: w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, a2, z
!
    integer                            :: info, lwork, liwork, iok, il, iu, m,    &
                                          istart, iend, irate, imax, itime
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: isuppz, iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX USING THE MRRR ALGORITHM.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), z(n,n), w(n), isuppz(2*n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND FROM IT
!   A SELF-ADJOINT MATRIX a .
!
    call random_number( z )
    a = z + transpose( z ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM SELF-ADJOINT MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu) WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'A'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = 1
    iu = n
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevr SUBROUTINE.
!
    lwork  = -1
    liwork = -1
!
    call syevr( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,        &
                m, w, z, n, isuppz, work2, lwork, iwork2, liwork, info     )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
        liwork = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY syevr SUBROUTINE.
!
        allocate( work(lwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!       WITH SUBROUTINE syevr FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevr( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,      &
                    m, w, z, n, isuppz, work, lwork, iwork, liwork, info     )
!
!       ON EXIT OF syevr :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF syevr :
!
!         THE LOWER (IF uplo='L') OR UPPER (IF uplo='U') TRIANGLE
!         OF a IS DESTROYED, INCLUDING THE DIAGONAL.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevr SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYEVR subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        a(:n,:m) = matmul(a2(:n,:n),z(:n,:m)) - z(:n,:m)*spread(w(:m),dim=1,ncopies=n)
        resid2(:m) = norm( a(:n,:m), dim=2_i4b )
        err1 =  maxval( resid2(:m) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:m,:m) )
!
        a(:m,:m) = abs( a2(:m,:m) - matmul( transpose(z(:n,:m)), z(:n,:m) ) )
        err2 = maxval( a(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, w, isuppz, a2, resid2 )
    else
       deallocate( a, z, w, isuppz )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_syevr
! ===============================
!
end program ex1_lapack_syevr

ex1_lapack_syevx.F90

program ex1_lapack_syevx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEVX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of syevx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), dimension(:),   allocatable :: w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, a2, z
!
    integer                            :: info, lwork, iok, il, iu, m, istart,   &
                                          iend, irate, imax, itime
    integer, dimension(:), allocatable :: iwork, ifail
!
    logical(lgl)   :: do_test
!
    character  :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX USING THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), z(n,n), w(n), iwork(5*n), ifail(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND FROM IT
!   A SELF-ADJOINT MATRIX a .
!
    call random_number( z )
    a = z + transpose( z ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu] WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'A'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = 1
    iu = n
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevx SUBROUTINE.
!
    lwork  = -1
!
    call syevx( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,   &
                m, w, z, n, work2, lwork, iwork, ifail, info          )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY syevx SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!       WITH SUBROUTINE syevx FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevx( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,   &
                    m, w, z, n, work, lwork, iwork, ifail, info           )
!
!       ON EXIT OF syevx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT i EIGENVECTORS FAILED TO CONVERGE AND
!                        THEIR INDICES ARE STORED IN ARRAY ifail.
!
!       ON EXIT OF syevx :
!
!         THE LOWER (IF uplo='L') OR UPPER (IF uplo='U') TRIANGLE
!         OF a IS DESTROYED, INCLUDING THE DIAGONAL.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
        deallocate ( work )
!
   end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
   if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevx SUBROUTINE, PRINT A WARNING.
!
       write (prtunit,*) 'Error in the call to SYEVX subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        a(:n,:n) = matmul(a2(:n,:n),z(:n,:n)) - z(:n,:n)*spread(w,1,n)
        resid2(:n) = norm( a(:n,:n), dim=2_i4b )
        err1 =  maxval( resid2(:n) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:n,:n) )
!
        a(:n,:n) = abs( a2(:n,:n) - matmul( transpose(z(:n,:n)), z(:n,:n) ) )
        err2 = maxval( a(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, w, iwork, ifail, a2, resid2 )
    else
       deallocate( a, z, w, iwork, ifail )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_syevx
! ===============================
!
end program ex1_lapack_syevx

ex1_lapack_sysv.F90

program ex1_lapack_sysv
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYSV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sysv
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000, nrhs=400
!
    character(len=*), parameter :: name_proc='Example 1 of sysv'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, eps, elapsed_time, work2(1)
    real(stnd), dimension(:),   allocatable :: work
    real(stnd), dimension(:,:), allocatable :: a, b, x, res
!
    integer(i4b), dimension(:), allocatable :: ipiv
    integer                                 :: info, lwork, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!
    character      :: uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : SOLUTION OF A LINEAR SYSTEM WITH A REAL SYMMETRIC COEFFICIENT
!               MATRIX AND SEVERAL RIGHT HAND-SIDES.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = sqrt( epsilon( err ) )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), b(n,nrhs), x(n,nrhs), ipiv(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM SYMMETRIC MATRIX a .
!
    call random_number( a )
    a = a + transpose( a ) 
!
!   GENERATE A n-by-nrhs RANDOM SOLUTION MATRIX x .
!
    call random_number( x )
!
!   COMPUTE THE MATRIX-MATRIX PRODUCT b = a*x .
!
    b = matmul( a, x )
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR sysv SUBROUTINE.
!
    lwork = -1
!
    call sysv( uplo, n, nrhs, a, n, ipiv, b, n, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY sysv SUBROUTINE.
!
        allocate( work(lwork), stat = iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE THE SOLUTION MATRIX FOR REAL SYMMETRIC LINEAR SYSTEM
!
!                a*x = b .
!
        call sysv( uplo, n, nrhs, a, n, ipiv, b, n, work, lwork, info )
!
!       ON EXIT OF sysv :
!
!          info    = 0 :  INDICATES SUCCESSFUL EXIT
!          info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!          info=i  > 0 :  INDICATES THAT THE SOLUTION CAN NOT BE COMPUTED BECAUSE
!                         THE MATRIX IS SINGULAR
!
!       THE ROUTINE RETURNS THE SOLUTION VECTORS IN b.
!       DETAILS OF THE U*D*U**(T) (if uplo='U') OR THE L*D*L**(T) (if uplo='L')
!       FACTORIZATION OF a ARE RETURNED IN ARGUMENTS ipiv AND a .
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM sysv SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYSV subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!
    else if ( do_test ) then
!
!       ALLOCATE WORK ARRAY .
!
        allocate( res(n,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CHECK THE RESULTS FOR SMALL RESIDUALS.
!
        res(:n,:nrhs) = b(:n,:nrhs) - x(:n,:nrhs)
        err = maxval( sum( abs(res), dim=1 ) /    &
                      sum(abs(x),    dim=1 )      )
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate( res )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate( a, b, x, ipiv )
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed solutions = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear symmetric real system of size ', &
       n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_sysv
! ==============================
!
end program ex1_lapack_sysv

ex1_lapack_sytrd.F90

program ex1_lapack_sytrd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines SYTRD and ORGTR
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 27/04/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sytrd, orgtr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,    &
                         unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 1 of sytrd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, tau, work
    real(stnd), allocatable, dimension(:,:) :: a, a2, resid, trid
!
    integer      :: info_trd, info_q, lwork, lwork_trd, lwork_q,   &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: l
!
    logical(lgl) :: do_test
!   
    character    :: uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : TRIDIAGONAL REDUCTION OF A REAL SYMMETRIC MATRIX.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), d(n), e(n-1_i4b), tau(n-1_i4b), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND
!   FROM IT A SELF-ADJOINT MATRIX a .
!
    call random_number( a )
    a = a + transpose( a ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), trid(n,n), resid(n,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE SYMMETRIC MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR sytrd AND orgtr SUBROUTINES.
!
    lwork = -1
!
    call sytrd( uplo, n, a, n, d, e, tau, work2, lwork, info=info_trd )
!
    lwork_trd = int(work2(1))
!
    call orgtr( uplo, n, a, n, tau, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    if ( min(info_trd,info_q)==0 ) then
!
        lwork = max( lwork_trd, lwork_q )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY sytrd AND orgtr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CALL sytrd AND orgtr TO REDUCE THE MATRIX a TO TRIDIAGONAL FORM
!
!                      a = Q*TRID*Q**(t)
!
!       WHERE Q IS ORTHOGONAL AND TRID IS A SYMMETRIC TRIDIAGONAL MATRIX.
!
        call sytrd( uplo, n, a, n, d, e, tau, work(:lwork_trd), lwork_trd, info=info_trd )
!
!       ON EXIT OF sytrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE SYMMETRIC TRIDIAGONAL MATRIX, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q IN ITS UPPER TRIANGLE IF uplo='U'.
!         tau CONTAINS THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q.
!
        call orgtr( uplo, n, a, n, tau, work(:lwork_q), lwork_q, info=info_q )
!
!       ON EXIT OF THIS orgtr CALL:
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         a IS OVERWRITTEN WITH THE n-BY-n ORTHOGONAL MATRIX Q.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_trd,info_q)/=0 ) then
!
!       ANORMAL EXIT FROM sytrd AND orgtr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to SYTRD or ORGTR subroutines, Info=', min(info_trd,info_q)
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*Q - Q*TRID.
!
        trid(:n,:n) = zero
!
        do l = 1_i4b, n-1_i4b
            trid(l,l)       = d(l)
            trid(l,l+1_i4b) = e(l)
            trid(l+1_i4b,l) = e(l)
        end do
!
        trid(n,n) = d(n)
!
        resid(:n,:n) = matmul( a2(:n,:n), a(:n,:n)  )           &
                       - matmul( a(:n,:n), trid(:n,:n) )
!
        trid(:n,1_i4b) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( trid(:n,1_i4b) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - Q**(t)*Q.
!
        call unit_matrix( a2(:n,:n) )
!
        resid(:n,:n) = abs( a2(:n,:n) - matmul( transpose(a(:n,:n )), a(:n,:n) ) )
        err2 = maxval( resid(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, a2, trid, resid, d, e, tau )
    else
        deallocate( a, d, e, tau )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_trd,info_q)==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_trd,info_q)==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed tridiagonal decomposition a = Q*TRD*Q**(t) = ', err1
        write (prtunit,*) 'Orthogonality of the computed Q orthogonal matrix                   = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the tridiagonal reduction of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex1_lapack_sytrd
! ===============================
!
end program ex1_lapack_sytrd

ex2_lapack_gebrd.F90

program ex2_lapack_gebrd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines GEBRD and ORGBR
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 08/05/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gebrd, orgbr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,    &
                         unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=1000, n=1000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gebrd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                                 :: err1, err2, err3, err, eps, elapsed_time
    real(stnd),    allocatable, dimension(:)   :: d, e, resid2
    real(stnd),    allocatable, dimension(:,:) :: ra, ia, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: tauq, taup, work
    complex(stnd), allocatable, dimension(:,:) :: a, a2, bd, resid, pt, q
!
    integer      :: info_bd, info_q, info_pt, lwork, lwork_bd, lwork_q, lwork_pt, &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: l
!
    logical(lgl) :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : BIDIAGONAL REDUCTION OF A COMPLEX MATRIX.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    if ( m>=n ) then
        allocate( a(m,n), ia(m,n), ra(m,n), d(k), e(k-1_i4b), tauq(k), taup(k), pt(k,k), stat=iok )
    else
        allocate( a(m,n), ia(m,n), ra(m,n), d(k), e(k-1_i4b), tauq(k), taup(k), q(k,k), stat=iok )
    end if
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), bd(k,k), resid(k,n), resid2(n), resid_ortho(k,k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE DATA MATRIX.
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gebrd AND orgbr SUBROUTINES.
!
    lwork = -1
!
    call gebrd( m, n, a, m, d, e, tauq, taup, work2, lwork, info=info_bd )
!
    lwork_bd = int(work2(1))
!
    if ( m>=n ) then
!
        call orgbr( 'Q', m, n, n, a, m, tauq, work2, lwork, info=info_q )
!
        lwork_q = int(work2(1))
!
        call orgbr( 'P', n, n, m, pt, n, taup, work2, lwork, info=info_pt )
!
        lwork_pt = int(work2(1))
!
    else
!
        call orgbr( 'Q', m, m, n, q, m, tauq, work2, lwork, info=info_q )
!
        lwork_q = int(work2(1))
!
        call orgbr( 'P', m, n, m, a, m, taup, work2, lwork, info=info_pt )
!
        lwork_pt = int(work2(1))
!
    end if
!
    if ( min(info_bd,info_q,info_pt)==0 ) then
!
        lwork = max( lwork_bd, lwork_q, lwork_pt )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gebrd AND orgbr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE BIDIAGONAL REDUCTION OF RANDOM DATA MATRIX
!
!                       a = Q*BD*P**(h)
!
!       WHERE Q AND P ARE UNITARY MATRICES AND BD IS A REAL BIDIAGONAL MATRIX.
!
        call gebrd( m, n, a, m, d, e, tauq, taup, work(:lwork_bd), lwork_bd, info=info_bd )
!
!       ON EXIT OF gebrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE REAL BIDAGONAL MATRIX BD, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P.
!         taup AND tauq ARE THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P, RESPECTIVELY.
!
        if ( m>=n ) then
!
            pt(:n,:n) = a(:n,:n)
!
            call orgbr( 'Q', m, n, n, a, m, tauq, work(:lwork_q), lwork_q, info=info_q )
!
            call orgbr( 'P', n, n, m, pt, n, taup, work(:lwork_pt), lwork_pt, info=info_pt )
!
!           ON EXIT OF THESE orgbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           IF m>=n,    a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                       COLUMNS OF THE UNITARY MATRIX Q;
!                       pt CONTAINS THE n-BY-n UNITARY MATRIX P**(h).
!
        else
!
            q(:m,:m) = a(:m,:m)
!
            call orgbr( 'Q', m, m, n, q, m, tauq, work(:lwork_q), lwork_q, info=info_q )
!
            call orgbr( 'P', m, n, m, a, m, taup, work(:lwork_pt), lwork_pt, info=info_pt )
!
!           ON EXIT OF orgbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           IF m<n,     a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                       ROWS OF THE UNITARY MATRIX P**(h);
!                       q CONTAINS THE m-BY-m UNITARY MATRIX Q.
!
        end if
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_bd,info_q,info_pt)/=0 ) then
!
!       ANORMAL EXIT FROM gebrd OR orgbr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to GEBRD or ORGBR subroutines, Info=', min(info_bd,info_q,info_pt)
!                
    else if ( do_test ) then
!
        bd(:k,:k) = cmplx( zero, zero, stnd )
!
        if ( m>=n ) then
!
!           BD IS UPPER BIDIAGONAL.
!
            do l = 1_i4b, n-1_i4b
                bd(l,l)       = cmplx( d(l), zero, stnd )
                bd(l,l+1_i4b) = cmplx( e(l), zero, stnd )
            end do
!
            bd(n,n) = cmplx( d(n), zero, stnd )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION Q**(h)*a - BD*P**(h),
!
            resid(:n,:n) = matmul( transpose(conjg(a(:m,:n))), a2(:m,:n) )   &
                           - matmul( bd(:n,:n), pt(:n,:n) )
!
            resid2(:n) = norm( resid(:n,:n), dim=2_i4b )
            err1 = norm( resid2(:n) )/(norm( a2 )*real(n,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - Q**(h)*Q.
!
            call unit_matrix( a2(:n,:n) )
!
            resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( transpose(conjg(a(:m,:n))), a(:m,:n) ) )
            err2 = maxval( resid_ortho(:n,:n) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - P**(h)*P.
!
            resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( pt(:n,:n), transpose(conjg(pt(:n,:n))) ) )
            err3 = maxval( resid_ortho(:n,:n) )/real(n,stnd)
!
        else
!
!           BD IS LOWER BIDIAGONAL.
!
            do l = 1_i4b, m-1_i4b
                bd(l,l)       = cmplx( d(l), zero, stnd )
                bd(l+1_i4b,l) = cmplx( e(l), zero, stnd )
            end do
!
            bd(m,m) = cmplx( d(m), zero, stnd )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION Q**(h)*a - BD*P**(h),
!
            resid(:m,:n) = matmul( transpose(conjg(q(:m,:m))), a2(:m,:n) )           &
                           - matmul( bd(:m,:m), a(:m,:n) )
!
            resid2(:n) = norm( resid(:m,:n), dim=2_i4b )
            err1 = maxval( resid2(:n) )/(norm( a2 )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - Q**(h)*Q.
!
            call unit_matrix( a2(:m,:m) )
!
            resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( transpose(conjg(q(:m,:m ))), q(:m,:m ) ) )
            err2 = maxval( resid_ortho(:m,:m) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - P**(h)*P.
!
            resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( a(:m,:n), transpose(conjg(a(:m,:n))) ) )
            err3 = maxval( resid_ortho(:m,:m) )/real(n,stnd)
!
        endif
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( m>=n ) then
        deallocate( a, pt, d, e, tauq, taup )
    else
        deallocate( a, q, d, e, tauq, taup )
    end if
!
    if ( do_test ) then
        deallocate( a2, bd, resid, resid2, resid_ortho )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_bd,info_q,info_pt)==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_bd,info_q,info_pt)==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed bidiagonal decomposition a = Q*BD*P**(H) = ', err1
        write (prtunit,*) 'Orthogonality of the computed Q unitary matrix                    = ', err2
        write (prtunit,*) 'Orthogonality of the computed P unitary matrix                    = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the bidiagonal reduction of a', &
       m, ' by', n,' complex matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gebrd
! ===============================
!
end program ex2_lapack_gebrd

ex2_lapack_gels.F90

program ex2_lapack_gels
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELS
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gels
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=1000, n=2000, p=min(m,n), k=max(m,n), nrhs=400
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gels'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, eps, elapsed_time
    real(stnd), dimension(:,:), allocatable :: ra, ia, rb, ib
!
    complex(stnd)              :: work2(1)
    complex(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer      :: info, lwork, iok, istart, iend, irate, imax, itime, mrhs
!
    logical(lgl)   :: do_test
!
    character :: trans
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : FULL RANK COMPLEX LINEAR LEAST SQUARES PROBLEM AND SEVERAL RIGHT HAND-SIDES
!               USING THE QR OR QL DECOMPOSITION OF THE COEFFICENT MATRIX a . IT IS
!               ASSUMED THAT a IS OF FULL RANK.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   If trans='N' THE LINEAR SYSTEM INVOLVES a AND If trans='C' THE LINEAR
!   SYSTEM INVOLVES a**(h). IN BOTH CASES, THE RANK OF a IS ASSUMED TO BE
!   min(m,n) .
!
    trans = 'N'
!
    mrhs = merge( m, n, trans=='N' )
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n),    ra(m,n),       ia(m,n),                &
              b(k,nrhs), rb(mrhs,nrhs), ib(mrhs,nrhs), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM COEFFICIENT MATRIX a .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   GENERATE A m-by-nrhs (trans='N') OR n-by-nrhs (trans='C')
!   COMPLEX RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( rb(:mrhs,:nrhs) )
    call random_number( ib(:mrhs,:nrhs) )
!
    b(:mrhs,:nrhs) = cmplx( rb(:mrhs,:nrhs), ib(:mrhs,:nrhs), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia, rb, ib )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(mrhs,nrhs), res(mrhs,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:mrhs,:nrhs) = b(:mrhs,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gels SUBROUTINE.
!
    lwork = -1
!
    call gels( trans, m, n, nrhs, a, m, b, k, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
!
!       ALLOCATE WORK VARIABLE NEEDED BY gels SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMAL NORM SOLUTION TO THE COMPLEX LINEAR LEAST SQUARES PROBLEM .
!
        call gels( trans, m, n, nrhs, a, m, b, k, work, lwork, info )
!
!       THE ROUTINE RETURNS THE MINIMUM NORM SOLUTIONS OF THE LINEAR
!       LEAST SQUARE PROBLEM.
!
!       ON EXIT OF gels :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT the iTH DIAGONAL ELEMENT OF THE TRIANGULAR
!                        FACTOR OF a IS ZERO AND a DOES NOT HAVE FULL RANK.
!
!       ON EXIT OF gels :
!
!         a IS OVERWRITTEN BY DETAILS OF ITS QR (m>=n) OR LQ (m<n) FACTORIZATION.
!
!         b IS OVERWRITTEN BY THE n-by-nrhs (trans='N') OR
!           m-by-nrhs (trans='C') SOLUTION.
!
!           If m >= n AND trans='N', THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF THE MODULUS OF ELEMENTS n+1:m
!           IN THAT COLUMN.
!
!           If m < n AND trans='C', THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF THE MODULUS OF ELEMENTS m+1:n
!           IN THAT COLUMN.
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gels SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELS subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN (trans='N')
!       OR ROW (trans='C') VECTORS OF a .
!
        if ( trans=='N' ) then
            res = b2 - matmul( a2, b(:n,:nrhs) )
            err = maxval( sum(abs(matmul(transpose(conjg(a2)),res)),   dim=1) )/ sum( abs(a2) )
        else
            res = b2 - matmul( transpose(conjg(a2)), b(:m,:nrhs) )
            err = maxval( sum(abs(matmul(a2,res)),   dim=1) )/ sum( abs(a2) )
        end if
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, a2, b2, res )
    else
        deallocate( a, b )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns/rows of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares complex problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gels
! ==============================
!
end program ex2_lapack_gels

ex2_lapack_gelsd.F90

program ex2_lapack_gelsd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELSD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gelsd
!
    use Statpack, only : lgl, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=4000, n=200, p=min(m,n), k=max(m,n), nrhs=100
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gelsd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)              :: err, eps, rcond, elapsed_time, rwork2(1)
    real(stnd)              :: s(p)
    real(stnd), allocatable :: ra(:,:), ia(:,:), rb(:,:), ib(:,:), rwork(:)
!
    complex(stnd)              :: work2(1)
    complex(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer              :: info, lwork, liwork, lrwork, rank, iok, iwork2(1), &
                            istart, iend, irate, imax, itime
    integer, allocatable :: iwork(:)
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : MINIMUM-NORM SOLUTION OF A COMPLEX LINEAR LEAST SQUARES PROBLEM
!               WITH SEVERAL RIGHT HAND-SIDES USING A SVD DECOMPOSITION OF THE
!               COEFFICIENT MATRIX. THE SVD IS COMPUTED WITH THE DIVIDE AND CONQUER
!               METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), ra(m,n), ia(m,n),                   &
              b(k,nrhs), rb(m,nrhs), ib(m,nrhs), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX a .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   GENERATE A m-by-nrhs COMPLEX RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( rb(:m,:nrhs) )
    call random_number( ib(:m,:nrhs) )
!
    b(:m,:nrhs) = cmplx( rb(:m,:nrhs), ib(:m,:nrhs), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia, rb, ib )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(m,nrhs), res(m,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:m,:nrhs) = b(:m,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   THE EFFECTIVE RANK OF a, rank, IS DETERMINED BY TREATING AS ZERO THOSE
!   SINGULAR VALUES WHICH ARE LESS THAN rcond TIMES THE LARGEST SINGULAR VALUE.
!
    rcond = 0.0000001_stnd
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gelsd SUBROUTINE.
!
    lwork = -1
!
    call gelsd( m, n, nrhs, a, m, b, k, s, rcond, rank, work2, lwork, rwork2, iwork2, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
        lrwork = int(rwork2(1))
        liwork = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY gelsd SUBROUTINE.
!
        allocate( work(lwork), rwork(lrwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMAL NORM SOLUTION TO THE LINEAR LEAST SQUARES PROBLEM .
!
        call gelsd( m, n, nrhs, a, m, b, k, s, rcond, rank, work, lwork, rwork, iwork, info )
!
!       THE ROUTINE RETURNS THE SOLUTIONS AND SINGULAR VALUES OF THE COMPLEX LINEAR
!       LEAST SQUARE PROBLEM.
!
!       ON EXIT OF gelsd :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT the SVD ALGORITHM FAILED TO CONVERGE
!                        AND i SUBDIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        BIDIAGONAL MATRIX DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF gelsd :
!
!         a IS DESTROYED.
!
!         b IS OVERWRITTEN BY THE n-by-nrhs SOLUTION.
!           If m >= n AND rank = n, THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF THE MODULUS OF ELEMENTS n+1:m IN
!           THAT COLUMN.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a
!           IN DECREASING ORDER.
!
!         rank IS OVERWRITTEN BY THE EFFECTIVE RANK OF a, i.e.
!              THE NUMBER OF SINGULAR VALUES WHICH ARE GREATER
!              THAN rcond*s(1) .
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, iwork, rwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gelsd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELSD subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN VECTORS OF a .
!
        res = b2 - matmul( a2, b(:n,:nrhs) )
        err = maxval( sum(abs(matmul(transpose(conjg(a2)),res)),   dim=1) )/ sum( abs(a2) )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, a2, b2, res )
    else
        deallocate( a, b )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares complex problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gelsd
! ===============================
!
end program ex2_lapack_gelsd

ex2_lapack_gelss.F90

program ex2_lapack_gelss
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELSS
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gelss
!
    use Statpack, only : lgl, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=4000, n=200, p=min(m,n), k=max(m,n), nrhs=100
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gelss'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)              :: err, eps, rcond, elapsed_time
    real(stnd)              :: s(p)
    real(stnd), allocatable :: ra(:,:), ia(:,:), rb(:,:), ib(:,:), rwork(:)
!
    complex(stnd)              :: work2(1)
    complex(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer  :: info, lwork, rank, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : MINIMUM-NORM SOLUTION OF A COMPLEX LINEAR LEAST SQUARES PROBLEM
!               WITH SEVERAL RIGHT HAND-SIDES USING A SVD DECOMPOSITION OF THE
!               COEFFICIENT MATRIX. THE SVD IS COMPUTED WITH THE GOLUB-REINSCH
!               METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), ra(m,n), ia(m,n),             &
              b(k,nrhs), rb(m,nrhs), ib(m,nrhs),    &
              rwork( 5*p ), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX a .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   GENERATE A m-by-nrhs COMPLEX RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( rb(:m,:nrhs) )
    call random_number( ib(:m,:nrhs) )
!
    b(:m,:nrhs) = cmplx( rb(:m,:nrhs), ib(:m,:nrhs), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia, rb, ib )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(m,nrhs), res(m,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:m,:nrhs) = b(:m,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   THE EFFECTIVE RANK OF a, rank, IS DETERMINED BY TREATING AS ZERO THOSE
!   SINGULAR VALUES WHICH ARE LESS THAN rcond TIMES THE LARGEST SINGULAR VALUE.
!
    rcond = 0.0000001_stnd
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gelss SUBROUTINE.
!
    lwork = -1
!
    call gelss( m, n, nrhs, a, m, b, k, s, rcond, rank, work2, lwork, rwork, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
!
!       ALLOCATE WORK VARIABLE NEEDED BY gelss SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMAL NORM SOLUTION TO THE LINEAR LEAST SQUARES PROBLEM .
!
        call gelss( m, n, nrhs, a, m, b, k, s, rcond, rank, work, lwork, rwork, info )
!
!       THE ROUTINE RETURNS THE SOLUTIONS AND SINGULAR VALUES OF THE COMPLEX LINEAR
!       LEAST SQUARE PROBLEM.
!
!       ON EXIT OF gelss :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT the SVD ALGORITHM FAILED TO CONVERGE
!                        AND i SUBDIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        BIDIAGONAL MATRIX DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF gelss :
!
!         a IS OVERWRITTEN BY THE FIRST min(n,m) RIGHT SINGULAR
!           VECTORS OF a STORED ROW-WISE (e.g. IN THE FIRST min(n,m)
!           ROWS OF a).
!
!         b IS OVERWRITTEN BY THE n-by-nrhs SOLUTION.
!           If m >= n AND rank = n, THE RESIDUAL SUM-OF-SQUARES
!           FOR THE SOLUTION IN THE i-th COLUMN IS GIVEN BY THE
!           SUM OF SQUARES OF THE MODULUS OF ELEMENTS n+1:m IN
!           THAT COLUMN.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a
!           IN DECREASING ORDER.
!
!         rank IS OVERWRITTEN BY THE EFFECTIVE RANK OF a, i.e.
!              THE NUMBER OF SINGULAR VALUES WHICH ARE GREATER
!              THAN rcond*s(1) .
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gelss SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELSS subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN VECTORS OF a .
!
        res = b2 - matmul( a2, b(:n,:nrhs) )
        err = maxval( sum(abs(matmul(transpose(conjg(a2)),res)),   dim=1) )/ sum( abs(a2) )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, rwork, a2, b2, res )
    else
        deallocate( a, b, rwork )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares complex problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gelss
! ===============================
!
end program ex2_lapack_gelss

ex2_lapack_gelsy.F90

program ex2_lapack_gelsy
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine GELSY
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES
! ============
!
    use Lapack_interfaces, only : gelsy
!
    use Statpack, only : lgl, stnd, true, false, zero, c50, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=4000, n=2000, p=min(m,n), k=max(m,n), nrhs=400
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gelsy'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)              :: err, eps, rcond, elapsed_time
    real(stnd), allocatable :: ra(:,:), ia(:,:), rb(:,:), ib(:,:), rwork(:)
!
    complex(stnd)              :: work2(1)
    complex(stnd), allocatable :: work(:), a(:,:), a2(:,:), b(:,:), b2(:,:), res(:,:)
!
    integer, allocatable :: jpvt(:)
    integer              :: info, lwork, rank, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : MINIMUM-NORM SOLUTION OF A COMPLEX LINEAR LEAST SQUARES PROBLEM
!               WITH SEVERAL RIGHT HAND-SIDES USING A COMPLETE ORTHOGONAL
!               FACTORIZATION OF THE COEFFICIENT MATRIX.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = false
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n),    ra(m,n),    ia(m,n),     &
              b(k,nrhs), rb(m,nrhs), ib(m,nrhs),  &
              jpvt(n), rwork(2*n), stat=iok       )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX a .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   GENERATE A m-by-nrhs COMPLEX RANDOM RIGHT HAND-SIDE MATRIX b .
!
    call random_number( rb(:m,:nrhs) )
    call random_number( ib(:m,:nrhs) )
!
    b(:m,:nrhs) = cmplx( rb(:m,:nrhs), ib(:m,:nrhs), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia, rb, ib )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), b2(m,nrhs), res(m,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
!       SAVE RIGHT HAND SIDE MATRIX .
!
        b2(:m,:nrhs) = b(:m,:nrhs)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   INITIALIZE PERMUTATION VECTOR FOR COMPLETE PIVOTING OF THE
!   COLUMNS OF a .
!
    jpvt(:n) = 0
!
!   rcond IS USED TO DETERMINE THE EFFECTIVE RANK OF a, WHICH IS DEFINED
!   AS THE ORDER OF THE LARGEST LEADING TRIANGULAR SUBMATRIX R11 IN THE 
!   QR FACTORIZATION WITH PIVOTING OF A, WHOSE ESTIMATED CONDITION NUMBER
!   IS < 1/rcond .
!
    rcond = 0.0000001_stnd
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gelsy SUBROUTINE.
!
    lwork = -1
!
    call gelsy( m, n, nrhs, a, m, b, k, jpvt, rcond, rank, work2, lwork, rwork, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY gelsy SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE MINIMAL NORM SOLUTION TO THE LINEAR LEAST SQUARES PROBLEM .
!
        call gelsy( m, n, nrhs, a, m, b, k, jpvt, rcond, rank, work, lwork, rwork, info )
!
!       THE ROUTINE RETURNS THE SOLUTION OF THE LINEAR
!       LEAST SQUARE PROBLEM.
!
!       ON EXIT OF gelsy :
!
!         info=     0 :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!       ON EXIT OF gelsy :
!
!         a IS OVERWRITTEN BY DETAILS OF ITS COMPLETE ORTHOGONAL
!           FACTORIZATION.
!
!         b IS OVERWRITTEN BY THE n-by-nrhs MINIMUM-NORM SOLUTION.
!
!         rank IS OVERWRITTEN BY THE EFFECTIVE RANK OF a.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gelsy SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GELSY subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK THAT THE RESIDUALS ARE ORTHOGONAL TO THE COLUMN VECTORS OF a .
!
        res = b2 - matmul( a2, b(:n,:nrhs) )
        err = maxval( sum(abs(matmul(transpose(conjg(a2)),res)),   dim=1) )/ sum( abs(a2) )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, b, jpvt, rwork, a2, b2, res )
    else
        deallocate( a, b, jpvt, rwork )
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*)   &
          'Orthogonality of the residuals against the columns of the coefficient matrix = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear least squares complex problem of size ', &
       m, ' by ', n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gelsy
! ===============================
!
end program ex2_lapack_gelsy

ex2_lapack_gesdd.F90

program ex2_lapack_gesdd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESDD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 27/04/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesdd
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=2000, n=2000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gesdd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, err3, eps, elapsed_time
    real(stnd)                              :: rwork2(1)
    real(stnd), allocatable, dimension(:)   :: s, rwork
    real(stnd), allocatable, dimension(:,:) :: ra, ia, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: work
    complex(stnd), allocatable, dimension(:,:) :: a, a2, c, resid
!
    integer                            :: info, lwork, lrwork, iok, istart, iend, irate, imax, itime
    integer, allocatable, dimension(:) :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobz
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : FULL SVD OF A COMPLEX MATRIX USING THE DIVIDE AND CONQUER METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), ra(m,n), ia(m,n), c(k,k), s(k), iwork(8*k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), resid(m,k), resid_ortho(k,k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE COMPLEX RANDOM DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   DETERMINE THE WORK TO DO AND HOW THE SINGULAR VECTORS WILL BE STORED.
!   WITH THE ARGUMENTS BELOW, THE SINGULAR VECTORS ARE COMPUTED AND
!   STORED AS IN SUBROUTINE svd_cmp2 IN STATPACK.
!
    jobz  = 'O'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gesdd SUBROUTINE.
!
    lwork = -1
!
    call gesdd( jobz, m, n, a, m, s, c, k, c, k, work2, lwork, rwork2, iwork, info )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
        lrwork = k*max(5*k+7,2*max(m,n)+2*k+1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY gesdd SUBROUTINE.
!
        allocate( work(lwork), rwork(lrwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       gesdd COMPUTES THE SINGULAR VALUE DECOMPOSITION (SVD) OF A COMPLEX
!       m-BY-n MATRIX a. THE SVD IS WRITTEN
!
!                       a = U * S * V**(h)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m UNITARY MATRIX, AND
!       V IS AN n-BY-n UNITARY MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
        call gesdd( jobz, m, n, a, m, s, c, k, c, k, work, lwork, rwork, iwork, info )
!
!       THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!       SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE.
!       MORE PRECISELY, THE ROUTINE RETURNS THE CONJUGATE-TRANSPOSE OF
!       THE RIGHT SINGULAR VECTORS.
!
!       ON EXIT OF gesdd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF gesdd IF JOBZ='O':
!
!         IF m>=n,    a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!                     STORED COLUMNWISE);
!                     c CONTAINS THE n-BY-n UNITARY MATRIX V**(h).
!
!         IF m<n,     a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     ROWS OF V**(h) (THE RIGHT SINGULAR VECTORS,
!                     STORED ROWWISE);
!                     c CONTAINS THE m-BY-m UNITARY MATRIX U.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, rwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesdd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESDD subroutine, Info=', info
!                
    else if ( do_test ) then
!
        if ( m>=n ) then
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) = matmul(a2(:m,:k),transpose(conjg(c(:k,:k)))) - a(:m,:k)*spread(s,dim=1,ncopies=m)
            resid_ortho(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( resid_ortho(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:n,:n) )
!
            resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( transpose(conjg(a(:m,:n))), a(:m,:n) ) )
            err2 = maxval( resid_ortho(:n,:n) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( c(:n,:n), transpose(conjg(c(:n,:n))) ) )
            err3 = maxval( resid_ortho(:n,:n) )/real(n,stnd)
!
        else
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) =  matmul(a2(:m,:n),transpose(conjg(a(:k,:n)))) - c(:k,:k)*spread(s,dim=1,ncopies=k) 
            resid_ortho(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( resid_ortho(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:m,:m) )
!
            resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( transpose(conjg(c(:m,:m ))), c(:m,:m ) ) )
            err2 = maxval( resid_ortho(:m,:m) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( a(:m,:n), transpose(conjg(a(:m,:n))) ) )
            err3 = maxval( resid_ortho(:m,:m) )/real(n,stnd)
!
        end if
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, c, s, iwork, a2, resid, resid_ortho )
    else
        deallocate( a, c, s, iwork )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all singular values and vectors of a', &
       m, ' by', n,' complex matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gesdd
! ===============================
!
end program ex2_lapack_gesdd

ex2_lapack_gesv.F90

program ex2_lapack_gesv
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesv
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000, nrhs=200
!
    character(len=*), parameter :: name_proc='Example 2 of gesv'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, eps, elapsed_time
    real(stnd), dimension(:,:), allocatable :: ra, ia, rx, ix
!
    complex(stnd), dimension(:,:), allocatable :: a, b, x, res
!
    integer(i4b), dimension(:), allocatable :: ipiv
    integer                                 :: info, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : SOLUTION OF A LINEAR SYSTEM WITH A COMPLEX COEFFICIENT
!               MATRIX AND SEVERAL RIGHT HAND-SIDES.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = sqrt( epsilon( err ) )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), ra(n,n), ia(n,n), b(n,nrhs), x(n,nrhs),      &
              rx(n,nrhs), ix(n,nrhs), ipiv(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n COMPLEX RANDOM DATA MATRIX a .
!
    call random_number( ra(:n,:n) )
    call random_number( ia(:n,:n) )
!
    a(:n,:n) = cmplx( ra(:n,:n), ia(:n,:n), stnd )
!
!   GENERATE A n-by-nrhs COMPLEX RANDOM SOLUTION MATRIX x .
!
    call random_number( rx(:n,:nrhs) )
    call random_number( ix(:n,:nrhs) )
!
    x(:n,:nrhs) = cmplx( rx(:n,:nrhs), ix(:n,:nrhs), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia, rx, ix )
!
!   COMPUTE THE MATRIX-MATRIX PRODUCT b = a*x .
!
    b = matmul( a, x )
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE THE SOLUTION MATRIX FOR COMPLEX LINEAR SYSTEM
!
!            a*x = b .
!
!   WHERE a IS A n-BY-n MATRIX AND b IS A n-BY-nrhs MATRIX.
!
!   THE LU DECOMPOSITION WITH PARTIAL PIVOTING AND ROW INTERCHANGES
!   IS USED TO FACTOR a AS
!
!          a = P*L*U
!
!   WHERE P IS PERMUTATION MATRIX, L IS UNIT LOWER TRIANGULAR, AND U IS
!   UPPER TRIANGULAR. THE FACTORED FORM OF a IS THEN USED TO SOLVE THE
!   SYSTEM OF EQUATIONS.
!
    call gesv( n, nrhs, a, n, ipiv, b, n, info )
!
!   ON EXIT OF gesv :
!
!      info    = 0 :  INDICATES SUCCESSFUL EXIT
!      info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!      info=i  > 0 :  INDICATES THAT THE SOLUTION CAN NOT BE COMPUTED BECAUSE
!                     THE MATRIX IS SINGULAR
!
!   ON EXIT OF gesv IF info = 0:
!
!       a IS OVERWRITTEN BY THE FACTORS L AND U OF ITS FACTORIZATION.
!       THE UNIT DIAGONAL ELEMENTS OF L ARE NOT STORED. 
!
!       ipiv STORES THE PIVOT INDICES THAT DEFINE THE PERMUTATION MATRIX P.
!       ROW i OF THE MATRIX WAS INTERCHANGED WITH ROW ipiv(i).
!
!       b IS OVERWRITTEN WITH THE SOLUTION MATRIX x.
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesv SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESV subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!
    else if ( do_test ) then
!
!       ALLOCATE WORK ARRAY .
!
        allocate( res(n,nrhs), stat=iok )
!
!       CHECK THE RESULTS FOR SMALL RESIDUALS.
!
        res(:n,:nrhs) = b(:n,:nrhs) - x(:n,:nrhs)
        err = maxval( sum( abs(res), dim=1 ) /    &
                      sum(abs(x),    dim=1 )      )
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate( res )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate( a, b, x, ipiv )
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed solutions = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solutions of a linear complex system of size ', &
       n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gesv
! ==============================
!
end program ex2_lapack_gesv

ex2_lapack_gesvd.F90

program ex2_lapack_gesvd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESVD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 14/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesvd
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=100, n=101, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gesvd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, err3, eps, elapsed_time
    real(stnd), allocatable, dimension(:)   :: s, rwork
    real(stnd), allocatable, dimension(:,:) :: ra, ia, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: work
    complex(stnd), allocatable, dimension(:,:) :: a, a2, c, resid
!
    integer        :: info, lwork, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!
    character      :: jobu, jobvt
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : FULL SVD OF A COMPLEX MATRIX USING THE QR IMPLICIT METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), ra(m,n), ia(m,n), c(k,k), s(k), rwork(5*k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), resid(m,k), resid_ortho(k,k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE COMPLEX RANDOM DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   DETERMINE THE WORK TO DO AND HOW THE SINGULAR VECTORS WILL BE STORED.
!   WITH THE ARGUMENTS BELOW, THE SINGULAR VECTORS ARE COMPUTED AND
!   STORED AS IN SUBROUTINE svd_cmp2 IN STATPACK.
!
    if ( m>=n ) then
        jobu  = 'O'
        jobvt = 'S'
    else
        jobu  = 'S'
        jobvt = 'O'
    end if
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gesvd SUBROUTINE.
!
    lwork = -1
!
    call gesvd( jobu, jobvt, m, n, a, m, s, c, k, c, k, work2, lwork, rwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gesvd SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       gesvd COMPUTES THE SINGULAR VALUE DECOMPOSITION (SVD) OF A COMPLEX
!       m-BY-n MATRIX a. THE SVD IS WRITTEN
!
!                       a = U * S * V**(h)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m UNITARY MATRIX, AND
!       V IS AN n-BY-n UNITARY MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
        call gesvd( jobu, jobvt, m, n, a, m, s, c, k, c, k, work, lwork, rwork, info )
!
!       THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!       SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE.
!       MORE PRECISELY, THE ROUTINE RETURNS THE CONJUGATE-TRANSPOSE OF
!       THE RIGHT SINGULAR VECTORS.
!
!       ON EXIT OF gesvd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE
!                        AND i OFF-DIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        BIDIAGONAL FORM OF a DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF gesvd WITH THE VALUES SPECIFIED FOR jobu AND jobvt :
!
!         IF m>=n,    a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!                     STORED COLUMNWISE);
!                     c CONTAINS THE n-BY-n UNITARY MATRIX V**(h).
!
!         IF m<n,     a IS OVERWRITTEN WITH THE FIRST min(m,n)
!                     ROWS OF V**(h) (THE RIGHT SINGULAR VECTORS,
!                     STORED ROWWISE);
!                     c CONTAINS THE m-BY-m UNITARY MATRIX U.
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesvd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESVD subroutine, Info=', info
!                
    else if ( do_test ) then
!
        if ( m>=n ) then
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) = matmul(a2(:m,:k),transpose(conjg(c(:k,:k)))) - a(:m,:k)*spread(s,dim=1,ncopies=m)
            resid_ortho(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( resid_ortho(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:n,:n) )
!
            resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( transpose(conjg(a(:m,:n))), a(:m,:n) ) )
            err2 = maxval( resid_ortho(:n,:n) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( c(:n,:n), transpose(conjg(c(:n,:n))) ) )
            err3 = maxval( resid_ortho(:n,:n) )/real(n,stnd)
!
        else
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:k) - U(:m,:k)*S(:k,:k).
!
            resid(:m,:k) =  matmul(a2(:m,:n),transpose(conjg(a(:k,:n)))) - c(:k,:k)*spread(s,dim=1,ncopies=k) 
            resid_ortho(:k,1_i4b) = norm( resid(:m,:k), dim=2_i4b )
            err1 =  maxval( resid_ortho(:k,1_i4b) )/( sum( abs(s) )*real(m,stnd) )
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
            call unit_matrix( a2(:m,:m) )
!
            resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( transpose(conjg(c(:m,:m ))), c(:m,:m ) ) )
            err2 = maxval( resid_ortho(:m,:m) )/real(m,stnd)
!
!           CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
            resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( a(:m,:n), transpose(conjg(a(:m,:n))) ) )
            err3 = maxval( resid_ortho(:m,:m) )/real(n,stnd)
!
        end if
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, c, s, rwork, a2, resid, resid_ortho )
    else
        deallocate( a, c, s, rwork )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all singular values and vectors of a ', &
       m, ' by ', n,' complex matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gesvd
! ===============================
!
end program ex2_lapack_gesvd

ex2_lapack_gesvdx.F90

program ex2_lapack_gesvdx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESVDX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 04/12/2016
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesvdx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=1000, n=1000, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of gesvdx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, err3, eps, elapsed_time, vl, vu
    real(stnd), allocatable, dimension(:)   :: s, rwork
    real(stnd), allocatable, dimension(:,:) :: ra, ia, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: work
    complex(stnd), allocatable, dimension(:,:) :: a, a2, u, vt
!
    integer                            :: info, lwork, il, iu, ns, iok,     &
                                          istart, iend, irate, imax, itime
    integer, allocatable, dimension(:) :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobu, jobvt, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : FULL OR PARTIAL SVD OF A COMPLEX MATRIX USING AN ASSOCIATED EIGENVALUE PROBLEM
!               AND THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), ra(m,n), ia(m,n), u(m,k), vt(k,n), s(k), &
              iwork(12*k), rwork((k+1)*(2*k)+16*k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAY.
!
        allocate( a2(m,n), resid_ortho(k,k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   DETERMINE THE WORK TO DO AND HOW MANY SINGULAR TRIPLETS
!   WILL BE COMPUTED AND STORED.
!
!   IF jobu  = 'V', LEFT SINGULAR VECTORS WILL BE COMPUTED.
!   IF jobu  = 'N', LEFT SINGULAR VECTORS WILL NOT BE COMPUTED.
!   IF jobvt = 'V', RIGHT SINGULAR VECTORS WILL BE COMPUTED.
!   IF jobvt = 'N', RIGHT SINGULAR VECTORS WILL NOT BE COMPUTED.
!
    jobu  = 'V'
    jobvt = 'V'
!
!   range DETERMINED HOW MANY SINGULAR VALUES AND VECTORS WILL BE COMPUTED.
!
!   IF range='A' ALL SINGULAR VALUES WILL BE FOUND,
!   IF range='V' ALL SINGULAR VALUES IN THE HALF OPEN INTERVAL (vl,vu] WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH SINGULAR VALUES IN ASCENDING ORDER WILL BE FOUND.
!
!   IN EACH CASE, THE ASSOCIATED SINGULAR VECTORS WILL BE ALSO COMPUTED.
!
    range = 'A'
!
    vl = zero
    vu = zero
!
    il = 1
    iu = k
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gesvdx SUBROUTINE.
!
    lwork = -1
!
    call gesvdx( jobu, jobvt, range, m, n, a, m, vl, vu, il, iu, ns,   &
                 s, u, m, vt, k, work2, lwork, rwork, iwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gesvdx SUBROUTINE.
!
        allocate( work(lwork), stat = iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       gesvdx COMPUTES THE SINGULAR VALUE DECOMPOSITION (SVD) OF A COMPLEX
!       m-BY-n MATRIX a BY SOLVING AN ASSOCIATE EIGENVALUE PROBLEM. THE SVD
!       IS WRITTEN
!
!                       a = U * S * V**(h)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m UNITARY MATRIX, AND
!       V IS AN n-BY-n UNITARY MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
!       THE ADVANTAGE OF gesvdx SUBROUTINE COMPARED TO OTHER SVD SUBROUTINES
!       AVAILABLE IN LAPACK (E.G. gesvd OR gesdd) IS THAT gesvdx IS ABLE TO COMPUTE
!       A PARTIAL SVD DECOMPOSITION OR SELECTED SINGULAR TRIPLETS OF THE INPUT
!       COMPLEX MATRIX WHILE THE OTHER SUBROUTINES DO NOT OFFER THIS POSSIBILITY.
!       HOWEVER, BEWARE THAT THE gesvdx SUBROUTINE IS AVAILABLE ONLY IN LAPACK 3.6.0
!       AND ABOVE.
!
        call gesvdx( jobu, jobvt, range, m, n, a, m, vl, vu, il, iu, ns,   &
                     s, u, m, vt, k, work, lwork, rwork, iwork, info )
!
!       THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!       SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE.
!       MORE PRECISELY, THE ROUTINE RETURNS THE CONJUGATE-TRANSPOSE OF
!       THE RIGHT SINGULAR VECTORS.
!
!       ON EXIT OF gesvdx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT i EIVENVECTORS FAILED TO CONVERGE.
!         info=n*2+1  :  INDICATES THAT AN INTERNAL ERROR OCCURRED.
!
!       ON EXIT OF gesvdx WITH THE VALUES SPECIFIED ABOVE FOR jobu ('V'),
!       jobvt ('V') AND range ('A'):
!
!         u IS OVERWRITTEN WITH THE FIRST  min(m,n)
!         COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!         STORED COLUMNWISE);
!
!         vt IS OVERWRITTEN WITH THE FIRST min(m,n)
!         ROWS OF V**(h) (THE RIGHT SINGULAR VECTORS,
!         STORED ROWWISE);
!
!         s IS OVERWRITTEN WITH THE SINGULAR VALUES OF a IN DECREASING ORDER.
!
!       FOR range='I' OR range='V', ns IS THE NUMBER OF SINGULAR TRIPLETS
!       COMPUTED AND STORED BY THE SUBROUTINE IN ARGUMENTS u, vt AND s.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
!
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesvdx SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESVDX subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:ns) - U(:m,:ns)*S(:ns,:ns).
!
        a(:m,:ns) = matmul(a2(:m,:n),transpose(conjg(vt(:ns,:n)))) - u(:m,:ns)*spread(s(:ns),dim=1,ncopies=m)
        resid_ortho(:ns,1_i4b) = norm( a(:m,:ns), dim=2_i4b )
!
        err1 =  maxval( resid_ortho(:ns,1_i4b) )/( norm( a2 )*real(m,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(h)*U.
!
        call unit_matrix( a2(:ns,:ns) )
!
        resid_ortho(:ns,:ns) = abs( a2(:ns,:ns) - matmul( transpose(conjg(u(:m,:ns))), u(:m,:ns) ) )
!
        err2 = maxval( resid_ortho(:ns,:ns) )/real(m,stnd)
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(h)*V.
!
        resid_ortho(:ns,:ns) = abs( a2(:ns,:ns) - matmul( vt(:ns,:n), transpose(conjg(vt(:ns,:n))) ) )
!
        err3 = maxval( resid_ortho(:ns,:ns) )/real(n,stnd)
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, s, u, vt, rwork, iwork, a2, resid_ortho )
    else
        deallocate( a, s, u, vt, rwork, iwork )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
!
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
!
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', ns,' singular values and vectors of a ', &
       m, ' by ', n,' complex matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_gesvdx
! ================================
!
end program ex2_lapack_gesvdx

ex2_lapack_ormbr.F90

program ex2_lapack_ormbr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines GEBRD and ORMBR
!   in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!    The program also shows the use of subroutines BD_SVD and BD_INVITER
!    in module SVD_Procedures.
!                                                                              
! LATEST REVISION : 08/05/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gebrd, ormbr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,  &
                         bd_svd, bd_inviter, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=3000, n=3000, nvec=100, k=min(m,n)
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of ormbr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err3, err, eps, elapsed_time
    real(stnd), allocatable, dimension(:)   :: d, e, singval, e2
    real(stnd), allocatable, dimension(:,:) :: ra, ia, bd_leftvec, bd_rightvec, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: tauq, taup, work
    complex(stnd), allocatable, dimension(:,:) :: a, a2, leftvec, rightvec
!
    integer      :: info_bd, info_q, info_p, lwork, lwork_bd, lwork_q, lwork_p,  &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: maxiter=4, l
!
    logical(lgl) :: failure, bd_is_upper, do_test
!   
    character    :: sort='d'
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : BIDIAGONAL REDUCTION AND PARTIAL SVD DECOMPOSITION
!               OF A COMPLEX MATRIX USING AN INVERSE ITERATION METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    bd_is_upper = m>=n
    do_test     = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), ra(m,n), ia(m,n),                         &
              bd_leftvec(k,nvec), bd_rightvec(k,nvec),          &
              leftvec(m,nvec), rightvec(n,nvec), d(k), e(k),    &
              tauq(k), taup(k), singval(k), e2(k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n COMPLEX RANDOM DATA MATRIX .
!
    call random_number( ra(:m,:n) )
    call random_number( ia(:m,:n) )
!
    a(:m,:n) = cmplx( ra(:m,:n), ia(:m,:n), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(m,n), resid_ortho(nvec,nvec), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE DATA MATRIX.
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gebrd AND orgbr SUBROUTINES.
!
    lwork = -1
!
    call gebrd( m, n, a, m, d(:k), e(2_i4b:k), tauq, taup, work2, lwork, info=info_bd )
!
    lwork_bd = int(work2(1))
!
    call ormbr( 'Q', 'L', 'N', m, nvec, n, a, m, tauq, leftvec, m, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    call ormbr( 'P', 'L', 'N', n, nvec, m, a, m, taup, rightvec, n, work2, lwork, info=info_p )
!
    lwork_p = int(work2(1))
!
    if ( min(info_bd,info_q,info_p)==0 ) then
!
        lwork = max( lwork_bd, lwork_q, lwork_p )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gebrd AND ormbr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE BIDIAGONAL REDUCTION OF RANDOM DATA MATRIX a = Q*BD*P**(h).
!       WHERE Q AND P ARE UNITARY MATRICES AND BD IS A REAL BIDIAGONAL MATRIX
!
        call gebrd( m, n, a, m, d(:k), e(2_i4b:k), tauq, taup, work(:lwork_bd), lwork_bd, info=info_bd )
!
!       ON EXIT OF gebrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE BIDAGONAL MATRIX BD, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P.
!         taup AND tauq ARE THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q AND P, RESPECTIVELY.
!
!       MAKE A COPY OF THE BIDIAGONAL MATRIX.
!
        singval(:k) = d(:k)
        e2(:k)      = e(:k)
!
!       COMPUTE ALL SINGULAR VALUES OF THE REAL BIDIAGONAL MATRIX BD.
!
        call bd_svd( bd_is_upper, singval(:k), e2(:k), failure, sort=sort  )
!
        if ( .not. failure ) then
!
!           COMPUTE THE FIRST nvec SINGULAR VECTORS OF THE BIDIAGONAL MATRIX BY maxiter INVERSE ITERATIONS.
!
            call bd_inviter( bd_is_upper, d(:k), e(:k), singval(:nvec), bd_leftvec(:k,:nvec),   &
                             bd_rightvec(:k,:nvec), failure, maxiter=maxiter )
!
!           NOW COMPUTE THE FIRST nvec SINGULAR VECTORS OF THE FULL m-BY-n MATRIX a BY BACK-TRANSFORMATION WITH
!           LAPACK SUBROUTINE ormbr.
!
            leftvec(:k,:nvec) = cmplx( bd_leftvec(:k,:nvec), zero, stnd )
            rightvec(:k,:nvec) = cmplx( bd_rightvec(:k,:nvec), zero, stnd )
!
            if ( bd_is_upper ) then
                leftvec(k+1_i4b:m,:nvec) = cmplx( zero, zero, stnd )
            else
                rightvec(k+1_i4b:n,:nvec) = cmplx( zero, zero, stnd )
            end if
!
            call ormbr( 'Q', 'L', 'N', m, nvec, n, a, m, tauq, leftvec, m, work(:lwork_q), lwork_q, info=info_q )
!
            call ormbr( 'P', 'L', 'N', n, nvec, m, a, m, taup, rightvec, n, work(:lwork_p), lwork_p, info=info_p )
!
!           ON EXIT OF THESE ormbr CALLS:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT.
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!
!           leftvec  IS OVERWRITTEN WITH THE FIRST nvec LEFT SINGULAR VECTORS of a STORED COLUMNWISE.
!           rightvec IS OVERWRITTEN WITH THE FIRST nvec RIGHT SINGULAR VECTORS of a STORED COLUMNWISE.
!
        end if
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_bd,info_q,info_p)/=0 ) then
!
!       ANORMAL EXIT FROM gebrd OR ormbr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to GEBRD or ORMBR subroutines, Info=', min(info_bd,info_q,info_p)
!                
    else if ( do_test .and. .not.failure ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*rightvec - leftvec*diag(singval(:nvec)),
!       WHERE leftvec AND rightvec ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
        a(:m,:nvec) =  matmul(a2,rightvec) - leftvec*spread( singval(:nvec),dim=1,ncopies=m )
!
        resid_ortho(:nvec,1_i4b) = norm( a(:m,:nvec), dim=2_i4b )
        err1 =  maxval( resid_ortho(:nvec,1_i4b) )/( sum( abs(singval(:k)) )*real(m,stnd) )

        err1 = norm( a(:m,:nvec) )/( sum( abs(singval(:k)) )*real(nvec,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - leftvec**(h)*leftvec.
!
        call unit_matrix( a2(:nvec,:nvec) )
!
        resid_ortho(:nvec,:nvec) = abs( a2(:nvec,:nvec) - matmul( transpose(conjg(leftvec(:m,:nvec))), leftvec(:m,:nvec) ) )
        err2 = maxval( resid_ortho(:nvec,:nvec) )/real(m,stnd)
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - rightvec**(h)*rightvec.
!
        resid_ortho(:nvec,:nvec) = abs( a2(:nvec,:nvec) - matmul( transpose(conjg(rightvec(:n,:nvec))), rightvec(:n,:nvec) ) )
        err3 = maxval( resid_ortho(:nvec,:nvec) )/real(n,stnd)
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, a2, bd_leftvec, bd_rightvec, leftvec, rightvec,     &
                    d, e, tauq, taup, singval, e2, resid_ortho )
    else
        deallocate( a, bd_leftvec, bd_rightvec, leftvec, rightvec, d, e,   &
                    tauq, taup, singval, e2 )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_bd,info_q,info_p)==0 .and. .not.failure ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_bd,info_q,info_p)==0 .and. .not.failure ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all singular values and', nvec, ' singular vectors of a', &
       m, ' by', n,' complex matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_ormbr
! ===============================
!
end program ex2_lapack_ormbr

ex2_lapack_ormtr.F90

program ex2_lapack_ormtr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines (x)SYTRD and (x)ORMTR
!   in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!    The program also shows the use of subroutines SYMTRID_QRI and TRID_INVITER
!    in module EIG_Procedures.
!                                                                              
! LATEST REVISION : 31/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sytrd, ormtr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,     &
                         symtrid_qri, trid_inviter, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000, nvec=3000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of ormtr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, elapsed_time
    real(stnd), allocatable, dimension(:)   :: d, e, eigval, e2
    real(stnd), allocatable, dimension(:,:) :: ra, ia, eigvec2, resid
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: tau,  work
    complex(stnd), allocatable, dimension(:,:) :: a, eigvec, a2
!
    integer      :: info_trd, info_q, lwork, lwork_trd, lwork_q, iok,   &
                    istart, iend, irate, imax, itime
    integer(i4b) :: l, maxiter=2
!
    logical(lgl) :: failure, failure2, do_test
!   
    character    :: uplo, sort='d'
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : TRIDIAGONAL REDUCTION OF A COMPLEX HERMITIAN MATRIX AND
!               EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A COMPLEX
!               HERMITIAN MATRIX USING THE INVERSE ITERATION METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = false
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), ra(n,n), ia(n,n), eigvec(n,nvec), eigvec2(n,nvec),  &
              d(n), e(n), tau(n-1_i4b), eigval(n), e2(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM COMPLEX DATA MATRIX AND FROM IT
!   A HERMITIAN MATRIX a .
!
    call random_number( ra(:n,:n) )
    call random_number( ia(:n,:n) )
!
    a(:n,:n) = cmplx( ra(:n,:n), ia(:n,:n), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    a = a + transpose( conjg( a ) ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(nvec,nvec), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE HERMITIAN MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR sytrd AND ormtr SUBROUTINES.
!
    lwork = -1
!
    call sytrd( uplo, n, a, n, d, e, tau, work2, lwork, info=info_trd )
!
    lwork_trd = int(work2(1))
!
    call ormtr( 'L', uplo, 'N', n, nvec, a, n, tau, eigvec, n, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    if ( info_trd==0 .and. info_q==0 ) then
!
        lwork = max( lwork_trd, lwork_q )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY sytrd AND ormtr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CALL sytrd TO REDUCE THE COMPLEX MATRIX a TO TRIDIAGONAL FORM
!
!                      a = Q*TRID*Q**(h)
!
!       WHERE Q IS UNITARY AND TRID IS A REAL SYMMETRIC TRIDIAGONAL MATRIX.
!
        call sytrd( uplo, n, a, n, d, e, tau, work(:lwork_trd), lwork_trd, info=info_trd )
!
!       ON EXIT OF sytrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE SYMMETRIC TRIDIAGONAL MATRIX, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q IN ITS UPPER TRIANGLE IF uplo='U'.
!         tau CONTAINS THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q.
!
!       MAKE A COPY OF THE TRIDIAGONAL MATRIX.
!
        eigval(:n) = d(:n)
        e2(:n)     = e(:n)
!
!       COMPUTE ALL THE EIGENVALUES OF THE SYMMETRIC TRIDIAGONAL MATRIX WITH SUBROUTINE symtrid_qri.
!
        call symtrid_qri( eigval, e2, failure, sort=sort )
!
        if ( .not.failure ) then
!
!           COMPUTE THE FIRST nvec EIGENVECTORS OF THE SELF-ADJOINT MATRIX a BY
!           maxiter INVERSE ITERATIONS ON THE INTERMEDIATE TRIDIAGONAL MATRIX
!           AND BACK-TRANSFORMATION WITH LAPACK SUBROUTINE ormtr.
!
            call trid_inviter( d(:n), e(:n), eigval(:nvec), eigvec2(:n,:nvec), failure, maxiter=maxiter )
!
            eigvec(:n,:nvec) = cmplx( eigvec2(:n,:nvec), zero, stnd )
!
            call ormtr( 'L', uplo, 'N', n, nvec, a, n, tau, eigvec, n, work(:lwork_q), lwork_q, info=info_q )
!
!           ON EXIT OF THIS ormtr CALL:
!
!             info= 0     :  INDICATES SUCCESSFUL EXIT
!             info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!             eigvec IS OVERWRITTEN WITH THE FIRST nvec EIGENVECTORS OF a STORED COLUMNWISE.
!
        end if
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    failure2 = info_trd/=0 .or. info_q/=0
!
    if ( failure2 ) then
!
!       ANORMAL EXIT FROM sytrd OR ormtr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Errors in the calls to SYTRD or ORMTR subroutines, Info=',  &
                          info_trd, info_q
!
        if ( info_trd<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in SYTRD'')') - info_trd
!
        end if
!
        if ( info_q<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in ORMTR'')') - info_q
!
        end if
!                
    else if ( do_test .and. .not.failure ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*eigvec - eigvec*diag(eigval(:nvec))
!       WHERE eigval ARE THE EIGENVALUES AND eigvec THE EIGENVECTORS OF a.
!
        a(:n,:nvec) = matmul( a2, eigvec ) - eigvec*spread( eigval(:nvec), 1, n )
!
        resid(:nvec,1) = norm( a(:n,:nvec), dim=2_i4b )
        err1 = maxval( resid(:nvec,1) )/( norm(a2)*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - eigvec**(h)*eigvec
!       WHERE eigvec are THE EIGENVECTORS OF THE MATRIX a.
!
        call unit_matrix( a(:nvec,:nvec) )
!
        resid(:nvec,:nvec) = abs( a(:nvec,:nvec) - matmul( transpose( conjg(eigvec) ), eigvec ) )
        err2 = maxval( resid(:nvec,:nvec) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, a2, eigvec, eigvec2, d, e, tau, eigval, e2, resid )
    else
        deallocate( a, eigvec, eigvec2, d, e, tau, eigval, e2 )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. .not.failure .and. .not.failure2 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. .not.failure .and. .not.failure2 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors vectors    = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing all eigenvalues and', nvec, ' eigenvectors of a', &
       n, ' by', n,' complex hermitian matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_ormtr
! ===============================
!
end program ex2_lapack_ormtr

ex2_lapack_posv.F90

program ex2_lapack_posv
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine POSV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : posv
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, norm, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000, m=n+10, nrhs=200
!
    character(len=*), parameter :: name_proc='Example 2 of posv'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, eps, elapsed_time
    real(stnd), dimension(:,:), allocatable :: rc, ic, rx, ix
!
    complex(stnd), dimension(:,:), allocatable :: a, b, c, x, res
!
    integer :: info, iok, istart, iend, irate, imax, itime
!
    logical(lgl) :: do_test
!
    character :: uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : SOLUTION OF A LINEAR SYSTEM WITH A COMPLEX HERMITIAN DEFINITE POSITIVE COEFFICIENT
!               MATRIX AND SEVERAL RIGHT HAND-SIDES.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = sqrt( epsilon( err ) )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( c(m,n),    rc(m,n),    ic(m,n),    &
              x(n,nrhs), rx(n,nrhs), ix(n,nrhs), &
              a(n,n),    b(n,nrhs),  stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM COMPLEX HERMITIAN POSITIVE DEFINITE MATRIX a .
!
    call random_number( rc(:m,:n) )
    call random_number( ic(:m,:n) )
!
    c(:m,:n) = cmplx( rc(:m,:n), ic(:m,:n), stnd )
!
    a = matmul( transpose(conjg(c)), c )
!
!   GENERATE A n-by-nrhs COMPLEX RANDOM SOLUTION MATRIX x .
!
    call random_number( rx(:n,:nrhs) )
    call random_number( ix(:n,:nrhs) )
!
    x(:n,:nrhs) = cmplx( rx(:n,:nrhs), ix(:n,:nrhs), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( c, rc, ic, rx, ix )
!
!   COMPUTE THE MATRIX-MATRIX PRODUCT b = a*x .
!
    b = matmul( a, x )
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   COMPUTE THE SOLUTION MATRIX FOR HERMITIAN POSITIVE DEFINITE SYSTEM
!
!            a*x = b .
!
!   FIRST SPECIFY IF UPPER OR LOWER TRIANGLE OF a IS STORED .
!
    uplo = 'U'
!
    call posv( uplo, n, nrhs, a, n, b, n, info )
!
!   ON EXIT OF posv :
!
!      info    = 0 :  INDICATES SUCCESSFUL EXIT
!      info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!      info=i  > 0 :  INDICATES THAT THE SOLUTION CAN NOT BE COMPUTED BECAUSE
!                     THE MATRIX IS SINGULAR
!
!   THE ROUTINE RETURNS THE SOLUTION VECTORS IN b.
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
!   CHECK THAT THE LAPACK ROUTINE HAS BEEN SUCCESSFUL.
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM posv SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to POSV subroutine, Info=', info
        write (prtunit,*)
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        else if (info>0) then
!
            write (prtunit,'(''Zero diagonal value detected in upper ''//   &
                             ''triangular factor at position '',i7)') info
!
        end if
!
    else if ( do_test ) then
!
!       ALLOCATE WORK ARRAY .
!
        allocate( res(n,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CHECK THE RESULTS FOR SMALL RESIDUALS.
!
        res(:n,:nrhs) = b(:n,:nrhs) - x(:n,:nrhs)
        err = maxval( norm(res, dim=2_i4b ) /    &
                      norm(x,  dim=2_i4b  ) )/real(n,stnd)
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate( res )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate( a, b, x )
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed solutions = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for solving a positive definite hermitian system of size ', &
       n, ' with', nrhs, ' right hand side vectors is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_posv
! ==============================
!
end program ex2_lapack_posv

ex2_lapack_stemr.F90

program ex2_lapack_stemr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines (x)SYTRD, (x)STEMR
!   and (x)ORMTR in LAPACK software . 
!                                                                              
!                                                     
! Further Details
! ===============
!
!   The (x)STEMR subroutines will work properly only with IEEE arithmetic.                                                                        
!                                                     
! LATEST REVISION : 31/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sytrd, ormtr, stemr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,     &
                         merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000, neig=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of stemr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, vl, vu, elapsed_time
    real(stnd)                              :: rwork2(1)
    real(stnd), allocatable, dimension(:)   :: d, e, w, rwork
    real(stnd), allocatable, dimension(:,:) :: ra, ia, resid
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: tau,  work
    complex(stnd), allocatable, dimension(:,:) :: a, z, a2
!
    integer      :: info_trd, info_q, info_mrrr, lwork, liwork, lwork_trd, lwork_mrrr, lwork_q,   &
                    iok, istart, iend, irate, imax, itime, il, iu, m, nzc
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: isuppz, iwork
!
    logical      :: tryrac
    logical(lgl) :: do_test, failure
!   
    character    :: uplo, jobz, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : TRIDIAGONAL REDUCTION OF A COMPLEX HERMITIAN MATRIX AND,
!               OPTIONALLY, neig EIGENVALUES AND EIGENVECTORS OF A COMPLEX
!               HERMITIAN MATRIX USING THE MRRR METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( ra(n,n), ia(n,n), a(n,n), z(n,neig), d(n), e(n), w(n),    &
              isuppz(2*n), tau(n-1_i4b), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM COMPLEX DATA MATRIX AND FROM IT
!   A HERMITIAN MATRIX a .
!
    call random_number( ra(:n,:n) )
    call random_number( ia(:n,:n) )
!
    a(:n,:n) = cmplx( ra(:n,:n), ia(:n,:n), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    a = a + transpose( conjg( a ) ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(neig,neig), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE HERMITIAN MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   FIRST DETERMINE THE WORK TO DO FOR stemr SUBROUTINE.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu) WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'I'
!
    vl = zero
    vu = zero
!
    il = n - neig + 1
    iu = n
!
!   tryrac = .true. INDICATES THAT THE CODE WILL TRY TO COMPUTE THE EIGENVALUES OF THE TRIDIAGONAL MATRIX
!                   TO HIGH RELATIVE ACCURACY IF POSSIBLE. IF tryrac IS SET TO .false. THE CODE IS NOT REQUIRED
!                   TO GARANTEE RELATIVELY ACCURATE EIGENVALUES AND CAN USE A FASTEST METHOD.
!
    tryrac = .true.
!
!   nzc IS AN UPPER BOUND FOR THE NUMBER OF EIGENVECTORS TO BE FOUND. nzc DEPENDS ON THE VALUE OF RANGE, IF:
!
!       range='A' THEN nzc>=n;
!       range='V' THEN nzc>=THE NUMBER OF EIGENVALUES IN (VL,VU],
!       range='I' THEN nzc>=iu-il+1 .
!
!   IF nzc=-1, THEN THE stemr SUBROUTINE WILL RETURN THE ESTIMATE OF nzc IN z(1,1) WITHOUT DOING ANY COMPUTATION.
!
    nzc = neig
!
!   NOW COMPUTE OPTIMAL WORKSPACE FOR sytrd, stemr AND ormtr SUBROUTINES.
!
    lwork = -1
!
    call sytrd( uplo, n, a, n, d, e, tau, work2, lwork, info=info_trd )
!
    lwork_trd = int(work2(1))
!
    call ormtr( 'L', uplo, 'N', n, neig, a, n, tau, z, n, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    liwork = -1
!
    call stemr( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, n, nzc,    &
                isuppz, tryrac, rwork2, lwork, iwork2, liwork, info=info_mrrr    )
!
    if ( info_trd==0 .and. info_q==0 .and. info_mrrr==0 ) then
!
        lwork = max( lwork_trd, lwork_q )
        lwork_mrrr = int(rwork2(1))
        liwork = iwork2(1)
!
!       ALLOCATE OPTIMAL WORK VARIABLES NEEDED BY sytrd, stemr AND ormtr SUBROUTINES.
!
        allocate( work(lwork), rwork(lwork_mrrr), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CALL sytrd TO REDUCE THE HERMITIAN MATRIX a TO TRIDIAGONAL FORM
!
!                      a = Q*TRID*Q**(h)
!
!       WHERE Q IS ORTHOGONAL AND TRID IS A REAL SYMMETRIC TRIDIAGONAL MATRIX.
!
        call sytrd( uplo, n, a, n, d, e, tau, work(:lwork_trd), lwork_trd, info=info_trd )
!
!       ON EXIT OF sytrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE SYMMETRIC TRIDIAGONAL MATRIX, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q IN ITS UPPER TRIANGLE IF uplo='U'.
!         tau CONTAINS THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q.
!
!
!       COMPUTE neig EIGENVALUES AND EIGENVECTORS OF THE SYMMETRIC TRIDIAGONAL MATRIX WITH SUBROUTINE stemr.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC TRIDIAGONAL MATRIX TRID
!       IS WRITTEN
!
!                       TRID = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF TRID; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF TRID.
!
        call stemr( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, n, nzc, isuppz, tryrac,     &
                    rwork(:lwork_mrrr), lwork_mrrr, iwork, liwork, info=info_mrrr )
!
!       ON EXIT OF stemr :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF stemr :
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF THE TRIDIAGONAL MATRIX (THE EIGENVECTORS ARE STORED COLUMNWISE AND IN COMPLEX FORMAT).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF THE TRIDIAGONAL MATRIX IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
!       COMPUTE THE FIRST m EIGENVECTORS OF THE SELF-ADJOINT MATRIX a BY
!       BACK-TRANSFORMATION WITH LAPACK SUBROUTINE ormtr.
!
        call ormtr( 'L', uplo, 'N', n, m, a, n, tau, z, n, work(:lwork_q), lwork_q, info=info_q )
!
!       ON EXIT OF THIS ormtr CALL:
!
!           info= 0     :  INDICATES SUCCESSFUL EXIT
!           info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!           z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS OF a STORED COLUMNWISE.
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, rwork, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    failure = info_trd/=0 .or. info_q/=0 .or. info_mrrr/=0
!
    if ( failure ) then
!
!       ANORMAL EXIT FROM sytrd, stemr OR ormtr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Errors in the calls to SYTRD, STEMR or ORMTR subroutines, Info=', &
                           info_trd, info_mrrr, info_q
!
        if ( info_trd<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in SYTRD'')') - info_trd
!
        end if
!
        if ( info_mrrr<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in STEMR'')') - info_mrrr
!
        end if
!
        if ( info_q<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value in ORMTR'')') - info_q
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*eigvec - eigvec*diag(eigval(:m))
!       WHERE eigval ARE THE EIGENVALUES AND eigvec THE EIGENVECTORS OF a.
!
        a(:n,:m) = matmul( a2, z(:n,:m) ) - z(:n,:m)*spread( w(:m), dim=1, ncopies=n )
!
        resid(:m,1) = norm( a(:n,:m), dim=2_i4b )
        err1 = maxval( resid(:m,1) )/( norm(a2)*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - eigvec**(h)*eigvec
!       WHERE eigvec are THE EIGENVECTORS OF THE MATRIX a.
!
        call unit_matrix( a(:m,:m) )
!
        resid(:m,:m) = abs( a(:m,:m) - matmul( transpose( conjg(z(:n,:m)) ), z(:n,:m) ) )
        err2 = maxval( resid(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, d, e, tau, w, isuppz, a2, resid )
    else
        deallocate( a, z, d, e, tau, w, isuppz )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. .not.failure ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. .not.failure ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors vectors    = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m,' eigenvalues and eigenvectors of a', &
       n, ' by', n,' complex hermitian matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_stemr
! ===============================
!
end program ex2_lapack_stemr

ex2_lapack_syev.F90

program ex2_lapack_syev
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 08/05/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syev
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,   &
                         merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of syev'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, elapsed_time
    real(stnd), dimension(:),   allocatable :: w, rwork
    real(stnd), dimension(:,:), allocatable :: ra, ia, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), dimension(:),   allocatable :: work
    complex(stnd), dimension(:,:), allocatable :: a, a2, resid
!
    integer        :: info, lwork, iok, istart, iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A COMPLEX HERMITIAN
!               MATRIX USING THE QR IMPLICIT METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS .
!
    lwork = 3*n - 2
!
    allocate( a(n,n), ra(n,n), ia(n,n), w(n), rwork(lwork), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM COMPLEX DATA MATRIX AND FROM IT
!   A HERMITIAN MATRIX a .
!
    call random_number( ra(:n,:n) )
    call random_number( ia(:n,:n) )
!
    a(:n,:n) = cmplx( ra(:n,:n), ia(:n,:n), stnd )
!
    a = a + transpose( conjg( a ) ) 
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(n,n), resid_ortho(n,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM HERMITIAN MATRIX a .
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz = 'V'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syev SUBROUTINE.
!
    lwork = -1
    call syev( jobz, uplo, n, a, n, w, work2, lwork, rwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY syev SUBROUTINE.
!
        allocate( work(lwork), stat = iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE HERMITIAN MATRIX a
!       WITH SUBROUTINE syev FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A COMPLEX n-BY-n HERMITIAN MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(h)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n UNITARY MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syev( jobz, uplo, n, a, n, w, work, lwork, rwork, info )
!
!       ON EXIT OF syev :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE
!                        AND i OFF-DIAGONAL ELEMENTS OF AN INTERMEDIATE
!                        TRIDIAGONAL FORM OF a DID NOT CONVERGE TO ZERO.
!
!       ON EXIT OF syev :
!
!         a IS OVERWRITTEN WITH THE EIGENVECTORS OF a IF 
!         jobz='V' (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syev SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYEV subroutine, Info=', info
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a2(:n,:n),a(:n,:n)) - a(:n,:n)*spread(w,dim=1,ncopies=n)
        resid_ortho(:n,1_i4b) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid_ortho(:n,1_i4b) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(h)*U.
!
        call unit_matrix( a2(:n,:n) )
!
        resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( transpose(conjg(a(:n,:n))), a(:n,:n) ) )
        err2 = maxval( resid_ortho(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, w, rwork, a2, resid, resid_ortho )
    else
        deallocate( a, w, rwork )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a', &
       n, ' by', n,' complex hermitian matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_syev
! ==============================
!
end program ex2_lapack_syev

ex2_lapack_syevd.F90

program ex2_lapack_syevd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEVD
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 08/05/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevd
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix,   &
                         merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of syevd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, elapsed_time
    real(stnd)                              :: rwork2(1)
    real(stnd), dimension(:),   allocatable :: w, rwork
    real(stnd), dimension(:,:), allocatable :: ra, ia, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), dimension(:),   allocatable :: work
    complex(stnd), dimension(:,:), allocatable :: a, a2, resid
!
    integer                            :: info, lwork, liwork, lrwork, iok, istart, &
                                          iend, irate, imax, itime
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A COMPLEX HERMITIAN MATRIX
!               MATRIX USING THE DIVIDE AND CONQUER METHOD.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAY.
!
    allocate( a(n,n), ra(n,n), ia(n,n), w(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM COMPLEX DATA MATRIX AND FROM IT
!   A HERMITIAN MATRIX a .
!
    call random_number( ra(:n,:n) )
    call random_number( ia(:n,:n) )
!
    a(:n,:n) = cmplx( ra(:n,:n), ia(:n,:n), stnd )
!
    a = a + transpose( conjg( a ) ) 
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid(n,n), resid_ortho(n,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM HERMITIAN MATRIX .
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz = 'V'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevd SUBROUTINE.
!
    lwork  = -1
    liwork = -1
    lrwork = -1
!
    call syevd( jobz, uplo, n, a, n, w, work2, lwork, rwork2, lrwork, iwork2, liwork, info )
!
    if ( info==0 ) then
!
       lwork   = int(work2(1)) + 10
       lrwork  = int(rwork2(1)) + 10
       liwork  = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY syevd SUBROUTINE.
!
        allocate( work(lwork), rwork(lrwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE HERMITIAN MATRIX a
!       WITH SUBROUTINE syevd FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A COMPLEX n-BY-n HERMITIAN MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(h)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n UNITARY MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevd( jobz, uplo, n, a, n, w, work, lwork, rwork, lrwork, iwork, liwork, info )
!
!       ON EXIT OF syevd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF syevd :
!
!         a IS OVERWRITTEN WITH THE EIGENVECTORS OF a IF 
!         jobz='V' (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER.
!
        deallocate ( work, rwork, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevd SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYEVD subroutine, Info=', info
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:n) = matmul(a2(:n,:n),a(:n,:n)) - a(:n,:n)*spread(w,dim=1,ncopies=n)
        resid_ortho(:n,1_i4b) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid_ortho(:n,1_i4b) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(h)*U.
!
        call unit_matrix( a2(:n,:n) )
!
        resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( transpose(conjg(a(:n,:n))), a(:n,:n) ) )
        err2 = maxval( resid_ortho(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, w, a2, resid, resid_ortho )
    else
        deallocate( a, w )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', n, ' eigenvalues and eigenvectors of a', &
       n, ' by', n,' complex hermitian matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_syevd
! ===============================
!
end program ex2_lapack_syevd

ex2_lapack_syevr.F90

program ex2_lapack_syevr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEVR
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 08/05/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of syevr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd)                              :: rwork2(1)
    real(stnd), dimension(:),   allocatable :: w, rwork
    real(stnd), dimension(:,:), allocatable :: rz, iz, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), dimension(:),   allocatable :: work
    complex(stnd), dimension(:,:), allocatable :: a2, a, z
!
    integer                            :: info, lwork, lrwork, liwork, iok, il, iu, m, &
                                          istart, iend, irate, imax, itime
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: iwork, isuppz
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A COMPLEX HERMITIAN MATRIX
!               MATRIX USING THE MRRR ALGORITHM.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), rz(n,n), iz(n,n), z(n,n), w(n), isuppz(2*n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM COMPLEX DATA MATRIX AND FROM IT
!   A HERMITIAN MATRIX a .
!
    call random_number( rz(:n,:n) )
    call random_number( iz(:n,:n) )
!
    z(:n,:n) = cmplx( rz(:n,:n), iz(:n,:n), stnd )
!
    a = z + transpose( conjg( z ) ) 
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( rz, iz )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid_ortho(n,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu) WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'A'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = 1
    iu = n
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevr SUBROUTINE.
!
    lwork  = -1
    lrwork = -1
    liwork = -1
!
    call syevr( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol, m, w,        &
                z, n, isuppz, work2, lwork, rwork2, lrwork, iwork2, liwork, info )
!
    if ( info==0 ) then
!
       lwork  = int(work2(1))  + 10
       lrwork = int(rwork2(1)) + 10
       liwork = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY syevr SUBROUTINE.
!
        allocate( work(lwork),  rwork(lrwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE HERMITIAN MATRIX a
!       WITH SUBROUTINE syevr FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A COMPLEX n-BY-n HERMITIAN MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(h)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n UNITARY MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevr( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol, m, w,     &
                    z, n, isuppz, work, lwork, rwork, lrwork, iwork, liwork, info )
!
!       ON EXIT OF syevr :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE
!
!       ON EXIT OF syevr :
!
!         THE LOWER (IF uplo='L') OR UPPER (IF uplo='U') TRIANGLE
!         OF a IS DESTROYED, INCLUDING THE DIAGONAL.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
        deallocate ( work, rwork, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevr SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYEVR subroutine, Info=', info
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        a(:n,:m) = matmul(a2(:n,:n),z(:n,:m)) - z(:n,:m)*spread(w(:m),dim=1,ncopies=n)
        resid_ortho(:m,1_i4b) = norm( a(:n,:m), dim=2_i4b )
        err1 =  maxval( resid_ortho(:m,1_i4b) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(h)*U.
!
        call unit_matrix( a2(:m,:m) )
!
        resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( transpose(conjg(z(:n,:m))), z(:n,:m) ) )
        err2 = maxval( resid_ortho(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, w, isuppz, a2, resid_ortho )
    else
       deallocate( a, z, w, isuppz )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m, ' eigenvalues and eigenvectors of a', &
       n, ' by', n,' complex hermitian matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_syevr
! ===============================
!
end program ex2_lapack_syevr

ex2_lapack_syevx.F90

program ex2_lapack_syevx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEVX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 08/05/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of syevx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd), dimension(:),   allocatable :: w, rwork
    real(stnd), dimension(:,:), allocatable :: rz, iz, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), dimension(:),   allocatable :: work
    complex(stnd), dimension(:,:), allocatable :: a2, a, z
!
    integer                            :: info, lwork, iok, il, iu, m,       &
                                          istart, iend, irate, imax, itime
    integer, dimension(:), allocatable :: iwork, ifail
!
    logical(lgl)   :: do_test
!
    character  :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A COMPLEX HERMITIAN MATRIX
!               MATRIX USING THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), rz(n,n), iz(n,n), z(n,n), w(n),    &
              rwork(7*n), iwork(5*n), ifail(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM COMPLEX DATA MATRIX AND FROM IT
!   A HERMITIAN MATRIX a .
!
    call random_number( rz(:n,:n) )
    call random_number( iz(:n,:n) )
!
    z(:n,:n) = cmplx( rz(:n,:n), iz(:n,:n), stnd )
!
    a = z + transpose( conjg( z ) ) 
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( rz, iz )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAY.
!
        allocate( a2(n,n), resid_ortho(n,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu) WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'A'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = 1
    iu = n
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevx SUBROUTINE.
!
    lwork  = -1
!
    call syevx( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,   &
                m, w, z, n, work2, lwork, rwork, iwork, ifail, info   )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY syevx SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE HERMITIAN MATRIX a
!       WITH SUBROUTINE syevx FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A COMPLEX n-BY-n HERMITIAN MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(h)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n UNITARY MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevx( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,   &
                    m, w, z, n, work, lwork, rwork, iwork, ifail, info    )
!
!       ON EXIT OF syevx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT i EIGENVECTORS FAILED TO CONVERGE AND
!                        THEIR INDICES ARE STORED IN ARRAY ifail.
!
!       ON EXIT OF syevx :
!
!         THE LOWER (IF uplo='L') OR UPPER (IF uplo='U') TRIANGLE
!         OF a IS DESTROYED, INCLUDING THE DIAGONAL.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
        deallocate ( work )
!
   end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
   if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevx SUBROUTINE, PRINT A WARNING.
!
       write (prtunit,*) 'Error in the call to SYEVX subroutine, Info=', info
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        a(:n,:m) = matmul(a2(:n,:n),z(:n,:m)) - z(:n,:m)*spread(w(:m),dim=1,ncopies=n)
        resid_ortho(:m,1_i4b) = norm( a(:n,:m), dim=2_i4b )
        err1 =  maxval( resid_ortho(:m,1_i4b) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(h)*U.
!
        call unit_matrix( a2(:m,:m) )
!
        resid_ortho(:m,:m) = abs( a2(:m,:m) - matmul( transpose(conjg(z(:n,:m))), z(:n,:m) ) )
        err2 = maxval( resid_ortho(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, w, rwork, iwork, ifail, a2, resid_ortho )
    else
       deallocate( a, z, w, rwork, iwork, ifail )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m, ' eigenvalues and eigenvectors of a', &
       n, ' by', n,' complex hermitian matrix is', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_syevx
! ===============================
!
end program ex2_lapack_syevx

ex2_lapack_sysv.F90

program ex2_lapack_sysv
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine SYSV
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 21/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sysv
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=1000, nrhs=400
!
    character(len=*), parameter :: name_proc='Example 2 of sysv'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, eps, elapsed_time
    real(stnd), dimension(:,:), allocatable :: ra, ia, rx, ix
!
    complex(stnd)                              :: work2(1)
    complex(stnd), dimension(:),   allocatable :: work
    complex(stnd), dimension(:,:), allocatable :: a, b, x, res
!
    integer(i4b), dimension(:), allocatable :: ipiv
    integer                                 :: info, lwork, iok, istart, &
                                               iend, irate, imax, itime
!
    logical(lgl)   :: do_test
!
    character      :: uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 2 : SOLUTION OF A LINEAR SYSTEM WITH A COMPLEX SYMMETRIC COEFFICIENT
!               MATRIX AND SEVERAL RIGHT HAND-SIDES.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = sqrt( epsilon( err ) )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), ra(n,n), ia(n,n), b(n,nrhs), x(n,nrhs),      &
              rx(n,nrhs), ix(n,nrhs), ipiv(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n COMPLEX RANDOM SYMMETRIC MATRIX a .
!
    call random_number( ra(:n,:n) )
    call random_number( ia(:n,:n) )
!
    a(:n,:n) = cmplx( ra(:n,:n), ia(:n,:n), stnd )
!
    a = a + transpose( a ) 
!
!   GENERATE A n-by-nrhs COMPLEX RANDOM SOLUTION MATRIX x .
!
    call random_number( rx(:n,:nrhs) )
    call random_number( ix(:n,:nrhs) )
!
    x(:n,:nrhs) = cmplx( rx(:n,:nrhs), ix(:n,:nrhs), stnd )
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia, rx, ix )
!
!   COMPUTE THE MATRIX-MATRIX PRODUCT b = a*x .
!
    b = matmul( a, x )
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR sysv SUBROUTINE.
!
    lwork = -1
!
    call sysv( uplo, n, nrhs, a, n, ipiv, b, n, work2, lwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY sysv SUBROUTINE.
!
        allocate( work(lwork), stat = iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE THE SOLUTION MATRIX FOR COMPLEX SYMMETRIC LINEAR SYSTEM
!
!                a*x = b .
!
        call sysv( uplo, n, nrhs, a, n, ipiv, b, n, work, lwork, info )
!
!       ON EXIT OF sysv :
!
!          info    = 0 :  INDICATES SUCCESSFUL EXIT
!          info=-i < 0 :  INDICATES THAT the iTH ARGUMENT HAS AN ILLEGAL VALUE
!          info=i  > 0 :  INDICATES THAT THE SOLUTION CAN NOT BE COMPUTED BECAUSE
!                         THE MATRIX IS SINGULAR
!
!       THE ROUTINE RETURNS THE SOLUTION VECTORS IN b.
!       DETAILS OF THE U*D*U**(T) (if uplo='U') OR THE L*D*L**(T) (if uplo='L')
!       FACTORIZATION OF a ARE RETURNED IN ARGUMENTS ipiv AND a .
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM sysv SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYSV subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!
    else if ( do_test ) then
!
!       ALLOCATE WORK ARRAY .
!
        allocate( res(n,nrhs), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CHECK THE RESULTS FOR SMALL RESIDUALS.
!
        res(:n,:nrhs) = b(:n,:nrhs) - x(:n,:nrhs)
        err = maxval( sum( abs(res), dim=1 ) /    &
                      sum(abs(x),    dim=1 )      )
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate( res )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate( a, b, x, ipiv )
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed solutions = ', err
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the solution of a linear symmetric complex system of size ', &
       n, ' with ', nrhs,' right hand sides is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_sysv
! ==============================
!
end program ex2_lapack_sysv

ex2_lapack_sytrd.F90

program ex2_lapack_sytrd
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutines SYTRD and ORGTR
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 27/04/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : sytrd, orgtr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm,    &
                         unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 2 of sytrd'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, elapsed_time
    real(stnd), allocatable, dimension(:)   :: d, e
    real(stnd), allocatable, dimension(:,:) :: ra, ia, resid_ortho
!
    complex(stnd)                              :: work2(1)
    complex(stnd), allocatable, dimension(:)   :: tau, work
    complex(stnd), allocatable, dimension(:,:) :: a, a2, resid, trid
!
    integer      :: info_trd, info_q, lwork, lwork_trd, lwork_q,     &
                    iok, istart, iend, irate, imax, itime
    integer(i4b) :: l
!
    logical(lgl) :: do_test
!   
    character    :: uplo
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 1 : TRIDIAGONAL REDUCTION OF A COMPLEX HERMITIAN MATRIX.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), ra(n,n), ia(n,n), d(n), e(n-1_i4b), tau(n-1_i4b), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM COMPLEX DATA MATRIX AND FROM IT
!   A HERMITIAN MATRIX a .
!
    call random_number( ra(:n,:n) )
    call random_number( ia(:n,:n) )
!
    a(:n,:n) = cmplx( ra(:n,:n), ia(:n,:n), stnd )
!
    a = a + transpose( conjg( a ) ) 
!
!   DEALLOCATE WORK ARRAYS.
!
    deallocate ( ra, ia )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), trid(n,n), resid(n,n), resid_ortho(n,n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE HERMITIAN MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo = 'U'
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR sytrd AND orgtr SUBROUTINES.
!
    lwork = -1
!
    call sytrd( uplo, n, a, n, d, e, tau, work2, lwork, info=info_trd )
!
    lwork_trd = int(work2(1))
!
    call orgtr( uplo, n, a, n, tau, work2, lwork, info=info_q )
!
    lwork_q = int(work2(1))
!
    if ( min(info_trd,info_q)==0 ) then
!
        lwork = max( lwork_trd, lwork_q )
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY sytrd AND orgtr SUBROUTINES.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       CALL sytrd AND orgtr TO REDUCE THE MATRIX a TO TRIDIAGONAL FORM
!
!                      a = Q*TRID*Q**(h)
!
!       WHERE Q IS UNITARY AND TRID IS A REAL SYMMETRIC TRIDIAGONAL MATRIX.
!
        call sytrd( uplo, n, a, n, d, e, tau, work(:lwork_trd), lwork_trd, info=info_trd )
!
!       ON EXIT OF sytrd :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         d AND e ARE THE DIAGONAL AND OFF-DIAGONAL ELEMENTS OF THE REAL SYMMETRIC TRIDIAGONAL MATRIX, RESPECTIVELY.
!         a CONTAINS THE ELEMENTARY REFLECTORS WHICH DEFINE Q IN ITS UPPER TRIANGLE IF uplo='U'.
!         tau CONTAINS THE SCALAR FACTORS OF THE ELEMENTARY REFLECTORS WHICH DEFINE Q.
!
        call orgtr( uplo, n, a, n, tau, work(:lwork_q), lwork_q, info=info_q )
!
!       ON EXIT OF THIS orgtr CALL:
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!
!         a IS OVERWRITTEN WITH THE n-BY-n UNITARY MATRIX Q.
!
!       DEALLOCATE WORK ARRAY.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( min(info_trd,info_q)/=0 ) then
!
!       ANORMAL EXIT FROM sytrd AND orgtr SUBROUTINES, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the calls to SYTRD or ORGTR subroutines, Info=', min(info_trd,info_q)
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*Q - Q*TRID
!
        trid(:n,:n) = cmplx( zero, zero, stnd )
!
        do l = 1_i4b, n-1_i4b
            trid(l,l)       = cmplx( d(l), zero, stnd )
            trid(l,l+1_i4b) = cmplx( e(l), zero, stnd )
            trid(l+1_i4b,l) = cmplx( e(l), zero, stnd )
        end do
!
        trid(n,n) = cmplx( d(n), zero, stnd )
!
        resid(:n,:n) = matmul( a2(:n,:n), a(:n,:n)  )           &
                       - matmul( a(:n,:n), trid(:n,:n) )
!
        resid_ortho(:n,1_i4b) = norm( resid(:n,:n), dim=2_i4b )
        err1 =  maxval( resid_ortho(:n,1_i4b) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - Q**(h)*Q.
!
        call unit_matrix( a2(:n,:n) )
!
        resid_ortho(:n,:n) = abs( a2(:n,:n) - matmul( transpose(conjg(a(:n,:n ))), a(:n,:n) ) )
        err2 = maxval( resid_ortho(:n,:n) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, a2, trid, resid, resid_ortho, d, e, tau )
    else
        deallocate( a, d, e, tau )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. min(info_trd,info_q)==0  ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. min(info_trd,info_q)==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed tridiagonal decomposition a = Q*TRD*Q**(h) = ', err1
        write (prtunit,*) 'Orthogonality of the computed Q unitary matrix                      = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing the tridiagonal reduction of a ', &
       n, ' by ', n,' complex hermitian matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex2_lapack_sytrd
! ===============================
!
end program ex2_lapack_sytrd

ex3_lapack_gesvdx.F90

program ex3_lapack_gesvdx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutine GESVDX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 22/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : gesvdx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, c50, norm, unit_matrix, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, m=2000, n=2000, k=min(m,n), le=100
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 3 of gesvdx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, err3, eps, elapsed_time, vl, vu
    real(stnd)                              :: work2(1)
    real(stnd), allocatable, dimension(:)   :: s, work, resid
    real(stnd), allocatable, dimension(:,:) :: a, a2, u, vt
!
    integer                            :: info, lwork, il, iu, ns, iok,     &
                                          istart, iend, irate, imax, itime
    integer, allocatable, dimension(:) :: iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobu, jobvt, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 3 : FIRST le SINGULAR TRIPLETS OF A REAL MATRIX USING AN ASSOCIATED EIGENVALUE PROBLEM
!               AND THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(m,n), u(m,le), vt(le,n), s(k), iwork(12*k), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A m-by-n REAL RANDOM DATA MATRIX .
!
    call random_number( a )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAY.
!
        allocate( a2(m,n), resid(k), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX .
!
        a2(:m,:n) = a(:m,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   DETERMINE THE WORK TO DO AND HOW MANY SINGULAR TRIPLETS
!   WILL BE COMPUTED AND STORED.
!
!   IF jobu  = 'V', LEFT SINGULAR VECTORS WILL BE COMPUTED.
!   IF jobu  = 'N', LEFT SINGULAR VECTORS WILL NOT BE COMPUTED.
!   IF jobvt = 'V', RIGHT SINGULAR VECTORS WILL BE COMPUTED.
!   IF jobvt = 'N', RIGHT SINGULAR VECTORS WILL NOT BE COMPUTED.
!
    jobu  = 'V'
    jobvt = 'V'
!
!   range DETERMINED HOW MANY SINGULAR VALUES AND VECTORS WILL BE COMPUTED.
!
!   IF range='A' ALL SINGULAR VALUES WILL BE FOUND,
!   IF range='V' ALL SINGULAR VALUES IN THE HALF OPEN INTERVAL (vl,vu] WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH SINGULAR VALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'I'
!
    vl = zero
    vu = zero
!
    il = k - le + 1
    iu = k
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR gesvdx SUBROUTINE.
!
    lwork = -1
!
    call gesvdx( jobu, jobvt, range, m, n, a, m, vl, vu, il, iu, ns,   &
                 s, u, m, vt, le, work2, lwork, iwork, info )
!
    if ( info==0 ) then
!
        lwork = int(work2(1))
!
!       ALLOCATE OPTIMAL WORK VARIABLE NEEDED BY gesvdx SUBROUTINE.
!
        allocate( work(lwork), stat = iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       gesvdx COMPUTES THE SINGULAR VALUE DECOMPOSITION (SVD) OF A REAL
!       m-BY-n MATRIX a BY SOLVING AN ASSOCIATE EIGENVALUE PROBLEM. THE SVD
!       IS WRITTEN
!
!                       a = U * S * V**(t)
!
!       WHERE S IS AN m-BY-n MATRIX WHICH IS ZERO EXCEPT FOR ITS
!       min(m,n) DIAGONAL ELEMENTS, U IS AN m-BY-m ORTHOGONAL MATRIX, AND
!       V IS AN n-BY-n ORTHOGONAL MATRIX.  THE DIAGONAL ELEMENTS OF S
!       ARE THE SINGULAR VALUES OF a; THEY ARE REAL AND NON-NEGATIVE.
!       THE COLUMNS OF U AND V ARE THE LEFT AND RIGHT SINGULAR VECTORS OF a.
!
!       THE ADVANTAGE OF gesvdx SUBROUTINE COMPARED TO OTHER SVD SUBROUTINES
!       AVAILABLE IN LAPACK (EG gesvd or gesdd) IS THAT gesvdx IS ABLE TO COMPUTE
!       A PARTIAL SVD DECOMPOSITION OR SELECTED SINGULAR TRIPLETS OF THE INPUT
!       REAL MATRIX WHILE THE OTHER SUBROUTINES DO NOT OFFER THIS POSSIBILITY.
!       HOWEVER, BEWARE THAT THE gesvdx SUBROUTINE IS AVAILABLE ONLY IN LAPACK 3.6.0
!       AND ABOVE.
!
        call gesvdx( jobu, jobvt, range, m, n, a, m, vl, vu, il, iu, ns,   &
                     s, u, m, vt, le, work, lwork, iwork, info )
!
!       THE ROUTINE RETURNS THE SINGULAR VALUES, THE LEFT AND RIGHT
!       SINGULAR VECTORS. THE RIGHT SINGULAR VECTORS ARE RETURNED ROWWISE.
!
!       ON EXIT OF gesvdx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT i EIVENVECTORS FAILED TO CONVERGE.
!         info=n*2+1  :  INDICATES THAT AN INTERNAL ERROR OCCURRED.
!
!       ON EXIT OF gesvdx WITH THE VALUES SPECIFIED ABOVE FOR jobu ('V'),
!       jobvt ('V') AND range ('I'):
!
!         u IS OVERWRITTEN WITH THE FIRST  le
!         COLUMNS OF U (THE LEFT SINGULAR VECTORS,
!         STORED COLUMNWISE);
!
!         vt IS OVERWRITTEN WITH THE FIRST le
!         ROWS OF V**(t) (THE RIGHT SINGULAR VECTORS,
!         STORED ROWWISE);
!
!         s IS OVERWRITTEN WITH THE FIRST le SINGULAR VALUES OF a IN DECREASING ORDER.
!
!       FOR range='I' OR range='V', ns IS THE NUMBER OF SINGULAR TRIPLETS
!       COMPUTED AND STORED BY THE SUBROUTINE IN ARGUMENTS u, vt AND s.
!
        deallocate ( work )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM gesvdx SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to GESVDX subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a(:m,:n)*V(:n,:ns) - U(:m,:ns)*S(:ns,:ns).
!
        a(:m,:ns) = matmul(a2(:m,:n),transpose(vt(:ns,:n))) - u(:m,:ns)*spread(s(:ns),dim=1,ncopies=m)
        resid(:ns) = norm( a(:m,:ns), dim=2_i4b )
        err1 =  maxval( resid(:ns) )/( norm( a2 )*real(m,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:ns,:ns) )
!
        a(:ns,:ns) = abs( a2(:ns,:ns) - matmul( transpose(u(:m,:ns)), u(:m,:ns) ) )
        err2 = maxval( a(:ns,:ns) )/real(m,stnd)
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - V**(t)*V.
!
        a(:ns,:ns) = abs( a2(:ns,:ns) - matmul( vt(:ns,:n), transpose(vt(:ns,:n)) ) )
        err3 = maxval( a(:ns,:ns) )/real(n,stnd)
!
        err = max( err1, err2, err3 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, s, u, vt, iwork, a2, resid )
    else
        deallocate( a, s, u, vt, iwork )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed singular triplets           = ', err1
        write (prtunit,*) 'Orthogonality of the computed left singular vectors  = ', err2
        write (prtunit,*) 'Orthogonality of the computed right singular vectors = ', err3
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', ns,' singular values and vectors of a ', &
       m, ' by ', n,' real matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex3_lapack_gesvdx
! ================================
!
end program ex3_lapack_gesvdx

ex3_lapack_spevx.F90

program ex3_lapack_spevx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SPEVX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 24/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : spevx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix, triangle
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer(i4b), parameter :: prtunit = 6, n=3000, p=(n*(n+1))/2, le=100
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 3 of spevx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd), dimension(:),   allocatable :: a_packed, w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, z, resid
!
    integer(i4b)                            :: info, i, il, iu, m, iok, istart, iend, irate, imax, itime
    integer(i4b), dimension(:), allocatable :: iwork, ifail
!
    logical(lgl)   :: do_test
!
    character  :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 3 : FIRST le EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX IN PACKED STORAGE USING THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a_packed(p), z(n,n), w(n), work(8*n), iwork(5*n), ifail(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A RANDOM SELF-ADJOINT MATRIX a IN PACKED FORM.
!
    call random_number( a_packed(:p) )
!
!   MAKE a POSITIVE DEFINITE ASSUMING THAT THE UPPER TRIANGLE OF
!   THE SELF-ADJOINT MATRIX IS STORED IN PACKED FORM.
!
    do i = 1_i4b, n
        a_packed(i+((i-1_i4b)*i/2_i4b)) = real( n, stnd )
    end do
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a(n,n), resid(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       UNPACKED AND SAVE RANDOM SELF-ADJOINT MATRIX a 
!       ASSUMING THAT THE UPPER TRIANGLE OF THE SELF-ADJOINT
!       MATRIX IS STORED IN PACKED FORM.
!
        a(:n,:n) = unpack( a_packed(:p), mask=triangle( true, n, n, extra=1_i4b), field=zero )
!
        do i = 1_i4b, n
             a(i+1_i4b:n,i) = a(i,i+1_i4b:n)
        end do
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu] WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'I'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = n - le + 1
    iu = n
!
!   COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!   IN PACKED STORAGE WITH SUBROUTINE spevx FROM LAPACK.
!   THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!   IS WRITTEN
!
!                       a = U * D * U**(t)
!
!   WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!   THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!   THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
    call spevx( jobz, range, uplo, n, a_packed, vl, vu, il, iu, abstol,   &
                m, w, z, n, work, iwork, ifail, info                      )
!
!   ON EXIT OF spevx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT i EIGENVECTORS FAILED TO CONVERGE AND
!                        THEIR INDICES ARE STORED IN ARRAY ifail.
!
!   ON EXIT OF spevx :
!
!         a_packed IS OVERWITTEN BY DETAILS OF ITS TRIDIAGONAL FACTORIZATION.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
   if ( info/=0 ) then
!
!       ANORMAL EXIT FROM spevx SUBROUTINE, PRINT A WARNING.
!
       write (prtunit,*) 'Error in the call to SPEVX subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        resid(:n,:m) = matmul(a(:n,:n),z(:n,:m)) - z(:n,:m)*spread(w(:m),1,n)
        resid2(:m) = norm( resid(:n,:m), dim=2_i4b )
        err1 =  maxval( resid2(:m) )/( norm( a )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a(:m,:m) )
!
        resid(:m,:m) = abs( a(:m,:m) - matmul( transpose(z(:n,:m)), z(:n,:m) ) )
        err2 = maxval( resid(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a_packed, z, w, work, iwork, ifail, a, resid, resid2 )
    else
       deallocate( a_packed, z, w, work, iwork, ifail )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix in packed storage is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex3_lapack_spevx
! ===============================
!
end program ex3_lapack_spevx

ex3_lapack_stemr.F90

program ex3_lapack_stemr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine (x)STEMR
!   in LAPACK software . 
!                                                                              
! Further Details
! ===============
!
!   The (x)STEMR subroutines will work properly only with IEEE arithmetic.                                                                        
!                                                     
!
! LATEST REVISION : 31/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : stemr
!
    use Statpack, only : lgl, stnd, true, false, zero, half, one, two, c50,     &
                         unit_matrix, norm, merror, allocate_error
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit=6, p=3000, n=2*p+1, le=1000
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 3 of stemr'
!
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err1, err2, err, eps, vl, vu, tmp, &
                                               normr, normt, elapsed_time
    real(stnd)                              :: work2(1), z2(1,1)
    real(stnd), allocatable, dimension(:)   :: d, e, w, work, diag, sup, sup2
    real(stnd), allocatable, dimension(:,:) :: id, resid, z
!
    integer                            :: info, lwork, liwork, il, iu, m, nzc,        &
                                          iok, istart, iend, irate, imax, itime, j, l
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: isuppz, iwork
!
    logical      :: tryrac
    logical(lgl) :: do_test
!   
    character    :: jobz, range
!   
!   
! EXECUTABLE STATEMENTS
! =====================
!
!   PRINT LABEL OF THE TEST.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 3 : FIRST le EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL TRIDIAGONAL
!               MATRIX USING THE MRRR ALGORITHM.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    eps = fudge*epsilon( err )
!
    err = zero
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( d(n), e(n), w(n), isuppz(2*n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE THE WILKINSON TRIDIAGONAL MATRIX OF ORDER n.
!
    j = p + 1
    d(j) = zero
!
    do l = 1, p
        tmp = real( l, stnd)
        d(j+l) = tmp
        d(j-l) = tmp
    end do
!
    e(:n) = one
!
!   GENERATE A (1-2-1) TRIDIAGONAL MATRIX.
!   THE DIAGONAL ELEMENTS ARE STORED IN d .
!   THE OFF-DIAGONAL ELEMENTS ARE STORED IN e .
!
!    d(:n) = two
!    e(:n)  = one
!
!    d(:n) = half
!    e(:n)  = half
!
!    call random_number( d(:n) )
!    call random_number( e(:n) )
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( id(le,le), resid(n,le), diag(n), sup(n), sup2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       SAVE THE TRIDIAGONAL MATRIX.
!
        diag(:n) = d(:n)
        sup(:n)  = e(:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu) WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'I'
!
    vl = zero
    vu = zero
!
    il = n - le + 1
    iu = n
!
!   tryrac = .true. INDICATES THAT THE CODE WILL TRY TO COMPUTE THE EIGENVALUES OF THE TRIDIAGONAL MATRIX
!                   TO HIGH RELATIVE ACCURACY IF POSSIBLE. IF tryrac IS SET TO .false. THE CODE IS NOT REQUIRED
!                   TO GARANTEE RELATIVELY ACCURATE EIGENVALUES AND CAN USE A FASTEST METHOD.
!
    tryrac = .true.
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR stemr SUBROUTINE.
!
    lwork  = -1
    liwork = -1
!
!   nzc IS AN UPPER BOUND FOR THE NUMBER OF EIGENVECTORS TO BE FOUND. nzc DEPENDS ON THE VALUE OF RANGE, IF:
!
!       range='A' THEN nzc>=n;
!       range='V' THEN nzc>=THE NUMBER OF EIGENVALUES IN (VL,VU],
!       range='I' THEN nzc>=iu-il+1 .
!
!   IF nzc=-1, THEN THE SUBROUTINE WILL RETURN THE ESTIMATE OF nzc IN z2(1,1)
!
    nzc = -1
!
    call stemr( jobz, range, n, d, e, vl, vu, il, iu, m, w, z2, n, nzc,   &
                isuppz, tryrac, work2, lwork, iwork2, liwork, info        )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1)) + 10
        liwork = iwork2(1)
        nzc    = z2(1,1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY stemr SUBROUTINE.
!
        allocate( work(lwork), iwork(liwork), z(n,nzc), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE SELECTED EIGENVALUES AND EIGENVECTORS OF THE SYMMETRIC TRIDIAGONAL MATRIX
!       WITH SUBROUTINE stemr FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC TRIDIAGONAL MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a .
!
        call stemr( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, n, nzc,    &
                    isuppz, tryrac, work, lwork, iwork, liwork, info          )
!
!       ON EXIT OF stemr :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF stemr :
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF THE TRIDIAGONAL MATRIX (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF THE TRIDIAGONAL MATRIX IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM stemr SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to STEMR subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*u - u*s,
!       WHERE s ARE THE EIGENVALUES AND u THE EIGENVECTORS OF THE TRIDIAGONAL MATRIX a .
!
        sup2(:n) = eoshift( sup(:n), -1 )
        resid(:n,:le) = spread( diag(:n),         dim=2, ncopies=le )*z(:n,:le)                              + &
                        spread( sup2(:n),         dim=2, ncopies=le )*eoshift( z(:n,:le), shift=-1, dim=1 )  + &
                        eoshift( spread(sup2(:n), dim=2, ncopies=le )*z(:n,:le), shift=1 )                   - &
                        spread( w(:le),           dim=1, ncopies=n  )*z(:n,:le)
!
        normr = norm( resid(:n,:le) )
        normt = sqrt( sum( diag(:n)**2 ) + sum( sup(:n-1)**2 ) )
!
        err1  = normr/( normt*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - u**(t)*u
!       WHERE u are THE EIGENVECTORS OF THE TRIDIAGONAL MATRIX .
!
        call unit_matrix( id(:le,:le) )
!
        resid(:le,:le) = id(:le,:le) - matmul( transpose( z(:n,:le) ), z(:n,:le) )
        err2 = norm( resid(:le,:le) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
!
        deallocate( d, e, w, isuppz, z, diag, sup, sup2, id, resid )
!
    else
!
        deallocate( d, e, w, isuppz, z )
!
    end if
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', le,' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric tridiagonal matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex3_lapack_stemr
! ===============================
!
end program ex3_lapack_stemr

ex3_lapack_syevr.F90

program ex3_lapack_syevr
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of the driver subroutines (x)SYEVR
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 29/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevr
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000, le=100
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 3 of syevr'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), dimension(:),   allocatable :: w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, a2, z
!
    integer                            :: info, lwork, liwork, iok, il, iu, m,    &
                                          istart, iend, irate, imax, itime
    integer                            :: iwork2(1)
    integer, dimension(:), allocatable :: isuppz, iwork
!
    logical(lgl)   :: do_test
!
    character      :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 3 : FIRST le EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX USING THE MRRR ALGORITHM (HOWEVER, IN THE CURRENT VERSION OF LAPACK
!               SYEVR CALLS (x)STEBZ AND (x)STEIN SUBROUTINES WHEN PARTIAL SPECTRUM REQUESTS
!               ARE MADE).
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), z(n,n), w(n), isuppz(2*n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND FROM IT
!   A SELF-ADJOINT MATRIX a .
!
    call random_number( z )
    a = z + transpose( z ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu) WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'I'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = n - le + 1
    iu = n
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevr SUBROUTINE.
!
    lwork  = -1
    liwork = -1
!
    call syevr( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,        &
                m, w, z, n, isuppz, work2, lwork, iwork2, liwork, info     )
!
    if ( info==0 ) then
!
       lwork  = int(work2(1)) + 10
       liwork = iwork2(1)
!
!       ALLOCATE WORK VARIABLES NEEDED BY syevr SUBROUTINE.
!
        allocate( work(lwork), iwork(liwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE SELECTED EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!       WITH SUBROUTINE syevr FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevr( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,         &
                    m, w, z, n, isuppz, work, lwork, iwork, liwork, info     )
!
!       ON EXIT OF syevr :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT.
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE.
!         info=i  > 0 :  INDICATES THAT THE ALGORITHM FAILED TO CONVERGE.
!
!       ON EXIT OF syevr :
!
!         THE LOWER (IF uplo='L') OR UPPER (IF uplo='U') TRIANGLE
!         OF a IS DESTROYED, INCLUDING THE DIAGONAL.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
!       DEALLOCATE WORK ARRAYS.
!
        deallocate ( work, iwork )
!
    end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
    if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevr SUBROUTINE, PRINT A WARNING.
!
        write (prtunit,*) 'Error in the call to SYEVR subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        a(:n,:m) = matmul(a2(:n,:n),z(:n,:m)) - z(:n,:m)*spread(w(:m),1,n)
        resid2(:m) = norm( a(:n,:m), dim=2_i4b )
        err1 =  maxval( resid2(:m) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:m,:m) )
!
        a(:m,:m) = abs( a2(:m,:m) - matmul( transpose(z(:n,:m)), z(:n,:m) ) )
        err2 = maxval( a(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, w, isuppz, a2, resid2 )
    else
       deallocate( a, z, w, isuppz )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex3_lapack_syevr
! ===============================
!
end program ex3_lapack_syevr

ex3_lapack_syevx.F90

program ex3_lapack_syevx
!
!
! Purpose
! =======
!
!   This program is intended to demonstrate the use of subroutine SYEVX
!   in LAPACK software . 
!                                                                              
! LATEST REVISION : 22/12/2015
!                                                                              
! ================================================================================================
!
!
! USED MODULES 
! ============
!
    use Lapack_interfaces, only : syevx
!
    use Statpack, only : lgl, i4b, stnd, true, false, zero, two, c50, norm,   &
                         merror, allocate_error, lamch, unit_matrix
#ifdef _MATMUL
    use Statpack, only : matmul=>matmul2
#endif
#ifdef _TRANSPOSE
    use Statpack, only : transpose=>transpose2
#endif
!   
!
! STRONG TYPING IMPOSED 
! =====================
!    
    implicit none
!   
!   
! PARAMETERS 
! ==========
!
! prtunit IS THE PRINTING UNIT
!
    integer, parameter :: prtunit = 6, n=3000, le=100
!   
    real(stnd), parameter  :: fudge=c50
!
    character(len=*), parameter :: name_proc='Example 3 of syevx'
!   
!
! SPECIFICATIONS FOR VARIABLES
! ============================
!
    real(stnd)                              :: err, err1, err2, eps, abstol, vl, vu, elapsed_time
    real(stnd)                              :: work2(1)
    real(stnd), dimension(:),   allocatable :: w, work, resid2
    real(stnd), dimension(:,:), allocatable :: a, a2, z
!
    integer                            :: info, lwork, iok, il, iu, m, istart,   &
                                          iend, irate, imax, itime
    integer, dimension(:), allocatable :: iwork, ifail
!
    logical(lgl)   :: do_test
!
    character  :: jobz, uplo, range
!   
!
! EXECUTABLE STATEMENTS
! =====================
!
!
!   PRINT LABEL OF THE EXAMPLE.
!
    write (prtunit,*)
    write (prtunit,*) name_proc,' :'
    write (prtunit,*) repeat('*', len(name_proc) )
    write (prtunit,*)
!
!   EXAMPLE 3 : FIRST le EIGENVALUES AND, OPTIONALLY, EIGENVECTORS OF A REAL SYMMETRIC
!               MATRIX USING THE BISECTION AND INVERSE ITERATION METHODS.
!
!   SET THE REQUIRED PRECISION OF THE RESULTS.
!
    abstol = two*lamch('s')
    eps = fudge*epsilon( err )
    err = zero
!
    do_test = true
!
!   ALLOCATE WORK ARRAYS.
!
    allocate( a(n,n), z(n,n), w(n), iwork(5*n), ifail(n), stat=iok )
!
    if ( iok/=0 ) then
        call merror( name_proc//allocate_error )
    end if
!
!   GENERATE A n-by-n RANDOM DATA MATRIX AND FROM IT
!   A SELF-ADJOINT MATRIX a .
!
    call random_number( z )
    a = z + transpose( z ) 
!
    if ( do_test ) then
!
!       ALLOCATE WORK ARRAYS.
!
        allocate( a2(n,n), resid2(n), stat=iok )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       MAKE A COPY OF THE RANDOM DATA MATRIX.
!
        a2(:n,:n) = a(:n,:n)
!
    end if
!
!   START TIMING THE COMPUTATIONS.
!
    call system_clock( count_rate=irate, count_max=imax  )
    call system_clock( count=istart )
!
!   FIRST DETERMINE THE WORK TO DO.
!
!   IF jobz='N' COMPUTE EIGENVALUES ONLY,
!   IF jobz='V' COMPUTE EIGENVALUES AND EIGENVECTORS.
!
    jobz  = 'V'
!
!   IF range='A' ALL EIGENVALUES WILL BE FOUND,
!   IF range='V' ALL EIGENVALUES IN THE HALF OPEN INTERVAL (vl,vu] WILL BE FOUND,
!   IF range='I' THE il-TH THROUGH iu-TH EIGENVALUES IN ASCENDING ORDER WILL BE FOUND.
!
    range = 'I'
!
!   IF uplo='U' UPPER TRIANGLE OF a IS STORED,
!   IF uplo='L' LOWER TRIANGLE OF a IS STORED.
!
    uplo  = 'U'
!
    vl = zero
    vu = zero
!
    il = n - le + 1
    iu = n
!
!   COMPUTE FIRST OPTIMAL WORKSPACE FOR syevx SUBROUTINE.
!
    lwork  = -1
!
    call syevx( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,   &
                m, w, z, n, work2, lwork, iwork, ifail, info          )
!
    if ( info==0 ) then
!
        lwork  = int(work2(1))
!
!       ALLOCATE WORK VARIABLE NEEDED BY syevx SUBROUTINE.
!
        allocate( work(lwork), stat = iok    )
!
        if ( iok/=0 ) then
            call merror( name_proc//allocate_error )
        end if
!
!       COMPUTE EIGENVALUES AND EIGENVECTORS OF THE SELF-ADJOINT MATRIX a
!       WITH SUBROUTINE syevx FROM LAPACK.
!       THE EIGENVALUE DECOMPOSITION OF A REAL n-BY-n SYMMETRIC MATRIX a
!       IS WRITTEN
!
!                       a = U * D * U**(t)
!
!       WHERE D IS AN n-BY-n DIAGONAL MATRIX AND U IS AN n-BY-n ORTHOGONAL MATRIX.
!       THE DIAGONAL ELEMENTS OF D ARE THE EIGENVALUES OF a; THEY ARE REAL.
!       THE COLUMNS OF U ARE THE EIGENVECTORS OF a.
!
        call syevx( jobz, range, uplo, n, a, n, vl, vu, il, iu, abstol,   &
                    m, w, z, n, work, lwork, iwork, ifail, info           )
!
!       ON EXIT OF syevx :
!
!         info= 0     :  INDICATES SUCCESSFUL EXIT
!         info=-i < 0 :  INDICATES THAT THE iTH ARGUMENT HAS AN ILLEGAL VALUE
!         info=i  > 0 :  INDICATES THAT i EIGENVECTORS FAILED TO CONVERGE AND
!                        THEIR INDICES ARE STORED IN ARRAY ifail.
!
!       ON EXIT OF syevx :
!
!         THE LOWER (IF uplo='L') OR UPPER (IF uplo='U') TRIANGLE
!         OF a IS DESTROYED, INCLUDING THE DIAGONAL.
!
!         m GIVES THE TOTAL NUMBER OF EIGENVALUES/EIGENVECTORS FOUND.
!
!         z IS OVERWRITTEN WITH THE FIRST m EIGENVECTORS
!         OF a (THE EIGENVECTORS ARE STORED COLUMNWISE).
!
!         w IS OVERWRITTEN WITH THE EIGENVALUES OF a IN ASCENDING ORDER,
!         CORRESPONDING TO THE EIGENVECTORS IN z .
!
        deallocate ( work )
!
   end if
!
!   STOP THE TIMER.
!
    call system_clock( count=iend )
!
    itime = iend - istart
    if ( iend<istart ) then
        itime = itime + imax   
    end if
!
    elapsed_time = real( itime, stnd )/real( irate, stnd )
!
   if ( info/=0 ) then
!
!       ANORMAL EXIT FROM syevx SUBROUTINE, PRINT A WARNING.
!
       write (prtunit,*) 'Error in the call to SYEVX subroutine, Info=', info
!
        if ( info<0 ) then
!
            write (prtunit,'(''Argument '',i3,'' has an illegal value'')') - info
!
        end if
!                
    else if ( do_test ) then
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION a*U - U*D
!
        a(:n,:m) = matmul(a2(:n,:n),z(:n,:m)) - z(:n,:m)*spread(w(:m),1,n)
        resid2(:m) = norm( a(:n,:m), dim=2_i4b )
        err1 =  maxval( resid2(:m) )/( norm( a2 )*real(n,stnd) )
!
!       CHECK FOR SMALL RESIDUALS OF THE EXPRESSION I - U**(t)*U.
!
        call unit_matrix( a2(:m,:m) )
!
        a(:m,:m) = abs( a2(:m,:m) - matmul( transpose(z(:n,:m)), z(:n,:m) ) )
        err2 = maxval( a(:m,:m) )/real(n,stnd)
!
        err = max( err1, err2 )
!
    end if
!
!   DEALLOCATE WORK ARRAYS.
!
    if ( do_test ) then
        deallocate( a, z, w, iwork, ifail, a2, resid2 )
    else
       deallocate( a, z, w, iwork, ifail )
    end if
!
!   CHECK THE RESULTS FOR SMALL RESIDUALS.
!
    if ( err<=eps .and. info==0 ) then
        write (prtunit,*) name_proc//' is correct'
    else
        write (prtunit,*) name_proc//' is incorrect'
    end if
!
    if ( do_test .and. info==0 ) then
        write (prtunit,*) 
        write (prtunit,*) 'Accuracy of the computed eigenvalues and eigenvectors = ', err1
        write (prtunit,*) 'Orthogonality of the computed eigenvectors            = ', err2
    end if
!
    write (prtunit,*) 
    write (*,'(a,i5,a,i5,a,i5,a,0pd12.4,a)')    &
      'The elapsed time for computing ', m, ' eigenvalues and eigenvectors of a ', &
       n, ' by ', n,' real symmetric matrix is ', elapsed_time, ' seconds'
!
!
! END OF PROGRAM ex3_lapack_syevx
! ===============================
!
end program ex3_lapack_syevx