
Variable projection framework for the reduced-rank matrix
approximation problem by weighted least-squares

Pascal Terray*†

May 7, 2025

Abstract

In this monograph, we review and develop variable projection Gauss-Newton, Levenberg-
Marquardt and Newton methods for the Weighted Low-Rank Approximation (WLRA) problem,
which has now an increasing number of applications in many scientific fields. Particular atten-
tion is drawn at the robustness, efficiency and scalability of these variable projection second-
order algorithms such that they can be used also on larger datasets now commonly found in
many practical problems for which only first-order algorithms based on sequential repetitions
of local optimization (e.g., majorization, Expectation-Maximization or alternating least-squares
methods) or variations of gradient descent (e.g., conjugate, proximal or stochastic gradient de-
scent methods), or hybrid algorithms from these two classes of methods, were only feasible due
to their lower cost and memory requirement per iteration.

In parallel with this review of variable projection algorithms, we develop new formulae for
the Jacobian and Hessian matrices involved in these variable projection methods and demon-
strate their very specific properties such as the uniform rank deficiency of the Jacobian matrix
or the rank deficiency of the Hessian matrix at the (local) minimizers of the cost function asso-
ciated with the WLRA problem. These systematic deficiencies must be taken into account in
any practical implementations of the algorithms. These different properties and the very partic-
ular geometry of the WLRA problem have not been well appreciated in the past and have been
the main obstacles in the development of robust variable projection second-order algorithms for
solving the WLRA problem.

In addition, we demonstrate that the variable projection framework gives original insights
on the solvability, the landscape and the non-smoothness of the WLRA problem. It also helps
to describe the tight links between previously unrelated methods, which have been proposed to
solve it. Specifically, we illustrate the closed links between the variable projection framework
and Riemannian optimization on the Grassmann manifold for the WLRA problem. We expect
that software’s developers and practitioners in different fields such as computer vision, signal
processing, recommender systems, machine learning, multivariate statistics and geophysical
sciences will benefit from the results in this monograph in order to devise more robust and
accurate algorithms to solve the WLRA problem.

*Email: pascal.terray@locean.ipsl.fr
†Affiliation: Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-

Simon Laplace, Sorbonne Université/CNRS/IRD/MNHN, Paris, France

1

Contents

1 Introduction 3

2 Definitions and preliminaries 6
2.1 Linear algebra . 6
2.2 Multilinear algebra . 11
2.3 Topology of Euclidean vector or Frobenius matrix spaces 13
2.4 Differential calculus, variational geometry and optimization 15

3 Alternative and separable forms of the weighted low-rank approximation problem 32
3.1 Nonconvex formulations of the WLRA problem 32
3.2 Landscape connections of formulations P0 and P1 of the WLRA problem 40
3.3 Approximate and regularized forms of the WLRA problem 54
3.4 Variable projection formulation of the WLRA problem 58

4 The block alternating least-squares method and its variants 74

5 The variable projection framework 87
5.1 Second-order NLLS optimization methods . 88
5.2 Computation and properties of the Jacobian matrix 94
5.3 Computations and properties of the gradient vector and Hessian matrix 120

6 Implementation of variable projection NLLS methods for solving the WLRA problem148
6.1 Variable projection Gauss-Newton algorithms . 152
6.2 Variable projection Levenberg-Marquardt algorithms 176
6.3 Variable projection Newton and quasi-Newton algorithms 196
6.4 Variable projection hybrid algorithms . 206

7 Conclusions and discussion 207

2

1 Introduction

Let X be a p × n real matrix and W be a p × n nonnegative real (weight) matrix (e.g., Wij ≥ 0)
associated with X. This monograph is about the Weighted Low-Rank Approximation (WLRA)
problem:

min
Y∈Rp×n

≤k

φ(Y) =
1

2

n∑
j=1

p∑
i=1

Wij .(Xij −Yij)
2 =

1

2
∥
√
W ⊙ (X−Y)∥2F , (P0)

where Rp×n≤k =
{
Y ∈ Rp×n and rank(Y) ≤ k

}
and we assume that k ≤ rank(X) ≤ min(p, n), ⊙

denotes the Hadamard product (e.g., element-wise product) of two p × n matrices and ∥∥F is the
Frobenius norm, i.e., the matrix norm induced by the standard inner product ⟨Y,X⟩ = trace(YTX)
on the Hilbert space of p × n real matrices. The factor 1

2 in the definition of φ(.) has no effect
on the minimizers of φ(.), it is introduced only for notational convenience. Without this fac-
tor, we would have got an annoying factor of 2 in many expressions of this monograph. Thus,
a solution of the WLRA problem in its formulation (P0), if it exists, is a p × n real matrix X̂
with rank(X̂) ≤ k ≤ rank(X). If k = rank(X̂) = rank(X) and W is a binary matrix, e.g.,
Wij ∈

{
0, 1
}

, the WLRA problem is simply the so-called low-rank matrix completion problem
(e.g., the problem of recovering matrices of low-rank when a large fraction of its elements are miss-
ing), which has been extensively studied in the past decades [140][44]. In a slightly more general
scenario, i.e., when k = rank(X̂) < rank(X) and W is a binary matrix, a solution of the WLRA
problem can be viewed as a robust generalisation of Principal Component Analysis (PCA) to incom-
plete, noisy or corrupted observations [92][91][35][138]. In an even more general scenario when
W is a general nonnegative matrix, a solution of the WLRA problem is very useful for denoising
and revealing low-dimensional structures in incomplete and noisy datasets [155][180]. Thus, in its
general form, the WLRA problem can be considered as a robust generalization of (truncated) Sin-
gular Value Decomposition (SVD) analysis and extends significantly the usefulness and versatility
of the classical low-rank approximation problem for many interesting applications arising from dif-
ferent fields including statistics [72][35][181], computer vision [15][27][28][81], machine learning
for recommender systems [104], signal processing and system identification[125][127][182] and
physical sciences [155][179][180][20], to name a few.

Using general weights in the cost function φ(.) allows us to take into account different confidence
or sampling levels among the entries of the elements in X beyond the simple case of missing values,
which corresponds to binary weights. As the error estimates of data are often widely varying, this is
often better suited for many problems [155]. Thus, weighted low-rank approximations of X can be
used to deal with non-i.i.d. Gaussian noise in the data [180][125][27] and to design robust versions
of many multivariate statistical methods, which hinge on the classical low-rank matrix approxima-
tion in the Frobenius norm and are heavily used in data sciences. If the weight matrix W takes
carefully into account the sampling properties of the dataset X, the resulting weighted low-rank
approximation X̂ is then defined to emphasize the better-observed aspects of the data [155][180].
In other words, the nonnegative weights Wij allow for a differential weighting of the accuracy of
the measurements Xij as well as for missing data if Wij = 0. In particular, for the extreme case of
zero sample size, an entry of the data matrix X should play no role in fitting the low-rank model;
this can be done by assigning zero weight to such element of X.

Note, that we implicitly assume throughout the monograph that the weight matrix W is such
that

p∑
i=1

Wij > 0 for j = 1, · · · , n and
n∑
j=1

Wij > 0 for i = 1, · · · , p .

Stated more simply, these last two conditions imply that there is at least one nonzero weight in
each column and row of W as otherwise the WLRA problem is not well-posed and tractable. Fur-
thermore, we will demonstrate later that it is sometimes useful and necessary to impose stronger
conditions on W such that each column and row of W have at least k nonzero weights in order to

3

avoid overfitting and obtain a meaningful approximate solution of the WLRA problem. In addition,
as for the matrix completion problem, the WLRA problem may suffer from non-identifiability is-
sues and is ill-posed without any incoherence type of conditions on the data matrix X [30][187]. As
an illustration, with a sparse matrix X, the matrix W⊙X is likely to be a zero matrix if the number
of non-zero weights Wij is very small, and, in this case, the WLRA problem owns the zero matrix
as a trivial solution, which obviously has no interest and is far from being optimal. To prevent this
pathological case to occur, we need to impose some incoherent conditions on X with respect to the
set of sparse matrices and assume that the number of samples is large enough, see [30] or [187]
for more formal definitions of these so-called low incoherence hypotheses, which provide reliable
recoveries of the data matrix X in the context of robust PCA, the matrix completion or WLRA
problems.

If all the elements of W are all equal to 1 (or more generally are all equal to a strictly positive real
number), we have φ(Y) = 1

2∥X −Y∥2F up to a scaling constant, and this problem is well known
and easily solved as the SVD theory provides the best rank-k approximation X̂ of a given p × n
real matrix X in terms of the Frobenius norm and also characterizes when this solution is unique
or not (see Theorem 2.1 below and [71] or [8] for details). Thus, in the simple case when all the
elements of W are equal, but different from zero, it follows that once the SVD of X is available,
its best rank-k approximation X̂ is readily computed. Moreover, if we are only interested in some
X̂ with k ≪ min(p, n), many less expensive alternatives than the computation of the complete
SVD of X are available for computing X̂ [71][178], including very fast and accurate randomized
algorithms [85][119][128]. Furthermore, under ideal conditions, i.e., X has no-missing values and
the noise in all its elements can be modeled as zero-mean, independent and identically distributed
(i.i.d.) Gaussian variables, the truncated SVD solution is the maximum likelihood solution and
is, thus, the optimal one. However, this optimal property does not hold for non-i.i.d. Gaussian
noise.

The more general case of uneven noisy observations (e.g., non-i.i.d. Gaussian noise) is in fact a
particular instance of a WLRA problem in which we may assume that there is a ground truth low-
rank matrix X̂, which we are trying to reconstruct and which is perturbed by non-i.i.d. Gaussian
noise. Thus, implicit in the WLRA problem, is the statistical hypothesis that the input data consists
of the observed (and also perturbed) data and weight matrices, X and W, such that

X = M⊙ (X̂+E) , (1.1)

where M is a boolean mask that indicates the observed elements of X (e.g., Mij = 0 if Wij = 0
and Mij = 1 otherwise), E is a noise matrix such that Eij ∼ N (0, α2

ij) (e.g., Eij is a Gaussian
noise term) and Wij is assumed to be modeled as a monotonically decreasing function of αij , the
noise level for each of the observed elements of X. See [155][180], [181] and [27] for examples,
respectively, in the physical sciences, statistics and computer vision community on how such weight
matrix W can be constructed in the case of non-i.i.d. Gaussian noise.

However, for a general choice of the weight matrix W and, even in the simple and very com-
mon case in which the weights are all 0 or 1 (e.g., the missing value or matrix completion prob-
lems [93][91][140]), the SVD of the masked observed matrix (e.g., set Xij = 0 if Wij = 0)
may provide a useful and simple heuristic [135], but does not give the desired closest fit to X in
weighted 2-norm (or semi-norm if some weights are equal to zero) and the minimum of φ(.). When
general nonnegative weights are introduced, the problem of finding Y ∈ Rp×n≤k so that φ(Y) is min-
imized is a NonLinear Least-Squares (NLLS) optimization problem in a finite-dimensional Hilbert
space.

However, in its general setting, the WLRA problem is not convex (but only bi-convex) because of
the nonconvexity and discontinuity of the rank function [80], has no closed-form solution because
of the low-rank requirement, is known to be NP-hard [62] and is, thus, not well understood [167].
Furthermore, for some matrices X and W and some integers k, the WLRA problem has no solution

4

at all [62] and, in other cases, the cost function φ(.) may have several local minima [171], a situa-
tion which can not occur in the classical low-rank approximation problem [171][75]. This hardness
of the WLRA problem can be partly alleviated and some algorithms with provable guarantees have
been proposed in the machine learning literature by making very strong assumptions such as inco-
herence of the ground truth low-rank matrix X̂, randomly sampled missing (or observed) entries in
X or that the weight matrix W is spectrally closed to the all ones matrix [30][101][94][16][114].
See the book by Vidal et al. [187] for a good introduction and discussion of these assumptions
and the related algorithms in the case of binary weights (e.g., the matrix completion problem).
However, for many applications these assumptions are unrealistic and violated, especially the as-
sumption of randomly missing entries in the physical sciences, in which the statistical model (1.1)
is a more realistic framework, but does not provide any proven guarantees of success or provable
time bounds for current WLRA algorithms. Taking into account this challenging background, the
main objective of this paper is to discuss various efficient (pseudo) second-order iterative tech-
niques for minimizing φ(.), which exploit explicitly the separable properties of this cost func-
tion [158][190][166][182][81], and to show how to adapt standard NLLS algorithms to the special
structure and geometry of the WLRA problem in its separable formulation.

The structure of the monograph is the following. Section 2 describes the notation used in the paper
and gives an overview of some important definitions and preliminary results on linear algebra, mul-
tilinear algebra and differentiation of vector and matrix functions relevant to the WLRA problem.
In Section 3, we study the geometry of the WLRA problem, the existence of solutions for it and we
review several of its alternative formulations, which have been used in the literature, demonstrate
their equivalence, which has not always been well appreciated in past studies and, finally, show that
the WLRA problem can be reformulated as a separable NLLS problem [63][166][87][182][81].
This result was first used by Ruhe [158] for solving WLRA problems with binary weights and
k = 1 despite this separable formulation of the WLRA problem is often erroneously attributed to
Wiberg [190] in the computer vision literature [176][147][150][81]. In fact, Wiberg [190] (who
was a student of A. Ruhe) has extended the results of Ruhe [158] for an arbitrary integer k and a
slightly different component model specifically designed to the problem of estimating a principal
components model when missing values are present in the data; see also [147][187] for more de-
tails on this slightly different factor model used in [190]. Again in the computer vision literature,
the separable NLLS algorithm originally proposed by Ruhe [158] and Wiberg [190] has been con-
fused with the simplest Alternating Least-Squares (ALS) method [176][15][187] as first noted by
Okatani et al. [147]. As a preamble to the variable projection algorithms, Section 4 gives a modern
description of the block variant of this ALS method and its recent extensions.This ALS algorithm
was perhaps the oldest and simplest method used to solve the WLRA problem in the statistical
literature [191][192][93][72] and can be interpreted as a particular instance of the cyclic block-
coordinate descent method for the WLRA problem. The ancestor of this block ALS algorithm is
the Nonlinear Iterative PArtial Least Squares (NIPALS) method devised originally by Wold and his
collaborators for the missing value problem in PCA, i.e., in the case where the weight matrix is
binary [191][192][93][91]. Generalizations of the NIPALS algorithm to arbitrarily weighted least-
squares have been first discussed in Gabriel and Zamir [72] and is now the topic of many recent
papers in different fields [171][14][167][23][181][25][50]. However, nearly all the proposed algo-
rithms dealing with general positive weights are first-order methods, excepted for the optimization
approaches on the Grassmann manifold (e.g., the submanifold of fixed-rank matrices embedded
in Rp×n) detailed in [125][27][14]. Section 5 is devoted to a detailed study of variable projec-
tion NLLS methods for solving the general WLRA problem, which use explicitly the separable
property of this WLRA problem [63][158]. Variable projection methods originate from numerical
analysis and are efficient methods for solving separable NLLS problems in which some variables of
the problem occur linearly and other nonlinearly; see Subsection 2.4 for a more formal definition.
Explicit formulations of the gradient vector, Jacobian and Hessian matrices used in these variable
projection second-order methods are given and their very specific mathematical properties are also
derived in this Section 5. Separable NLLS algorithms have a long history in applied mathematics

5

and excellent reviews are offered in [166][65][87]. The closed relationships between the variable
projection NLLS method and Riemannian optimization on the Grassmann manifold in the context
of the WLRA problem are also explored in this Section 5, extending and clarifying the results of
Hong and Fitzgibbon [81][82] who have focused on the binary weights case. Templates and im-
plementation aspects of these variable projection second-order algorithms are detailed in Section 6.
Finally, a summary of our contribution and perspectives for further advancing our understanding of
the WLRA problem and methods for solving it are given in Section 7.

2 Definitions and preliminaries

We first collect in this section some basic notations, definitions and results concerning linear algebra,
multilinear algebra, differentiation of vector and matrices and nonlinear optimization problems,
which will be used frequently in the following sections.

Throughout this monograph, we have tried to adhere to the following conventions: bold capital
letters will denote matrices and bold lower-case letters will indicate vectors. A lower-case letter in
italic, but not in boldface, will indicate a scalar. The symbols Rp and Rp×n denote, respectively, the
linear spaces of the real p-vectors and of the real p×n matrices. In some occasions, the sizes of the
vectors or the shapes of the matrices will be given as an upperscript. As an illustration, for a ∈ R,
the symbols ap and ap×n represent, respectively, the p-vector and the p × n matrix composed of
all a. For u ∈ Rp, the symbol diag(u) is used to represent a diagonal p × p matrix with diagonal
elements, [diag(u)]ii = ui for i = 1, · · · , p. For any C matrix, the symbol C.j is used to represent
the jth column vector of C and the symbol Ci. is used to represent the ith row vector of C. The
symbol Ip is used to denote the identity matrix of order p.

2.1 Linear algebra

For a matrix C ∈ Rp×n, we denote the transpose, the range and the null space of C by CT , ran(C)
and null(C), respectively:

CT
ij = Cji, ran(C) =

{
y ∈ Rp / ∃x ∈ Rn with y = Cx

}
, null(C) =

{
x ∈ Rn / Cx = 0p

}
.

ran(C) and null(C) are vector subspaces of Rp and Rn, respectively. The rank of a matrix C is then
defined by the dimension of the vector space ran(C), i.e., rank(C) = dim(ran(C)). Equivalently,
the rank of a p× n matrix C can be defined as the smallest integer k = rank(C) such that it exists
A ∈ Rp×k and B ∈ Rk×n such that C = AB. From this definition, it is not difficult to show that
rank(CT) = rank(C). Then, it can been shown that

dim
(
null(C)

)
+ dim

(
ran(C)

)
= dim

(
null(C)

)
+ rank(C) = n , (2.1)

which is known as the rank-nullity theorem or relationship, and also that

rank(AB) ≤ min
(
rank(A), rank(B)

)
, (2.2)

if the number of columns of A is equal to the number of rows of B, and, finally, that

rank(A+B) ≤ rank(A) + rank(B) , (2.3)

when A and B are matrices of the same dimensions. We further assume the following equali-
ties

null(CT) = ran(C)⊥ and ran(CT) = null(C)⊥ , (2.4)

where ran(C)⊥ and null(C)⊥ denote, respectively, the orthogonal complements of the range and
null spaces of C with respect to the standard Euclidean inner products in Rp and Rn, respec-
tively.

6

We will use mostly the Euclidean norm for vectors and the Frobenius norm for matrices, i.e.,

∥u∥2 =
(p∑
i=1

u2
i

) 1
2 for u ∈ Rp and ∥C∥F =

(p∑
i=1

n∑
j=1

C2
ij

) 1
2 for C ∈ Rp×n , (2.5)

which are, respectively, associated to the Euclidean inner product in Rp

⟨u,v⟩2 =
p∑
i=1

uivi , (2.6)

and to the Frobenius inner product in Rp×n, defined for matrices U and V of identical sizes,
by

⟨U,V⟩F = Tr
(
UTV

)
=

p∑
i=1

n∑
j=1

UijVij , (2.7)

where for squared matrices Tr
(
W
)

=
∑p

i=1Wii. When we do not specify it, we implicitly
mean these standard norms and inner products for vectors and matrices. Occasionally, especially
in Section 3, we will also use the spectral norm for matrices, which is the natural norm on the set
of p × n real matrices induced by the Euclidean norm for vectors. For C ∈ Rp×n, its spectral
norm ∥C∥S can be computed as the squared root of the greatest eigenvalue of the matrix product
CTC [71], i.e.,

∥C∥S = max
x∈Rn and x ̸=0n

∥Cx∥2
∥x∥2

= (maximum eigenvalue of CTC)
1
2 . (2.8)

A matrix Q ∈ Rp×p is said to be orthogonal if QQT = QTQ = Ip. It is easily verified that the
product of two orthogonal matrices is also an orthogonal matrix. A matrix norm ∥∥ on Rp×n is
called unitarily invariant if ∥C∥ = ∥QCP∥ for all orthogonal matrices Q and P of order p and n,
respectively, and the Frobenius and spectral norms are unitarily invariant.

If C ∈ Rp×n, then C+ ∈ Rn×p denotes the Moore-Penrose inverse (or pseudo-inverse) of C and is
defined as the unique matrix which verifies the equalities

CC+C = C,C+CC+ = C+, (CC+)T = CC+ and (C+C)T = C+C . (2.9)

If C is of full column rank, it is easy to verify that

C+ = (CTC)−1CT .

In addition, every matrix C− ∈ Rn×p satisfying only the two equalities

CC−C = C and (CC−)T = CC− (2.10)

is called a symmetric generalized inverse of C.

An explicit formulation of the Moore-Penrose inverse C+ may be obtained with the help of the
Singular Value Decomposition (SVD) of the matrix C

C = UΣVT , (2.11)

where U and V are orthogonal matrices of order p and n, respectively, and

Σ =

σ1 0 . . . 0 0
0 σ2 0 . . . 0
...

.
...

0 . . . 0 σn−1 0
0 0 . . . 0 σn
...

...
. . .

...
. . .

0 0 . . . 0 0

,

7

where we have assumed for notational convenience that p ≥ n. The existence of the SVD can
be proved using the spectral theorem for symmetric matrices [71][8]. U and V consist of the
orthonormal eigenvectors of CCT and of CTC, respectively. U and V are called, respectively, the
left and right singular vectors of C. The diagonal elements of Σ are called the singular values C
and will always be taken to be nonnegative and ordered such that

σ1 ≥ σ2 ≥ · · ·σmin(p,n) ≥ 0 .

These singular values are the non-negative square roots of the eigenvalues of CTC or CCT . Then,
in exact arithmetic, if rank(C) = k < n, we have σk+1 = σk+2 = · · · = σn = 0 and it is easy to
verify that

C+ = VΛUT , (2.12)

where Λ is the n × p diagonal matrix with Λii = σ−1
i for i = 1, · · · , k and Λii = 0 for i =

k + 1, · · · , n. We also assume the following important property of the Moore-Penrose inverse C+

for all matrices C:
null(C+) = null(CT) .

A matrix P ∈ Rp×p is an orthogonal projector if the following two conditions are satisfied:

PP = P and PT = P (2.13)

and, given an orthogonal projector P ∈ Rp×p, its associated complementary projector is defined as
P⊥ = Ip − P and is also an orthogonal projector. As for any matrix, an (orthogonal) projector P
maps vectors into its range ran(P). However, an interesting and special property of any matrix P
verifying PP = P is that it maps vectors of its range ran(P) to themselves. In addition, given an
orthogonal projector P ∈ Rp×p and a vector x ∈ Rp, the vector Px ∈ Rp uniquely solves the linear
least-squares optimization problem

Px = Arg min
z∈ran(P)

∥x− z∥2 . (2.14)

In words, Px is the unique closest point to x in ran(P). Note that ran(P⊥) = ran(P)⊥, i.e., the
range of P⊥ is the orthogonal complement of the range of P. Given a linear subspace V of Rp, we
can decompose uniquely any vector x ∈ Rp into the sum of one vector in V and one vector in V ⊥.
This is easily verified as, given the (unique) orthogonal projector P onto V , we have immediately
for any x ∈ Rp,

x = Px+ (Ip −P)x = Px+P⊥x ,

where Px ∈ V and P⊥x ∈ V ⊥. In such a case, we say that Rp is the direct sum of V and V ⊥ and
we write Rp = V ⊕ V ⊥. Finally, if the columns of W ∈ Rp×k form an orthonormal basis of V , it
is not difficult to verify that

P = WWT and P⊥ = Ip −WWT .

Thus, provided that we have an orthonormal basis of V , we can also immediately project onto V ⊥

without constructing a basis for it. Furthermore, if we have such an orthonormal basis of V , we note
that we have also a quick and efficient way of applying orthogonal projectors to vectors as

Px = W(WTx) and P⊥x = x−W(WTx) .

The Moore-Penrose inverse and the SVD are also particularly useful to define and compute orthogo-
nal projectors associated with the range of a matrix, especially if this matrix is rank deficient [71][8].
If the rank of the matrix C ∈ Rp×n is equal to k (and looking at the distribution of the singular val-
ues of C is the best way to determine its numerical rank), the matrix

PC = CC+ = U

[
Ik 0k×(p−k)

0(p−k)×k 0(p−k)×(p−k)

]
UT ,

8

where U are the left singular vectors of C, is the orthogonal projector onto ran(C). Furthermore,
the matrix

P⊥
C = Ip −CC+ = U

[
0k×k 0k×(p−k)

0(p−k)×k Ip−k

]
UT

is the orthogonal projector onto the orthogonal complement of ran(C) (e.g., ran(C)⊥). It is easy
to show that if x ∈ Rp then PCx ∈ ran(C) and P⊥

Cx ∈ ran(C)⊥. In the same conditions, the
matrix

PCT = C+C = V

[
Ik 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

]
VT

is the orthogonal projector onto the row space of C, e.g., ran(CT) = null(C)⊥ and the ma-
trix

P⊥
CT = In −C+C = V

[
0k×k 0k×(n−k)

0(n−k)×k In−k

]
VT

is the orthogonal projector onto ran(CT)⊥ = null(C). If rank(C) = n ≤ p, then PCT = In and
P⊥

CT is the n× n zero matrix 0n×n.

The Moore-Penrose inverse and SVD of a matrix are particularly useful for solving (rank-deficient)
linear least-squares problems [111][8]. For C ∈ Rp×n and y ∈ Rp, consider the linear least-squares
problem

min
x∈Rn

∥y −Cx∥2 = ∥r(x)∥2 with r(x) = y −Cx .

The unique vector x̂ of minimum Euclidean norm minimizing ∥r(x)∥2 is given by C+y as PCy =
CC+y = Cx̂ is the unique closest point to y in the range of C. Even if C is of full column rank,
in which case x̂ = (CTC)−1CTy, we use the pseudo-inverse notation C+ for (CTC)−1CT to
indicate that the normal equations shall not be used to compute the solution of linear least-squares
problems, especially if C is badly conditioned [111][71][8].

Note that linear least-squares problems can also be solved and orthogonal projectors be evaluated
with the help of symmetric generalized inverses defined above [64][87]. The advantage is that these
symmetric generalized inverses can be computed much more cheaply than the SVD or the pseudo-
inverse of C with the help of other matrix decompositions such as the standard QR decomposition
with Column Pivoting (QRCP) [111][64][71][87][8]. According to this decomposition, there exist
a p× p orthogonal matrix Q and a n× n permutation matrix P such that, for a given p× n matrix
C of rank k,

QCP =

[
R S

0(p−k)×k 0(p−k)×(n−k)

]
, (2.15)

where R is a k × k nonsingular upper triangular matrix (with diagonal elements of decreasing
absolute magnitude) and S an k×(n−k) full matrix, which is vacuous if k = n. Several procedures
are available to compute this QRCP, but the usual one is based on Householder transformations (e.g.,
elementary orthogonal reflectors), which are orthogonal matrices of the form

H(i) = Ip − 2v(i)v(i)T , (2.16)

where the p-vector v(i) has a 2-norm equal to one [111][71]. Premultiplication by H(i) is fre-
quently used to zero out a sequence of entries in a given column p-vector. Thus, in order to compute
the QR or QRCP decomposition, C is successively pre-multiplied by at most min(n, p) Householder
transformations H(i), permuting the columns of C if necessary (thus determining the permutation
matrix P). Also, the orthogonal matrix Q can be compactly stored (as only the vectors v(i) need to
be stored) and explicitly computed as a product of k elementary reflectors

Q = H(k) · · ·H(2)H(1) .

For more details concerning Householder transformations, see [111][71][8].

9

Furthermore, the rank k of C can be efficiently estimated in an additional step from the upper
triangular factor R computed during the QRCP, but we omit the details here [111][71][87][8]. Note
that the QRCP is not unique as the permutation matrix P is not unique. However, with the help of
a QRCP of C, the orthogonal projectors PC and P⊥

C can be efficiently computed as

PC = CC− = QT

[
Ik 0k×(p−k)

0(p−k)×k 0(p−k)×(p−k)

]
Q (2.17)

and

P⊥
C = Ip −CC− = QT

[
0k×k 0k×(p−k)

0(p−k)×k Ip−k

]
Q . (2.18)

Furthermore, a symmetric generalized inverse of C defined by the equations (2.10) can be repre-
sented as

C− = P

[
R−1 0k×(p−k)

0(n−k)×k 0(n−k)×(p−k)

]
Q . (2.19)

Note that this particular symmetric generalized inverse also satisfies the additional equation

C−CC− = C− .

Furthermore, if k = n then C− = C+. Finally, the vector C−y is also a solution of the linear
least-squares problem

min
x∈Rn

∥y −Cx∥2 = ∥r(x)∥2 ,

but not the solution of minimum Euclidean norm if k < n [111][64][87][8]. In other words, the
pseudo-inverse C+ singles out the least-squares solution of minimum Euclidean length, which is
not the case of C−.

If k < n, by applying additional Householder transformations (or, alternatively, Givens rotations) on
the right of the QRCP to annihilate the submatrix S, it is possible to obtain a Complete Orthogonal
Decomposition (COD) of the matrix C of rank k (see Chapter 5 of [71] or Theorems 29 and 30
of [87] and also [64]). More precisely, by applying these additional Householder transformations,
we obtain the following expression

QCP =

[
R S

0(p−k)×k 0(p−k)×(n−k)

]
=

[
T 0k×(n−k)

0(p−k)×k 0(p−k)×(n−k)

]
Z ,

where Z is an n×n orthogonal matrix and is again implicitly represented by the product of elemen-
tary Householder matrices and T is an k× k upper triangular matrix of full rank (which is different
from the triangular factor R in the QRCP). The COD of C is then defined as

QCO = QC(PZT) =

[
T 0k×(n−k)

0(p−k)×k 0(p−k)×(n−k)

]
, (2.20)

where Q is the same p × p orthogonal matrix as in the QRCP, T is an k × k nonsingular upper
triangular matrix and O = PZT is an n × n orthogonal matrix as the product of two orthogonal
matrices. With the help of a COD of C, its pseudo-inverse can be represented by

C+ = O

[
T−1 0k×(p−k)

0(n−k)×k 0(n−k)×(p−k)

]
Q . (2.21)

It is easily checked that this n×pmatrix verifies the four equations (2.9) defining the pseudo-inverse
of C and since, for any matrix C, there is only one matrix having these four properties, the above
matrix is the pseudo-inverse of C. This demonstrates that there is no need to compute a more costly
SVD of C for this purpose. Importantly, with a COD, we also get the orthogonal projectors on the
row space of C and its orthogonal complement as

PCT = C+C = O

[
Ik 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

]
OT

10

and

P⊥
CT = In −C+C = O

[
0k×k 0k×(n−k)

0(n−k)×k In−k

]
OT .

Finally, if we assume that C is of full column rank k = n < p, there is no need to compute a QRCP
or COD of C to get the pseudo-inverse and the orthogonal projectors on the row or column spaces
of C as a simple QR decomposition will do the job.

The SVD theory also provides the characterization of the best rank-k approximation of a given p×n
real matrix in terms of the Frobenius norm [71]. As the Frobenius norm is unitarily invariant, we
first note that

∥C∥F = ∥Σ∥F =
(min(p,n)∑

l=1

σ2l

) 1
2
, (2.22)

which shows that the Frobenius norm of a matrix is entirely defined by its singular values. From the
SVD of a p× n matrix C = UΣVT , we can also obtain directly its spectral norm as

∥C∥S = σ1 = UT
.1CV.1 . (2.23)

Then, the following theorem is the reason for the importance of the SVD for applications involving
low-rank approximation of matrices:

Theorem 2.1. Let the SVD of C ∈ Rp×n be C = UΣVT with σ1 ≥ σ2 ≥ · · · ≥ σmin(p,n). In
addition, for k such that 1 ≤ k ≤ min(p, n), defined the truncated SVD of C by

Ck = UkΣkV
T
k ,

where Uk and Vk are the submatrices formed by the k first columns of U and V, respectively, and
Σk = diag([σ1, · · · , σk]). Then, Ck provides a matrix of rank at most k that is closest in Frobenius
norm to C and this minimum distance is given by

∥C−Ck∥F = min
B∈Rp×n with rank(B)≤k

∥C−B∥F =
(min(p,n)∑

l=k+1

σ2l

) 1
2
.

If σk > σk+1 or if σk = 0 then Ck is the unique best approximation of rank at most k of C.

□

Theorem 2.1 is often called the Eckart-Young Theorem and is in fact valid in any unitarily invariant
norm, see [71].

2.2 Multilinear algebra

In the next sections, we also need some operators and results from multilinear algebra [124]. These
tools will be particularly useful when we need to manipulate matrices as elements of a linear vector
space and for computing derivatives of matrices (or matrix-matrix products) with respect to another
matrix.

For any C and D matrices of the same dimensions, the expression C ⊙ D is used to mean the
element-wise product of the C and D matrices (e.g., the Hadarmard product of two matrices):[

C⊙D
]
ij
= Cij .Dij . (2.24)

The following property holds for matrices B, C and D of the same shapes:

⟨B⊙C , D⟩F = ⟨C , B⊙D⟩F .

11

Let C ∈ Rq×r and C.j denotes the jth column of C, then the vec(.) function maps the q× r matrix
C into a q.r × 1 column vector by ”stacking” the columns of C below one another

C ∈ Rq×r =⇒ vec(C) =

C.1
...

C.r

 ∈ Rq.r . (2.25)

The vec(.) operator is an element of £(Rq×r,Rq.r), e.g., is a continuous linear mapping from Rq×r
into Rq.r and is also a bijection. The mat(.) operator is then the inverse mapping of vec(.), which is
a continuous linear bijection from Rq.r into Rq×r such that

mat
(
vec(C)

)
= C , ∀C ∈ Rq×r . (2.26)

When it is not obvious from the context what is the shape of the image matrix for a given vector
c ∈ Rq.r, we will use the notation matq×r(.) instead.

A useful property involving the vec(.) and Hadamard operators is that the vectorized form of the
Hadamard product of two matrices of the same dimensions can be written as a matrix-vector prod-
uct

vec(C⊙D) = diag
(
vec(C)

)
vec(D) . (2.27)

Let further D ∈ Rs×t, then the Kronecker product C⊗D is the q.s× r.t block matrix, whose ijth

block is defined by [
C⊗D

]ij
= CijD for i = 1, · · · , q and j = 1, · · · , r . (2.28)

The Kronecker product is a bilinear operator meaning that

(C+D)⊗E = (C⊗E) + (D⊗E) ,

E⊗ (C+D) = (E⊗C) + (E⊗D) , (2.29)

α(C⊗D) = (αC)⊗D = C⊗ (αD) ,

where α ∈ R, E is any matrix, and C and D are two matrices of the same dimensions. We assume
that the reader is familiar with the basic properties of Kronecker products (see Chapter 2 of [124] for
details). For easy reference, we only state the following relations for any matrices C and D:

(C⊗D)T = CT ⊗DT

rank(C⊗D) = rank(C).rank(D) ; (2.30)

for partitioned matrices: [
C1 C2

]
⊗D =

[
C1 ⊗D C2 ⊗D

]
; (2.31)

and for conforming matrices C, D, E and F:

(C⊗D)(E⊗ F) = CE⊗DF , (2.32)

vec(CDE) = (ET ⊗C)vec(D) .

This last equality is particularly useful to rearrange a matrix-matrix product as a simple matrix-
vector product:

vec(CD) = vec(CDI) = (I⊗C)vec(D) , (2.33)

vec(CD) = vec(ICD) = (DT ⊗ I)vec(C) ,

where I is the identity matrix of appropriate order. These two relationships illustrate that we can
evaluate the derivative of a matrix-matrix product with respect to one of the matrices by reshaping

12

the different matrices as vectors and computing the Jacobian matrix (see Subsection 2.4 for more
details). Thus, we will use these two relations very frequently in the next sections, without explicit
citation, when we need to compute derivatives of some matrices.

Let X ∈ Rp×n. We now introduce the p.n× p.n permutation matrix K(p,n) uniquely defined by the
relation

K(p,n)vec(X) = vec(XT) . (2.34)

This permutation matrix is well-known in statistics where it is called the commutation matrix, see
Chapter 3 of [124] for details. Its explicit form is given by

K(p,n) =

p∑
i=1

n∑
j=1

H(i, j)⊗H(i, j)T ,

where H(i, j) is an p × n matrix with a 1 in its ijth position and zeroes elsewhere. Important
properties of the commutation matrix for our application are

K(n,p) = KT
(p,n) and KT

(p,n)K(p,n) = K(p,n)K
T
(p,n) = Ip.n . (2.35)

In other words, K(p,n) is an orthogonal matrix and its transpose and inverse is K(n,p). Another
useful property of the commutation matrix is that it can be used to reverse the order of a Kronecker
product

K(s,p)(X⊗Y) = (Y ⊗X)K(t,n) where X ∈ Rp×n and Y ∈ Rs×t . (2.36)

This property will be also used frequently in the calculation of matrix derivatives. The following
Lemma will also be useful later:

Lemma 2.2. Let X ∈ Rp×n, then

K(p,n)diag(vec(X))K(n,p) = diag(vec(XT)) ,

diag(vec(X))K(n,p) = K(n,p)diag(vec(XT)) .

Proof. Omitted.

2.3 Topology of Euclidean vector or Frobenius matrix spaces

For the sake of convenience, we define some notations first. The following subsets of Rp×n, the set
of p× n real matrices, and R will be used frequently in the following sections.

Definition 2.1. Let p, n, k ∈ N∗ with k ≤ min(p, n), then

Rp×nk =
{
Y ∈ Rp×n and rank(Y) = k

}
,

Rp×n≤k =
{
Y ∈ Rp×n and rank(Y) ≤ k

}
,

Rp×n>k =
{
Y ∈ Rp×n and rank(Y) > k

}
,

Rp×n+ =
{
Y ∈ Rp×n and Yij ≥ 0

}
,

Rp×n+∗ =
{
Y ∈ Rp×n and Yij > 0

}
,

Op×k =
{
U ∈ Rp×k /UTU = Ik

}
,

Ok×n
t =

{
U ∈ Rk×n /UUT = Ik

}
,

and

R∗ =
{
x ∈ R / x ̸= 0

}
,R+ =

{
x ∈ R / x ≥ 0

}
and R+∗ =

{
x ∈ R / x > 0

}
.

13

The following definitions will also be useful:

Definition 2.2. Given X ∈ Rp×n, r ∈ R+∗, the open ball with center X and radius r of Rp×n is
the set of p× n matrices defined by

Bp×n(X, r) =
{
Y ∈ Rp×n and ∥X−Y∥ < r

}
and the closed ball with center X and radius r is the set

B̄p×n(X, r) =
{
Y ∈ Rp×n and ∥X−Y∥ ≤ r

}
.

Note that in these definitions, ∥∥ can be the Frobenius norm or any norm defined on Rp×n since
Rp×n is a finite-dimensional vector space over R and, in this case, all norms on Rp×n are equivalent
and induce the same topology [12][26]. Similarly, given x ∈ Rn, r ∈ R+∗, the open ball with
center x and radius r of Rn is the set of n-dimensional vectors defined by

Bn(x, r) =
{
y ∈ Rn and ∥x− y∥ < r

}
and the closed ball with center x and radius r is the set

B̄n(x, r) =
{
y ∈ Rn and ∥x− y∥ ≤ r

}
.

Again, here, ∥∥ can be the Euclidean norm or any norm defined on Rn.

A set U ⊂ Rp×n is open if every point of U is contained in an open ball included in U . A set
U ⊂ Rp×n is closed if and only if its complement in Rp×n is open. An arbitrary union of open sets is
open and an arbitrary intersection of closed sets is closed. A finite union of closed sets is also closed.
The closure of a set U ⊂ Rp×n is the smallest closed set (in the sense of inclusion) of Rp×n which
contains U and is denoted Ū . On the other hand, the interior of a set U ⊂ Rp×n is the largest open
set (in the sense of inclusion) of Rp×n which is included in U and is denoted Ů . A set N is called
a neighborhood of X in Rp×n if there is an open set U ⊂ N with X ∈ U . A point X is a boundary
point of a setA if every neighborhood of X contains a point ofA and a point of its complementB in
Rp×n. The set of boundary points ofA is denoted bd(A) and we have bd(A) = Ā∩ B̄. Thus, bd(A)
is closed as the intersection of two closed sets. The term frontier refers to the set of points of bd(A)
which are not in A (e.g., Ā/A). As an illustration, the boundary of both the open ball Bp×n(X, r)
and the closed ball B̄p×n(X, r) is the sphere Sp×n(X, r) =

{
Y ∈ Rp×n and ∥X −Y∥ = r

}
, but

the frontier of Bp×n(X, r) is equal to bd
(
Bp×n(X, r)

)
while the frontier of B̄p×n(X, r) is empty.

Let now A and B be two subsets of Rp×n such that A ⊂ B. We say that A is dense in B if B ⊂ Ā
and we say that A is dense everywhere if Ā = Rp×n. Similar definitions hold for x in Rn. In
a finite-dimensional vector (or matrix) space over R, a closed and bounded set is compact and all
closed balls are compact. The preimage of a closed (open) set by a continuous function is a closed
(open) set. The image of a compact set by a continuous function is compact.

Next, we collect some important topological results concerning certain subsets of Rp×n in the fol-
lowing theorem that we will also use frequently in the following sections.

Theorem 2.3. Let p, n, k ∈ N∗ with k ≤ min(p, n). The sets Op×k and Ok×n
t are compact in Rp×k

and Rk×n, respectively. The set Rp×kk is open in Rp×k. If k ̸= n, the interior of Rp×nk is empty and
Rp×nk is not closed or open in Rp×n. The sets Rp×n>k and Rp×n≤k are, respectively, open and closed in
Rp×n. In all cases, the sets Rp×n≤k and Rp×n<k are, respectively, the closure and the frontier of Rp×nk in

Rp×n, and Rp×nk is dense in Rp×n≤k . Furthermore, the set Rp×kk is an open subset dense everywhere
in Rp×k.

Proof. Omitted. See Section 3 and Theorem 2 of [80], Proposition 2.1 of [142] and Section 3.1.5
of [3] for some details.

14

Importantly, since the rank(.) function defined on Rp×n is an integer-valued and lower-semicontinuous
function, an important result is that the rank function does not decrease in a sufficiently small neigh-
borhood of any matrix X ∈ Rp×n [80]. On the other hand, with the help of the SVD and Theo-
rem (2.1), it is not difficult to see that if rank(X) = k < min(p, n) then any neighborhood of X
contains matrices of rank k + 1, k + 2, . . . ,min(p, n).

To close this subsection, we finally recall the definition of a convex set for later reference. A subset
C of a normed vector space X is called convex, if

λ.x+ (1− λ).y ∈ C whenever x,y ∈ C and 0 ≤ λ ≤ 1 . (2.37)

Geometrically, a subset of a normed vector space is convex, if and only if, it contains the line
segment {λ.x + (1 − λ).y / 0 ≤ λ ≤ 1} joining each pair of its points x,y. As an illustration,
the open and closed balls of X and the subspaces of X are all convex. Note, on the other hand, that
the subsets Rp×nk and Rp×n≤k of Rp×n are not convex if k ̸= n , which makes solving the WLRA
problem (P0) challenging.

For more discussion about the topology of Rp×n or arbitrary normed vector spaces, we refer the
reader to [148][12][26].

2.4 Differential calculus, variational geometry and optimization

We also assume that the reader has some familiarity with differentiation in a Euclidean space
and derivatives of vectors and matrices, and their properties. Useful references on these topics
are [148][26][124].

Let X be a Euclidean space, e.g., a real vector space of finite dimension, say k, equipped with a
scalar product ⟨., .⟩X and the vector norm ∥.∥X induced by this scalar product. Let now ϕ(.) be a
function from an open set Ω ⊂ X to some other Euclidean space, say Y . In the following, we may
have Y = R, Y = Rp or Y = Rp×n. We say that ϕ(.) is O(∥h∥X) if

∀ε ∈ R+∗, ∃δ ∈ R+∗ such that ∥h∥X ≤ δ =⇒ ∥ϕ(h)∥Y ≤ ε∥h∥X .

Similarly, we say that ϕ(.) is O(∥h∥X) if

∃λ, η ∈ R+∗ such that ∥h∥X ≤ η =⇒ ∥ϕ(h)∥Y ≤ λ∥h∥X .

Notations like O(∥h∥αX) or O(∥h∥αX), for α ∈ N∗, will also be used to distinguish functions tending
to zero faster than ∥h∥αX instead of faster than ∥h∥X .

With these notations, a function ϕ(.) from the open set Ω ⊂ X to the Euclidean space Y is said to
be differentiable at a ∈ Ω, if there exists a linear operator ϕ

′
(a) from X to Y such that

ϕ(a+ h) = ϕ(a) + ϕ
′
(a)(h) + O(∥h∥X) .

The set of (continuous) linear operators from X to Y is denoted by £(X ,Y). If Y = R, then ϕ(.) is
a real-valued function, ϕ

′
(a) is a linear form and it can be represented by an unique element of X ,

called the gradient of ϕ(.) at a and denoted by ∇ϕ(a), which verifies

ϕ
′
(a)(h) = ⟨∇ϕ(a),h⟩X , ∀h ∈ X .

In the same conditions, e.g., when Y = R, we can consider the function from Ω into £(X ,R),
which at a ∈ Ω associates the linear form ϕ

′
(a). If this new function is itself differentiable, we

get the second-order differential of ϕ(.) at a, which is denoted by ϕ
′′
(a) and is an element of

£(X ,£(X ,R)) ≃ £(X ,X ;R). In other words, ϕ
′′
(a) can be identified with an unique bilinear

form, also noted ϕ
′′
(a) ∈ £(X ,X ;R) by an abuse of notation, and defined by

[ϕ
′′
(a)(h)](k) = ϕ

′′
(a)(h,k) , ∀(h,k) ∈ X × X .

15

This bilinear form is also symmetric and yields the following second-order approximation of ϕ(.)
at a

ϕ(a+ h) = ϕ(a) + ϕ
′
(a)(h) + ϕ

′′
(a)(h,h) + O(∥h∥2X) .

Again, using the Euclidean structure associated with X , the symmetric bilinear form ϕ
′′
(a) can be

associated with an unique symmetric linear operator from X to X , called the Hessian of ϕ(.) at a,
denoted by ∇2ϕ(a), and defined by

ϕ
′′
(a)(h,k) = ⟨∇2ϕ(a)(h),k⟩X = ⟨h,∇2ϕ(a)(k)⟩X , ∀(h,k) ∈ X × X .

Note that both ∇ϕ(a) and ∇2ϕ(a) depend on the scalar product ⟨., .⟩X , while ϕ
′
(a) and ϕ

′′
(a)

do not. When X = Rk and is equipped with the standard Euclidean inner product defined in
Subsection 2.1 and the canonical basis of Rk is used to represent vectors in Rk, the self-adjoint
linear operator ∇2ϕ(a) is represented by a k × k symmetric real matrix, which is known as the
Schwarz’s theorem [26]. Then, by a slight abuse of notation, we will also use the symbol ∇2ϕ(a)
to represent this k × k symmetric matrix and we can write

ϕ
′′
(a)(h,k) = ⟨∇2ϕ(a)(h),k⟩2 = hT∇2ϕ(a)k , ∀(h,k) ∈ Rk × Rk .

In the following sections, instead of the generic notations ϕ
′
(a) and ϕ

′′
(a) for the first- and second-

order derivatives of a (twice) differentiable function ϕ(.) from Ω ⊂ X to Y at a point a ∈ Ω, the
symbols D , J , ∇, ∇2 will be used for the (Euclidean) derivative of a real matrix, the Jacobian
matrix (e.g., derivative) of a real vector function, the gradient (e.g., first derivative) and Hessian
(e.g., second derivative) of a real functional, respectively.

As a first illustration, a q × r matrix function C(a) for a ∈ Ω = Rk can be interpreted as a
(nonlinear) mapping from the linear space of parameters, Rk, into the space of linear transformations
£(Rr,Rq) = Y , which can be identified to the linear space Rq×r [26]. Consequently, the derivative
of the matrix function C(.) at a point a ∈ Rk is an element of £(Rk,£(Rr,Rq)), or equivalently
£(Rk,Rq×r) ≃ Rq×r×k, and can be interpreted as the tridimensional tensor D(C(a)) ∈ Rq×r×k
defined by [

D(C(a))
]
ijl

=
∂Cij(a)

∂al
for i = 1, · · · , q ; j = 1, · · · , r ; l = 1, · · · , k , (2.38)

following [63].

On the other hand, the first derivative of a real q-vector function r(.) at a point a ∈ Rk is an element
of £(Rk,Rq) ≃ Rq×k. If Rk and Rq are equipped with their usual Euclidean inner products and
the canonical bases of Rk (e.g., the columns of the identity matrix Ik) and Rq (e.g., the columns of
the identity matrix Iq) are used to represent vectors in these two linear spaces, the first derivative of
r(.) at a point a ∈ Rk can be identified to the Jacobian matrix J (r(a)) ∈ Rq×k defined by[

J (r(a))
]
ij
=
∂ri(a)

∂aj
for i = 1, · · · , q ; j = 1, · · · , k , (2.39)

where ri(a) is the ith component of the real q-vector r(a). Note that each ith row of the Jacobian
matrix J (r(a)) ∈ Rq×k is equal to the transpose of the gradient of the real function ri(.) at the point
a ∈ Rk, [

J (r(a))
]
i.
= ∇ri(a)

T .

In addition, if r(.) is continuously differentiable at a point a ∈ Rk, we have the following first-order
Taylor expansion

r(a+ da) = r(a) + J (r(a))da+O(∥da∥22) . (2.40)

As another illustration, if Rk is again equipped with its usual Euclidean inner product and its canon-
ical basis, the gradient of a real functional ϕ(.) at a point a ∈ Rk forms a k × 1 column vector,
i.e., [

∇ϕ(a)
]
i
=
∂ϕ(a)

∂ai
for i = 1, · · · , k , (2.41)

16

and the Hessian of a real functional ϕ(.) at a point a ∈ Rk can be identified with a k× k symmetric
matrix, ∇2ϕ(a), defined by

[
∇2ϕ(a)

]
ij
=
∂2ϕ(a)

∂ai∂aj
=
∂2ϕ(a)

∂aj∂ai
=
[
∇2ϕ(a)

]
ji

for i = 1, · · · , k ; j = 1, · · · , k . (2.42)

Finally, if ϕ(.) is at least twice continuously differentiable at a point a ∈ Rk, we have the following
second-order Taylor expansion

ϕ(a+ da) = ϕ(a) + ⟨da,∇ϕ(a)⟩2 +
1

2
⟨∇2ϕ(a)da, da⟩2 +O(∥da∥32)

= ϕ(a) + daT∇ϕ(a) + 1

2
daT∇2ϕ(a)da+O(∥da∥32) . (2.43)

Let K be a nonempty subset of Rk or more generally a nonempty subset of an arbitrary normed
vector space. We recall that a point â ∈ K is a global minimizer of a real function ϕ(.) defined over
K, if and only if, ∀a ∈ K, we have ϕ(a) ≥ ϕ(â). On the other hand, â is a local minimizer of ϕ(.)
over K, if and only if, ∃r ∈ R+∗ such that ∀a ∈ K and ∥a− â∥2 < r imply ϕ(a) ≥ ϕ(â). Similar
definitions hold for strict global and local minimizers of ϕ(.) over K.

Let now Ω be an open subset of Rk or more generally an open subset of a normed vector space of
finite dimension. A necessary condition for a point â ∈ Ω to minimize a real function ϕ(.) defined
and assumed to be twice continuously differentiable on Ω is that the gradient of ϕ(.) at â is equal to
the zero-vector of the ambient linear space, i.e.,

∇ϕ(â) = 0k , (2.44)

and this condition defines the first-order Karush-Kuhn-Tucker (KKT) condition [148][26]. If such
KKT condition is satisfied then â is said to be a first-order stationary or critical point of ϕ(.).
However, first-order critical points of ϕ(.) can be minimizers, but also maximizers or saddle points
(e.g., points for which the Hessian matrix has both positive and negative eigenvalues). A necessary
condition for a first-order stationary point â to be a local minimizer of ϕ(.) is that the Hessian
(bilinear form or matrix) ∇2ϕ(â) is positive semi-definite [148][26]:

∇2ϕ(â)
(
da, da

)
= ⟨∇2ϕ(â)da, da⟩2 ≥ 0 , ∀da ∈ Rk . (2.45)

Such first-order critical points for which the Hessian is positive semi-definite are called second-
order stationary or critical points of ϕ(.). On the other hand, a sufficient condition for a first-order
stationary point â to be a strict local minimizer of ϕ(.) is that ∇2ϕ(â) is positive definite (second-
order KKT condition). These assertions can be derived by noting that the second-order Taylor
expansion of ϕ(.) at a first-order stationary point â reduces to

ϕ(â+ da) = ϕ(â) +
1

2
⟨∇2ϕ(â)da, da⟩2 +O(∥da∥32) ,

see [148][26] for details.

We now consider the case, where we seek to minimize a real function ϕ(.) on a linear subspace
Υ ⊂ Ω of dimension s, where Ω is an open subset of Rk on which ϕ(.) is defined and twice-
differentiable. Obviously, we must have dim(Υ) ≤ k. In these conditions, we can consider ϕ(.) as
a function from Ω to R, but we can also consider its restriction to Υ, ϕΥ(.). If ϕ(.) is differentiable
on Ω than ϕΥ(.) will be differentiable on Υ as well and their differentials verify

ϕ
′
(a)(b) = ϕ

′
Υ(a)(b) , ∀a,b ∈ Υ .

In other words, the linear form ϕ
′
Υ(a) is nothing else than the restriction of the linear form ϕ

′
(a) to

Υ. Furthermore, if we equip both Rk and its linear subspace Υ with the same Euclidean structure

17

induced by Rk, we have, by definition, ⟨a,b⟩Υ = ⟨a,b⟩2, ∀a,b ∈ Υ. In these conditions, the linear
forms ϕ

′
(a) and ϕ

′
Υ(a) can be both represented by their own gradients, ∇ϕ(a) and ∇ϕΥ(a), which

are, respectively, elements of the linear spaces Rk and Υ such that

ϕ
′
(a)(b) = ⟨∇ϕ(a),b⟩2 and ϕ

′
Υ(a)(b) = ⟨∇ϕΥ(a),b⟩Υ , ∀a,b ∈ Υ .

Since the linear forms ϕ
′
(a) and ϕ

′
Υ(a) coincide on Υ, we deduce immediately that

⟨∇ϕ(a),b⟩2 = ⟨∇ϕΥ(a),b⟩Υ,∀a,b ∈ Υ .

Next, remember that ∇ϕ(a) ∈ Rk, while ∇ϕΥ(a) ∈ Υ, but we can easily expressed ∇ϕΥ(a) as
a function of ∇ϕ(a). More precisely, using the two complementary orthogonal projectors on Υ
and Υ⊥ (considered here as k × k symmetric and idempotent matrices rather than linear operators
as discussed in Subsection 2.1), denoted, respectively, by PΥ and P⊥

Υ, and defined on Rk, we
have

∇ϕ(a) = PΥ∇ϕ(a) +P⊥
Υ∇ϕ(a), with PΥ∇ϕ(a) ∈ Υ and P⊥

Υ∇ϕ(a) ∈ Υ⊥ ,

and this implies immediately that

⟨∇ϕ(a),b⟩2 = ⟨PΥ∇ϕ(a),b⟩2 = ⟨PΥ∇ϕ(a),b⟩Υ = ⟨∇ϕΥ(a),b⟩Υ, ∀a,b ∈ Υ .

Then, by the unicity of the gradient of ϕΥ(.) at a ∈ Υ, we get, by identification, the vector equal-
ity

∇ϕΥ(a) = PΥ∇ϕ(a),∀a ∈ Υ . (2.46)

In words, the gradient of ϕΥ(.) at a ∈ Υ is simply the orthogonal projection on Υ of the gradient of
ϕ(.) at a, considered as an element of Rk instead of Υ. The interpretation of this result is simple and
is that it is not necessary to check all the feasible directions in Rk to satisfy the first-order stationary
condition for a point a ∈ Υ if the search space is reduced to Υ, only those belonging to Υ matter
in that case. Similarly, it is not too difficult to verify that the linear operators ∇2ϕΥ(a) and ∇2ϕ(a)
are related by

∇2ϕΥ(a)[b] = PΥ

(
∇2ϕ(a)[b]

)
,∀b ∈ Υ , (2.47)

where PΥ is now interpreted as an orthogonal projector operator rather than as a matrix. However,
keep in mind that, in the above formulae, ∇2ϕΥ(a) is expressed as a non-symmetric linear operator
from Rk to Rk rather than as a symmetric linear operator from Υ to Υ (or a s×s symmetric matrix),
but both operators coincide on Υ. Finally, Υ being a linear space of dimension s, the definitions
of the first- and second-order stationary points of ϕΥ(.) are exactly similar to those stated above.
Namely, the first-order KKT condition is met if PΥ∇ϕ(a) = 0k and the second-order stationary
(KKT) condition is equivalent to say that the bilinear form associated with the self-adjoint linear
operator PΥo∇2ϕ(a) is positive semi-definite (positive definite) over Υ, for a ∈ Υ.

Next, we consider the problem of the minimization of a smooth function ϕ(.) defined on a smooth
submanifold M of dimension r embedded in Rk. This problem enters in the domain of differential
geometry and optimization on Riemannian manifolds described comprehensively in [3][164][11].
We first precise what we mean by a smooth function and a smooth embedded manifold in Rk in the
following definitions, which will be sufficient for our purpose.

Definition 2.3. Given any set Q ⊂ Rk and a mapping ϕ(.) from Q to Rm, we say that ϕ(.) is Cp

smooth if, ∀a ∈ Q, there is a neighborhood U of a in Rk and a Cp differentiable mapping ϕ̂(.) from
U to Rm that agrees with ϕ(.) on U ∩Q. Here we assume that p lies in N∗ ∪ {∞}.

Definition 2.4. Let M be a nonempty subset of Rk. We say that M is a Cp embedded submanifold
of dimension r of Rk, with r ≤ k, if for each point a ∈ M, there is an open neighborhood U around
a in Rk such that U ∩M = f−1(0k−r) for some Cp differentiable map f(.) from U to Rk−r, with
its differential at a, f

′
(a), being a surjective linear operator, which is equivalent to say that f

′
(a)

has full rank equal to k − r.

18

The mapping f(.) is called a local defining function for M at a. This definition implies that, locally
around a, a smooth embedded submanifold (of dimension r) looks like a subspace of dimension
r of Rk, which is also the dimension of the kernel of f

′
(a), see Theorem 3.12 of Boumal [11]

or Theorem 2.1.10 of Robbin and Salomon [164] for details. More precisely, if M is a smooth
submanifold of Rk, it admits a tangent space noted TaM, which is nothing else than the kernel of
f

′
(a), where f(.) is any local defining function for M at a (see Theorem 3.15 of Boumal [11] or

Theorem 2.2.3 of Robbin and Salomon [164]) and this tangent space can be interpreted as a vector
subspace of Rk that approximates the smooth submanifold locally. Thus, a smooth (sub)manifold
of dimension r is defined as a set that locally looks like a r-dimensional space, but can be very
different globally.

Next, we clarify what we call a tangent vector to an arbitrary subset C of a general vector space X
at a point a ∈ C in the following definition, which will also be sufficient for our purpose:

Definition 2.5. Let X be a normed vector space and C a nonempty subset of X . A vector d ∈ X is
a tangent vector to C at a ∈ C, if and only if, it exists α > 0 and a mapping ε(.) from [−α, α] to X
such that

a+ t.d+ t.ε(t) ∈ C,∀t ∈ [−α, α], and lim
t→0

ε(t) = 0 ,

or, equivalently, if it exists an open interval I of R containing t = 0 and a function E : I → C such
that E(.) is derivable at t = 0 with d = E ′

(0) and E(0) = a.

The set of all tangent vectors to C at a ∈ C is noted TaC. If TaC is a linear subspace of X , it is
called the tangent space to C at a.

Note that, in this definition, it is only required that the function E(.) is derivable at t = 0, not on all I
and this definition is sufficient for many results stated in [11] or [164] for a Cp or C∞ differentiable
function E(.) on all I . Furthermore, keep in mind that if M is a Cp embedded submanifold in the
sense of Definition 2.4, all the elements of its tangent space at a given point a ∈ M, defined as the
kernel of f

′
(a) for any given local defining function f(.) for M at a, verify Definition 2.5 and the

terminology is thus consistent [11][164].

Let M be a Cp embedded submanifold of dimension r of Rk in the sense of Definition (2.4). If
we now endow Rk with its standard Euclidean inner product, TaM, which is a linear subspace of
Rk, admits an orthogonal supplementary subspace in Rk, which is called the normal space of M at
a and is denoted by NaM in the following. Both TaM and NaM are linear subspaces of Rk and
we have the identity: Rk = TaM⊕NaM, which is equivalent to say that any vector of Rk can be
written uniquely as the sum of an element of TaM and an element of NaM.

Suppose now that we want to minimize a Cp smooth function ϕ(.) from a smooth submanifold
M ⊂ Rk to R. To define and also analyze Riemannian optimization methods on M for solving
this kind of problems, we need to define the notions of the Riemannian gradient and Hessian, which
will be obviously different from their Euclidean analogs as M is only locally homeomorphic to an
Euclidean vector space. First, similarly to the standard case of a differentiable function from an
open set U to R, the smooth function ϕ(.) admits a differential at a ∈ M, which is a linear mapping
from TaM to R denoted also by ϕ

′
(a) [3][164][11]. If, ∀a ∈ M, we equip TaM with the standard

Euclidean inner product induced by Rk, e.g.,

⟨., .⟩TaM = ⟨., .⟩2,∀a ∈ M ,

M is then, by definition, equipped with a smoothly varied inner product on all its tangent spaces and
(M, ⟨., .⟩2) is a Riemannian manifold [3][164][11]. In this setting, the Riemannian gradient of ϕ(.)
at a ∈ M, denoted here by ∇Rϕ(a), is then defined as the unique vector in TaM satisfying

ϕ
′
(a)(b) = ⟨∇Rϕ(a),b⟩TaM = ⟨∇Rϕ(a),b⟩2 , ∀b ∈ TaM ,

19

where ϕ
′
(a) is the differential of the smooth mapping ϕ(.) at a in the sense defined above. We can

also define the Riemannian Hessian of the smooth mapping ϕ(.) at a, denoted by ∇2
Rϕ(a), which

is a self-adjoint linear operator from TaM to TaM defined by

∇2
Rϕ(a)[b] = ∇̃b∇Rϕ(a),∀b ∈ TaM ,

where ∇̃(.)(.) denotes the so-called Levi-Civita connection on M. The Levi-Civita connection
∇̃ηaξa on the Riemannian manifold M acting on two vector fields, ηa and ξa, in the tangent bundle
of M (the tangent bundle is the disjoint union of all the tangent spaces of the manifold M, see
Definition 3.42 in Boumal [11]) is a generalization of the notion of directional derivative of a vector
field on the manifold M. In this way, the Levi-Civita connection ∇̃ηaξa can be interpreted as the
directional derivative of the vector field ξa ∈ TaM in the direction of ηa ∈ TaM. Note further
that the Riemannian gradient ∇Rϕ(.) defined for all a ∈ M is a vector field from M to its tangent
bundle and, in this condition, the Riemannian Hessian ∇2

Rϕ(a)[b] can thus be interpreted as the
directional derivative of the Riemannian gradient of ϕ(.) at a ∈ M in the direction of b ∈ TaM.
See Section 3.5 of Boumal [11], Chapter 3 of Robbin and Salomon [164] or Section 5.3 of Absil et
al. [3] for more information.

Furthermore, if ϕ(.) is a Cp smooth mapping, it can be extended to a Cp differentiable function ϕ̂(.)
on an open neighborhood U of Rk such that M ⊂ U (see Proposition 3.31 of Boumal [11]) and
if, in addition, we equip the submanifold M with the Euclidean metric of the ambient linear space
on all its tangent spaces, we have the following relationships between the Riemannian gradient and
Hessian of ϕ(.) with the Euclidean gradient of ϕ̂(.), respectively:

∇Rϕ(a) = PTaM
(
∇ϕ̂(a)

)
, ∀a ∈ M . (2.48)

and

∇2
Rϕ(a)[b] = PTaM

(
J
(
∇Rϕ(a)

)
[b]
)

= PTaM

(
J
(
PTaM∇ϕ̂(a)

)
[b]
)
,∀a ∈ M, ∀b ∈ TaM , (2.49)

where PTaM denotes the orthogonal projector operator onto TaM in Rk and J
(
∇Rϕ(a)

)
is the

usual Euclidean derivative (e.g., Jacobian matrix operator) of the Riemannian gradient of ϕ(.) at
a. In words, if the metric on M is inherited from the ambient Euclidean space, the Riemannian
gradient is just the tangent space projection of the embedded gradient in the ambient space and the
Levi-Civita connection on M is the tangent space projection of the Levi-Civita connection on the
ambient space, which is equivalent to the Euclidean (directional) derivative.

Alternatively, again in the case of an embedded submanifold, the Riemannian Hessian of ϕ(.) can
be defined by means of so-called second-order retractions, which are second-order approximations
of the exponential map, see Propositions 5.5.4 and 5.5.5 in [3] and Proposition 3 in [1] for details.
This also allows to derive the Riemannian Hessian of a cost function defined on an embedded
submanifold in terms of standard Euclidean derivatives as in equation (2.49). See Appendix A
of [185] for an illustration with the Riemannian Hessian of the the cost function φ(.) used in the
formulation (P0) of the WLRA problem in the case of binary weights and also Proposition 2 in [116]
for a generalization to an arbitrary twice differentiable cost function φ(.) defined on the smooth
matrix submanifold Rp×nk embedded in Rp×n. These results are useful in our WLRA context and
will be used later, see equation (3.9) in Subsection 3.2.

Finally, the first- and second-order stationary conditions for a Cp smooth real function ϕ(.) de-
fined on a submanifold M ⊂ Rk are exactly similar to their standard Euclidean counterparts when
the search space is reduced to a linear subspace embedded in Rk [89] : a vector â ∈ M is a
first-order critical point for ϕ(.) if the vector ∇Rϕ(â) ∈ TâM is equal to the zero-vector. Using
equation (2.48), this is equivalent to say that the usual Euclidean gradient of the differentiable ex-
tension ϕ̂(.) at â, ∇ϕ̂(â), is orthogonal to TâM, e.g., that ∇ϕ̂(â) ∈ NâM. Thus, â ∈ M is a

20

first-order stationary point of the Cp smooth real function ϕ(.) if one of the following equivalent
conditions are satisfied

∇ϕ̂(â) ∈ NâM ⇐⇒ PTâM
(
∇ϕ̂(â)

)
= 0k ⇐⇒ ∥PTâM

(
∇ϕ̂(â)

)
∥2 = 0 , (2.50)

where ϕ̂(.) is a differentiable extension in the ambient linear space of the smooth function ϕ(.) at
â. On the other hand, a vector â ∈ M is a second-order critical point for ϕ(.) if it is a first-order
critical point for ϕ(.) and if, in addition, the self-adjoint operator ∇2

Rϕ(â) defines a (symmetric)
positive semi-definite bilinear form on TâM. Finally, a vector â ∈ M is a strict (local) minimum
of the smooth real function ϕ(.) if it is a first-order critical point for ϕ(.) and if, in addition, the
self-adjoint operator ∇2

Rϕ(â) defines a (symmetric) positive definite bilinear form on TâM.

In the following, we will also be concerned with the minimization of a smooth real mapping ϕ(.)
defined over a smooth submanifold M ⊂ Rk (or M ⊂ Rp×k), where ϕ(.) is invariant under
the action of a certain group G, which allows us to define an equivalence relation ∼ in the total
computational space M. In these conditions, all the elements of a given equivalence class of ∼
have the same value for ϕ(.). The quotient M/ ∼ generated by this equivalence relation consists
of elements that are equivalence classes. If å ∈ M/ ∼ then its vector representation in M is a.
Because of the invariance property, we want to minimize ϕ(.) over the set of equivalence classes
M/ ∼ instead on M. This leads to the notion of smooth and Riemannian quotient manifolds if
some conditions on the group G are satisfied [3][11]. An important example of quotient manifolds
is the Grassmann manifold which is the collection of all linear subspaces of a given dimension k in
a particular Euclidean space of dimension n > k and is denoted by Gr(n, k); see Chapter 9 of [11]
for a comprehensive overview of general quotient manifolds and Gr(n, k). More precisely, each of
these linear subspaces can be represented by a n×k matrix of rank k whose columns form a basis of
this given subspace and all the n×k matrices of rank k which are associated with the same subspace
of rank k form obviously an equivalence class, which can be identified with each subspace of rank
k embedded in the Euclidean space of dimension n. See Section 3 for more concrete examples of
Grassmann manifolds in the context of the WLRA problem.

On such smooth quotient manifolds, the concept of tangent space to the quotient manifold M/ ∼
at å ∈ M/ ∼ can be also defined and this abstract tangent space will be denoted by TåM/ ∼
or simply by TåM by an abuse of notation. Furthermore, the notions of Riemannian gradient and
Hessian of the smooth mapping ϕ(.) defined (again with a slight abuse of notation) on M/ ∼ and
such that ϕ(̊a) = ϕ(a), ∀̊a ∈ M/ ∼ with a ∈ å ⊂ M, can be extended. First- and second-
order optimality conditions of ϕ(.) for an element of M/ ∼ can also be formulated. More detailed
information on the related backgrounds can be found in Section 3.4 of Absil et al. [3] or in Sec-
tion 9.8 of Boumal [11]. Comprehensive introduction to these abstract notions are also provided
in [130][132][133][14]. Fortunately, when M is an embedded submanifold of Rk (or Rp×k) and
inherits of the Euclidean (or Frobenius) metric of the ambient linear space, each abstract element of
TåM/ ∼ (where å ∈ M/ ∼ and a ∈ M) can be uniquely represented by an element of the tangent
space TaM whose direction in the total space M does not induce a displacement (from a) along
the equivalence class å. This is achieved by decomposing the tangent space TaM to the total space
M at a in the following complementary and orthogonal direct sum

TaM = HaM⊕VaM ,

where HaM and VaM are orthogonal (with respect to the inner product of the ambient linear
space) linear subspaces of TaM. VaM is called the vertical space of M at a and is the set of
tangent vectors to M at a, which do induce a displacement along the equivalence class å. The
horizontal space HaM is the orthogonal complement of VaM and provides a valid and one-to-one
representation of the abstract tangent vectors to the quotient space M/ ∼ at å; see Section 9.4
of [11] for more information. Displacements in the vertical space leave the vector a, representing
the equivalence class å, unchanged. This justifies to restrict both tangent vectors and metric to the
horizontal space HaM [3][11].

21

Provided that the inherited Euclidean metric defined in the total space M is invariant along the
equivalence classes in M/ ∼, the quotient space M/ ∼ endowed with this (Riemannian) metric
is called a Riemannian quotient manifold of M [3][11]. For such Riemannian quotient manifold
M/ ∼ whose total space M is a submanifold embedded in a Euclidean space, we can then obtain
convenient practical representations for the abstract Riemannian gradient and Hessian of ϕ̊(.) (de-
fined on M/ ∼) at å by simply replacing the tangent space TaM by its horizontal space HaM in
expressions (2.48) and (2.49):

∇Rϕ(̊a) ≃ PHaM
(
∇ϕ̂(a)

)
, ∀a ∈ M . (2.51)

and

∇2
Rϕ(̊a)[b̄] ≃ PHaM

(
J
(
PHaM∇ϕ̂(a)

)
[b]
)
,∀a ∈ M, ∀b ∈ HaM , (2.52)

where PHaM denotes now the orthogonal projector operator onto HaM in the ambient linear space
Rk, b̄ is an abstract tangent vector of the quotient manifold M/ ∼ at å ∈ M/ ∼, which is
uniquely represented by the so-called horizontal lift b ∈ HaM, and ϕ̂(.) is a Cp differentiable
extension of the smooth function ϕ(.) defined on M to an open neighborhood U of Rk (or of
Rp×k) such that M ⊂ U . See Mishra et al. [130][132][133] or Boumal and Absil [14] for concrete
illustrations of these abstract objects in the context of the WLRA problem. Importantly, the first-
and second-order critical conditions for ϕ(.) on the quotient manifold M/ ∼ can now be expressed
and evaluated concretely in terms of PHaM

(
∇ϕ̂(a)

)
and PHaM

(
J
(
PHaM∇ϕ̂(a)

)
[b]
)

as for a
”standard” submanifold embedded in a Euclidean linear space. As an illustration, the first-order
stationary condition for å ∈ M/ ∼ becomes

PHaM
(
∇ϕ̂(a)

)
= 0k ⇐⇒ ∥PHaM

(
∇ϕ̂(a)

)
∥2 = 0 . (2.53)

The minimization of a real function ϕ(.) over a nonempty (arbitrary) set K ⊂ Rk (or more generally
over a subset of a Euclidean or Frobenius linear space) is more involved than solving the same
problem over the whole linear space Rk, or over one of its linear subspaces or one of its embedded
smooth submanifolds described above. The first difficulty comes up in characterizing the optimality
of feasible solutions itself, e.g., the necessary first- and second-order conditions for a point â ∈ K
to be a local minimizer of ϕ(.) over K. Here, the feasible set K and its topological properties play
a role as important as the properties of the function ϕ(.) itself as it is first necessary to characterize
which search directions are admissible around â ∈ K. It is well known now that these admissible
directions are related to the notions of tangent and normal cones to the set K at â, see Chapter 6
of Rockafellar and Wets [165] and also Ruszczynski [160]. Moreover, minimizing an even C∞

differentiable real function ϕ(.) over a nonempty subset K ⊂ Rk leads to different and confusing
notions of stationarity [165][84][112][144][151].

We now introduce the required elements of variational geometry to characterize the first- and
second-order stationarity conditions of a possible local solution â to the minimization of ϕ(.) over
a nonempty (arbitrary) set K ⊂ Rk.

Definition 2.6. A subset C ⊂ Rk is called a cone if it contains the zero-vector and contains with
each of its vectors, all positive multiples of that vector, e.g., if a ∈ C ⇒ λ.a ∈ C , ∀λ ∈ R+∗.

As an illustration, the set consisting of a nonzero-vector a ∈ Rk and all of its positive multiples λ.a
(with λ ≥ 0) is a particular cone, which is called a ray. In other words, a cone, which is distinct
from {0k}, is therefore composed of the union of the rays it contains.

Next, if K is a nonempty subset of Rk, the (dual) polar of K, noted Ko, is the set

Ko :=
{
b ∈ Rk / ⟨a,b⟩2 ≤ 0 , ∀a ∈ K

}
. (2.54)

First of all, we see that the polar of K depends on the scalar product used in Rk, if we changed this
scalar product then Ko is also changed. Geometrically, Ko is the set of all vectors in Rk, which

22

have an angle of at least 90° with every vector in K. Next, note that Ko is a cone, as it obviously
contains 0k, but also λ.b for any λ ≥ 0 if b ∈ Ko. Ko is further convex and closed in Rk as the
above definition of Ko expresses Ko as the intersection of a family of closed half-spaces, which are
also all convex:

Ko =
⋂
a∈K

{
b ∈ Rk / ⟨a,b⟩2 ≤ 0

}
.

If K is a nonempty subset of Rk, its orthogonal complement is the set:

K⊥ := Ko ∩ (−K)o =
{
b ∈ Rk / ⟨a,b⟩2 = 0 , ∀a ∈ K

}
. (2.55)

We deduce immediately that K⊥ is a closed convex cone of Rk as the intersection of two closed
convex cones. Obviously, K⊥ is also a linear subspace of Rk. Interestingly, if K is a linear subspace
of Rk, we have K = −K and, consequently, K⊥ = Ko. Thus, polarity generalises the notion of
orthogonality between linear subspaces discussed in Subsection 2.1 to arbitrary nonempty subsets
of Rk. If K1 and K2 are two nonempty cones of Rk, we have

(K1 ∪ K2)
o = (K1 +K2)

o = Ko
1 ∩ Ko

2 .

In addition, if K1 and K2 are two closed convex cones then

(K1 ∩ K2)
o = Ko

1 +Ko
2 ,

and, finally, the property Koo = K is true if K is a closed convex cone. See Deutsch [39] for more
details on (convex) cones and their polars.

We now introduce the general concepts of tangent and normal vectors at a nonempty set K ⊂
Rk, which generalize the notions of tangent and normal vectors at a smooth submanifold of Rk
introduced above, following [165]; see also [79] or [160] for a more gentle introduction to these
concepts.

Definition 2.7. For a nonempty set K ⊂ Rk and a point ā ∈ K, a vector d ∈ Rk is said to be
tangent to K at ā, when there exists a sequence (ak)k∈N∗ in K tending to ā and a sequence (tk)k∈N∗

in R+∗ tending to zero (e.g., decreasing to zero) such that the vectors bk =
(ak−ā)

tk
tend to d, e.g., if

lim
k→∞

(ak − ā)

tk
= d .

Note that, if limk→∞
(ak−ā)

tk
= d, it is implicit that the sequence (ak)k∈N∗ tends to ā, as otherwise

the above limit does not exist as the sequence (tk)k∈N∗ tends to zero. Consequently, some authors
define a tangent vector without the condition that the sequence (ak)k∈N∗ tends to ā. Furthermore,
different, but equivalent, definitions of a tangent vector are also used in the literature, see Guig-
nard [60], Equation 2.2 of Schneider and Uschmajew [173] and Section 5.1 of Hiriart-Urruty and
Le Marechal [79] for details.

This new definition of tangency generalizes the classical Definition 2.5 in which a tangent vector d
to K at ā is the derivative at ā of some curve drawn on K. This classical definition is not relevant
here as K can be a subset of Rk of discrete type and also because half-derivatives are key here
instead of full-derivatives as in standard differential geometry.

We observe immediately that 0k is always a tangent vector at K for any ā ∈ K: it suffices to take
ak = ā, ∀k ∈ N∗. Furthermore, if d is a tangent vector to K at ā, then α.d for α > 0 is also a
tangent vector to K at ā since it suffices to change tk to tk

α in the Definition 2.7 of a tangent vector.
In other words, the set of all tangent vectors to K at ā in the sense of Definition 2.7 is a cone. The
next theorem further shows that the set of all tangent vectors to K at ā is in fact a closed cone,
which is called the tangent cone (or the contingent or Bouligand’s cone) to K at ā and is denoted by
T B
ā K.

23

Theorem 2.4. Let K be a nonempty subset of Rk and let ā ∈ K. The set T B
ā K of all tangent

directions for K at ā in the sense of Definition 2.7 is a closed cone.

Proof. Omitted. See Lemma 3.12 of [160] or Proposition 5.1.3 of [79].

Furthermore, it is not difficult to see that if ā is an interior point of K (e.g., ā ∈ K̊), we have
T B
ā K = Rk. Thus, ”the interesting” points are those on bd(K), the boundary of K. We next define

the notion of normal vectors or directions to a set K in the regular sense following [165]:

Definition 2.8. For a nonempty set K ⊂ Rk and a point ā ∈ K, a vector d ∈ Rk is said to be normal
to K at ā in the regular sense, or a regular normal, if

⟨d,a− ā⟩2 ≤ O(∥a− ā∥2) , ∀a ∈ K ,

where we denote by O(∥a− ā∥2), for a ∈ K, a term with the property that O(∥a−ā∥2)
∥a−ā∥2 tends to zero

when a tends to ā in K, with a ̸= ā.

The set of normal vectors to K at ā in the regular sense is called the Frechet normal cone to K at ā
and is denoted by NF

ā K.

This name is justified by the following result, which provides a more comprehensive interpretation
of the set of normal vectors in the regular sense to K at ā.

Theorem 2.5. Let K be a nonempty subset of Rk and let ā ∈ K. The set NF
ā K of all regular normal

vectors is characterized by

d ∈ NF
ā K ⇐⇒ ⟨d,a⟩2 ≤ 0 , ∀a ∈ T B

ā K .

In other words, we have NF
ā K = (T B

ā K)o and the Frechet normal cone to K at ā is the polar of the
Bouligand tangent cone to K at ā and is, thus, a closed convex cone.

Proof. Omitted. See Propostion 6.5 in Rockafellar and Wets [165].

Thus, the normal vectors to K at ā in the regular sense, apart from 0k, are simply the vectors d of
Rk that make a right or obtuse angle with every tangent vector a to K at ā. Importantly, if the subset
K is an embedded submanifold of Rk, the Bouligand tangent and Frechet normal cones to K at ā
reduce, respectively, to the tangent and normal spaces to K at ā [165], e.g.,

T B
ā K = TāK and NF

ā K = NāK .

Thus, in a sense, the notions of Bouligand tangent and Frechet normal cones generalize the concepts
of tangent and normal spaces to a smooth submanifold, described above, to an arbitrary nonempty
set K embedded in a given Euclidean vector or Frobenius matrix space. Furthermore, we will
see now that the first- and second-order optimality conditions for mimimizing a real function ϕ(.)
over K can also be interpreted as an extension of the first- and second-order optimality conditions
required over a smooth submanifold discussed above.

The motivation and interest for the above paragraphs about cones, tangent and normal directions are
related to this task and come from the following Theorem 2.6, which provides a first basic first-order
necessary condition for a vector â to be a solution of the minimization of a real function ϕ(.) over a
nonempty (arbitrary) subset K ⊂ Rk (or more generally a subset of a normed vector space of finite
dimension).

To be more precise, consider a nonempty set K ⊂ Rk, a differentiable function ϕ(.) : Ω −→
R, where Ω is open in Rk and such that K ⊂ Ω, and the constrained optimization problem
mina∈K ϕ(a). Note that we don’t assume here that K is open, so if the constrained problem has
a (local) solution â, this solution â can be a boundary point of the feasible set K, in which case
the necessary conditions of optimality formulated above in equations (2.44) and (2.45) do not have

24

to be satisfied because the perturbations da to the vector â such that â + da /∈ K do not have to
be taken into account and therefore they may correspond to a decrease of the cost function ϕ(.).
In order to obtain a correct first-order necessary condition for optimality in a such case, the next
theorem shows that we can restrict the set of possible perturbations da to the tangent directions to
K at â in the sense of Definition 2.7, e.g., to the elements of the Bouligand’s cone to K at â.

Theorem 2.6. Let K be a nonempty subset of Rk and assume that ϕ(.) is a differentiable real
function from an open subset Ω of Rk to R such that K ⊂ Ω. If ϕ(.) has a local minimum over K at
â, then ϕ(.) has not descent vector d ∈ T B

â K, i.e.,

⟨∇ϕ(â),d⟩2 ≥ 0 , ∀d ∈ T B
â K , (2.56)

which is equivalent to say that

−∇ϕ(â) ∈ NF
â K = (T B

â K)o . (2.57)

In words, if a vector â is a local minimizer of ϕ(.) over K, the anti-gradient −∇ϕ(â) is a normal
vector in the regular sense to K at â, which is equivalent to say that −∇ϕ(â) is an element of the
Frechet normal cone to K at â.

Proof. See Theorem 3.24 of Ruszczyinski [160], Theorem 6.12 of Rockafellar and Wets [165] or
Theorem 1 of Guignard [60] for a proof.

Thus, Theorem 2.6 and equation (2.57) provides a first-order optimality condition for the problem
of minimizing ϕ(.) over K at a point â and we will say that â is a Frechet first-order stationarity
point for this minimizaion problem if such condition is fulfilled. However, beware that other first-
order optimality conditions have been proposed in the literature by replacing the Frechet normal
cone NF

â K in equation (2.57) by other cones like the so-called Mordukhovich or Clarke normal
cones depending on the assumed properties for the function ϕ(.); see [165][84][116][151][144]
for more information. However, if we only assume that ϕ(.) is a continuously differentiable or
twice continuously differentiable function, the above Frechet stationarity provides the strongest
necessary condition [116][144] and this is the first-order optimality condition we shall use in this
monograph.

We now derive a more convenient expression to check that a given point â ∈ K is a Frechet first-
order stationary point based on the notion of metric projection onto an arbitrary nonempty subset
K ⊂ Rk (or more generally a subset of an arbitrary normed vector space), which generalizes the con-
cept of an orthogonal projection operator onto a linear subspace introduced in Subsection 2.1.

Let first K be a linear subspace of Rk and denote by ProjK(.) the orthogonal projector map-
ping onto the subspace K. ProjK(.) is linear, idempotent (ProjKoProjK = ProjK), non-expansive
(∥ProjK(a)∥2 ≤ ∥a∥2 , ∀a ∈ Rk) and it defines a direct sum of Rk as a = ProjK(a) +
ProjK⊥(a) , ∀a ∈ Rk.

We now generalize this operator to the case where K is only a nonempty closed and, eventually,
convex set in Rk. We will also see that, if K is in addition a cone in the sense of Definition 2.6,
almost all the above properties of an orthogonal projector can be conserved or extended to the metric
projection operator. Let us first define precisely the metric projection operator with the following
definition.

Definition 2.9. Let K be a nonempty subset of Rk and a ∈ Rk. An element b ∈ K is called a
nearest point to a from K if

∥a− b∥2 = d(a,K) ,

where d(a,K) := infd∈K ∥a − d∥2. The number d(a,K) always exists and is called the distance
from a to K. Next, the possibly empty, discrete or infinite set of all nearest points from a to K is
denoted by PK(a). In other words,

PK(a) :=
{
b ∈ K / ∥a− b∥2 = d(a,K)

}
.

25

This defines a mapping PK(.) from Rk to the subsets of K called the metric projection onto K.

If each a ∈ Rk has at least (respectively, exactly) one nearest point in K, then K is called a prox-
iminal (respectively, Chebyshev) set [39]. In other words, K is proximinal if PK(a) ̸= ∅ ,∀a ∈ Rk
and is Chebyshev, if and only if, PK(a) =

{
b
}
, with b ∈ K ,∀a ∈ Rk. In this last case, PK(.) can

be viewed simply as a mapping from Rk to K in the usual sense. This will be for example the case
if K is a linear subspace of Rk (in which case PK(.) is simply the orthogonal projector ProjK(.)) or,
more generally, if K is a closed convex set, as we will show shortly.

First, if we assume that K is a nonempty closed subset of Rk then all points a ∈ Rk have at least
one nearest point in K. To see this, define a real function fa(.) from Rk to R,∀a ∈ Rk, by

fa(b) = ∥b− a∥2 , ∀b ∈ Rk ,

take a point c ∈ K and define the sublevel set

Sc = {b ∈ Rk / fa(b) ≤ fa(c)} .

Sc is a compact set of Rk as fa(.) is continuous, [−∞ , fa(c)] is closed in R and Sc is bounded by
definition. Then, we have obviously

d(a,K) = inf
b∈K∩Sc

fa(b) ,

which has a solution in K as fa(.) is continuous and K∩ Sc is compact (since K∩ Sc is closed and
bounded) in Rk. This implies, the existence of, at least, one nearest point in K to a for all a ∈ Rk
if K is closed.

On the other hand, if K is a convex subset of Rk, then ∀a ∈ Rk, a has at most one nearest point
in K. To demonstrate this claim suppose that K is convex and that a ∈ Rk has two distinct nearest
points in K, say b1 and b2. By using the parallelogram law with d1 = b1 − a and d2 = b2 − a,
we get

∥d1 + d2∥22 + ∥d1 − d2∥22 = 2.∥d1∥22 + 2.∥d2∥22

=⇒ ∥b1 + b2

2
− a∥22 = ∥b1 − a∥22 −

1

4
∥b1 − b2∥22 .

Since K is convex, b1+b2
2 belongs to K and we have ∥b1+b2

2 −a∥22 < ∥b1−a∥22, which contradicts
the fact that b1 is a nearest point to a in K.

In summary, if K is a nonempty closed and convex subset of Rk, PK(a) = {c} with c ∈ K , ∀a ∈
Rk, and, by an abuse of notation, the metric projection defines effectively a simple metric projection
mapping PK(a) = c, which to each a ∈ Rk associates its unique nearest point in K. Interestingly,
when K is a nonempty closed and convex set, the point PK(a) = c is equivalently characterized by
the following property:

PK(a) = c ⇐⇒ ⟨a− c,b− c⟩2 ≤ 0 , ∀b ∈ K , (2.58)

see Theorem 3.1.1 of Hiriart-Urruty and Le Marechal [79] for a proof. This equivalence can be
obviously restated with the help of the polar cone of the set (K − c) as

PK(a) = c ⇐⇒ a− c ∈ (K − c)o ,

which generalizes the property a− ProjK(a) ∈ K⊥ when K is a subspace of Rk and ProjK(.) is the
orthogonal projector onto K. Furthermore, when K is a nonempty closed and convex subset of Rk,
we have the following additional properties [79][39]:

- the set {a ∈ Rk / PK(a) = a} of fixed points of PK(.) is K itself;

26

- the metric projection mapping is idempotent, e.g., PKoPK = PK and this justifies the term metric
projection for PK(.);

- The metric projection mapping PK(.) is nonexpansive in the sense that ∥PK(a) − PK(b)∥2 ≤
∥a−b∥2 , ∀a,b ∈ Rk, implying that the metric projection mapping PK(.) is uniformly continuous
on Rk. Furthermore, if K is also a cone, 0k ∈ K and we have ∥PK(a)∥2 ≤ ∥a∥2 , ∀a ∈ Rk, as for
the orthogonal projector ProjK(.) when K is a subspace of Rk;

- and, finally, PK(.) is a linear operator if and only if K is a linear subspace of Rk.

Suppose now that K is a nonempty subspace of Rk. Then, K is a closed convex set and the metric
projection operator PK(.) is well defined as a mapping from Rk to K. However, we also know from
the results of Subsection 2.1 that

inf
d∈K

∥a− d∥2 = mind∈K∥a− d∥2 = ∥a− ProjK(a)∥2 , ∀a ∈ Rk ,

where K is a nonempty linear subspace of Rk and ProjK(.) is the unique orthogonal projector
operator onto K. Consequently, as the metric projection operator PK(.) also solves uniquely this
minimization problem in K, we deduce immediately that ProjK(a) = PK(a), ∀a ∈ Rk. Thus, when
K is a linear subspace, the metric projection mapping PK(.) is nothing else than the orthogonal
projector operator onto K, ProjK(.), suggesting again that we can interpret the metric projection
mapping as an extension of the orthogonal projector mapping.

All these different properties confirm that we can somehow interpret the metric projection mapping
as an extension of an orthogonal projector mapping when the set of fixed points is a closed and
convex subset rather than a linear subspace. Furthermore, we come even closer to an orthogonal
projector, if we further assume that K is also cone, since in that case we have

a = PK(a) + PKo(a) with ⟨PK(a), PKo(a)⟩2 = 0 , ∀a ∈ Rk ,

which generalizes the canonical orthogonal decomposition a = ProjK(a) + ProjK⊥(a) when K is a
subspace, see Section 3.2 of [79] for details.

Since, we will mainly use the metric projection to project onto closed cones (e.g., the Bouligand’s
tangent cone to K at a when K is a nonempty, eventually closed, subset of Rk), we focus now specif-
ically on the properties of the metric projection operator, which are still valid in this case.

First, note that if C is a closed subset of Rk, the distance function defined as dC(a) = d(a, C) from
Rk to R is well-defined (since C is closed) and continuous on Rk, see example 1.20 of Rockafellar
and Wets [165] for a proof. Next, ∀a ∈ Rk, the set PC(a) = d−1

C (a) is nonempty (as shown above),
bounded and closed, and thus compact in Rk. It is closed as the reciprocal image of the singleton
{d(a, C)} of R by the continuous distance function dC(.). It is bounded, because if we take a fixed
point c ∈ C, we have, ∀b ∈ PC(a), by definition, the inequality ∥a − b∥2 ≤ ∥a − c∥2 and the
distance of b to a,∀b ∈ PC(a) is bounded by ∥a− c∥2.

We next state the following Lemma, which will be useful to prove our next Theorem:

Lemma 2.7. Let C be a closed cone in Rk. ∀a ∈ Rk and ∀b ∈ PC(a), we have

∥b∥2 = max
(
0,maxc∈C,∥c∥2=1⟨a, c⟩2

)
=
√
⟨a,b⟩2 .

Proof. Omitted. See Proposition A.6 of Levin et al. [112] for a proof.

Theorem 2.8. Let C be a closed cone in Rk. ∀a ∈ Rk and ∀b ∈ PC(a), we have

∥b∥22 = ∥a∥22 − d(a, C)2 ,

implying that all the elements of PC(a) have the same length, and

a ∈ Co ⇐⇒ PC(a) = {0k} .

27

In words, if a belongs to the polar of the closed cone C, its metric projection over C, PC(a), is
reduced to the zero-vector of the ambiant linear space and reciprocally.

Proof. First, we have the equalities

∥b∥22 = ∥a− (a− b)∥22
= ∥a∥22 + ∥a− b∥22 − 2⟨a,a− b⟩2
= ∥a∥22 + ∥a− b∥22 − 2∥a∥22 + 2⟨a,b⟩2
= ∥a− b∥22 − ∥a∥22 + 2⟨a,b⟩2 .

Now, since C is a closed cone by hypothesis, using Lemma (2.7), we have ∥b∥22 = ⟨a,b⟩2, from
which we get

∥b∥22 = ∥a− b∥22 − ∥a∥22 + 2∥b∥22 ,

which is equivalent after simplification to

∥b∥22 = ∥a∥22 − ∥a− b∥22 = ∥a∥22 − d(a, C)2 ,

as claimed in the theorem.

We now demonstrate the implication a ∈ Co ⇒ PC(a) = {0k} , ∀a ∈ Rk. If a ∈ Co, for c ∈ C, we
have first

∥a− c∥22 = ∥a∥22 + ∥c∥22 − 2⟨a, c⟩2
and, as a ∈ Co, also the inequality ⟨a, c⟩2 ≤ 0. This implies that the term ∥c∥22 − 2⟨a, c⟩2 is strictly
positive, ∀c ∈ C\{0k}, and we get the inequality

∥a− c∥22 > ∥a∥22 , ∀c ∈ C\{0k} ,

and also
∥a− c∥2 > ∥a∥2 , ∀c ∈ C\{0k} ,

after simplification. In other words, 0k ∈ C is the unique nearest point in C to a, e.g., PC(a) = {0k}
if a ∈ Co, as claimed above.

Reciprocally, we now demonstrate the implication 0k ∈ PC(a) ⇒ a ∈ Co, ∀a ∈ Rk. First, as C is
a closed cone by hypothesis, using the first assertion of the Theorem demonstrated above, we have
∥a∥2 = d(a, C) and, ∀c ∈ PC(a), we have ∥c∥2 = 0 and, thus, PC(a) = {0k}. In other words, 0k

is the unique nearest point to a in C. Furthermore, from Lemma (2.7), we have also

maxc∈C,∥c∥2=1⟨a, c⟩2 ≤ 0 .

In order to demonstrate that a ∈ Co, e.g., that ⟨a,d⟩2 ≤ 0 , ∀d ∈ C, we now proceed by contra-
diction. Suppose that it exists d ∈ C such that ⟨a,d⟩2 > 0. Then, d ̸= 0k and ∥d∥2 ̸= 0, and we
have

maxc∈C,∥c∥2=1⟨a, c⟩2 ≤ 0 < ⟨a, d

∥d∥2
⟩2 ,

which is a contradiction, since d
∥d∥2 ∈ C, because C is a cone, and ∥ d

∥d∥2 ∥2 = 1.

Summarizing, we have, ∀a ∈ Rk,

a ∈ Co ⇐⇒ PC(a) = {0k} ,

as claimed in the Theorem and we are done.

28

Now, we can come back to our problem of reformulating the first-order stationarity condition (2.57)
for a point â ∈ K, K being an arbitrary subset of Rk, to be a (local) minimizer of a real function ϕ(.)
differentiable over an open neighborhood of K. An application of Theorem 2.8 to the anti-gradient
−∇ϕ(â) and the tangent Bouligand’s cone T B

â K, which is a closed cone, leads to the following
equivalent first-order critical conditions

−∇ϕ(â) ∈ NF
â K = (T B

â K)o ⇐⇒ PT B
â K(−∇ϕ(â)) = {0k} . (2.59)

Moreover, by a small abuse of notation, we can write PT B
â K(−∇ϕ(â)) = 0k and the first-order

stationarity condition for â ∈ K to be a (local) minimizer becomes

∥PT B
â K(−∇ϕ(â))∥2 = 0 , (2.60)

where PT B
â K(−∇ϕ(â)) designs now any of its elements since they have all the same length ac-

cording to Theorem 2.8. Note the similarity of this first-order condition (2.59) or (2.60) with the
one stated above in equation (2.50) in the case where K is an embedded smooth submanifold of
Rk.

To conclude these paragraphs on optimality conditions for a real function ϕ(.) at a point â ∈ K,
where K is an nonempty arbitrary subset of Rk, we now recall in the following theorem the neces-
sary second-order condition for a point â ∈ K to be a (local) minimizer over K of a cost function
ϕ(.) twice continuously differentiable over an open neighborhood of K in Rk.

Theorem 2.9. Let K be a nonempty subset of Rk and assume that ϕ(.) is a real function twice
continuously differentiable over an open neighborhood of K in Rk and that â ∈ K is a (local)
minimizer of ϕ(.) over K. Then, for every d ∈ T B

â K satisfying ⟨∇ϕ(â),d⟩2 = 0 we have

⟨∇ϕ(â), c⟩2 + ⟨
[
∇2ϕ(â)

]
(d),d⟩2 ≥ 0 , ∀c ∈ T B

(â,d)K , (2.61)

where T B
â K is the Bouligand tangent cone to K at â and T B

(â,d)K is the second-order (Bouligand)
tangent set to K at â in the direction of d ∈ T B

â K (see Definition 3.41 in Ruszczynski [160] for
a precise definition of this second-order tangent set). Note, however, that T B

(â,d)K is not a cone in
general, nor it is convex.

Proof. Omitted. See Theorem 3.45 of Ruszczynski [160] for a proof.

Using Theorem 2.9, we will say that â ∈ K is a (Frechet) second-order stationarity point of ϕ(.)
over K if it is a (Frechet) first-order stationarity point for ϕ(.) and if, in addition, the condition 2.61
is fulfilled.

In the following sections, we will also manipulate (differentiable) scalar, vector or matrix functions
with a matrix argument A ∈ Rp×n. As an illustration, let ϕ(.) be a scalar function defined on Rp×n.
If Rp×n is equipped with its usual Frobenius inner product, the gradient of ϕ(.) at a matrix variable
A ∈ Rp×n is also a p× n matrix, i.e.,

[
∇ϕ(A)

]
ij
=
∂ϕ(A)

∂Aij
for i = 1, · · · , p ; j = 1, · · · , n . (2.62)

Alternatively, we can interpret this gradient as a linear form
(
∇ϕ(A)

)
∈ £(Rp×n,R) defined

by

(
∇ϕ(A)

)
(C) = ⟨∇ϕ(A) , C⟩F = Tr

(
∇ϕ(A)TC

)
=

p∑
i=1

n∑
j=1

∂ϕ(A)

∂Aij
Cij , ∀C ∈ Rp×n .

29

On the other hand, the Hessian of ϕ(.) at A ∈ Rp×n can be viewed as a 4th order tensor of dimension
p×n×p×n, instead of a symmetric matrix (see equation (2.42)) as in the case of a vector argument,
which is equal to

[
∇2ϕ(A)

]
ijkl

=
∂2ϕ(A)

∂Aij∂Akl
for i = 1, · · · , p ; j = 1, · · · , n ; k = 1, · · · , p ; l = 1, · · · , n .

(2.63)
Equivalently, we can view ∇2ϕ(A) as a bilinear form

(
∇2ϕ(A)

)
, from Rp×n×Rp×n to R, defined

by (
∇2ϕ(A)

)
(C,D) =

∑
i,j,k,l

∂2ϕ(A)

∂Aij∂Akl
CijDkl , ∀C,D ∈ Rp×n .

Finally, another very useful representation of ∇2ϕ(A), implicit in the preceding one, is as a huge
p.n× p.n symmetric matrix

[
∇2ϕ(A)

]
ij
=
∂2ϕ(A)

∂ai∂aj
for i = 1, · · · , p.n ; j = 1, · · · , p.n ,

where ai is the ith element of a vectorized form of A, e.g., a = vec(A) or a = vec(AT). For ex-
ample, in Subsection 5.3 we will derive the Hessian of a real (variable projection) functional ψ(.) of
the matrix variable A ∈ Rp×k (defined in the next section) using this specific representation.

The first and second derivatives of a matrix function f(.) from Rp×n to Rq×r can also be viewed as
higher order tensors. However, it is generally more convenient to represent them as linear or multi-
linear operators [26]. For example, the first derivative of f(.) at A ∈ Rp×n is a linear operator from
Rp×n to Rq×r, e.g., Df(A) ∈ £(Rp×n,Rq×r), and the second derivative of f(.) at A, D2f(A), is
an element of £

(
Rp×n,£(Rp×n,Rq×r)

)
, which is isomorphic to £(Rp×n,Rp×n;Rq×r), the set of

bilinear maps from Rp×n into Rq×r [26]. Thus, D2f(A) can be interpreted as a bilinear operator
from Rp×n × Rp×n to Rq×r. In this way, the Hessian of a scalar function ϕ(.) with a matrix
argument A ∈ Rp×n discussed above is the first derivative of its gradient, which is a mapping from
Rp×n to Rp×n, and, thus, this Hessian can be viewed as a mapping from Rp×n to £(Rp×n,Rp×n),
e.g., for A ∈ Rp×n,

[
∇2ϕ(A)

]
∈ £(Rp×n,Rp×n) and is a linear operator from Rp×n to Rp×n.

Furthermore, we can identify the bilinear form
(
∇2ϕ(A)

)
with

[
∇2ϕ(A)

]
[26] and they verify the

equality
⟨
[
∇2ϕ(A)

]
(C) , D⟩F =

(
∇2ϕ(A)

)
(C,D) , ∀C,D ∈ Rp×n.

This identification of
(
∇2ϕ(A)

)
with

[
∇2ϕ(A)

]
can be very useful in practice as evaluating directly[

∇2ϕ(A)
]
(C) (e.g., the directional derivative of the gradient of ϕ(.) in the direction of C) can

be much cheaper and efficient than computing analytically the full Hessian ∇2ϕ(A). This is for
example the approach followed by Boumal and Absil [13][14] in their Newton Riemannian trust-
region method for solving the WLRA problem in a Grassmann manifold framework (recall that a
Grassmann manifold is the collection of all linear subspaces of a given dimension in a particular
Euclidean space as already discussed above).

Keep also in mind that all the above notions of a smooth function, smooth manifold, tangent space
to a smooth manifold, tangent and normal cones to an arbitrary subset and metric projection onto
an arbitrary subset can be defined without any difficulties in the case when the ambient linear space
is Rp×k instead of Rp if the linear space Rp×k is equipped with the standard Frobenius inner prod-
uct [116]. Moreover, the linear spaces Rp×k and Rp.k are isomorphic and the Frobenius metric on
Rp×k is equivalent to the standard Euclidean metric on Rp.k thanks to this isomorphism.

We conclude that preliminary section by a few more definitions about nonlinear optimization, which
will be useful for our next sections.

A function ϕ(.) is said to be nonlinear in some scalar parameter α, vector parameter a or matrix
parameter A if the derivatives ∂ϕ(.)

∂α , ∂ϕ(.)∂a and ∂ϕ(.)
∂A are functions of α, a and A, respectively [87].

30

As an illustration, let r(.) be a real-vector function from Rk into Rq and further assume that r(.)
is at least twice continuously differentiable. Then, the real function ϕ(.) from Rk into R defined
by

ϕ(a) =
1

2
∥r(a)∥22 =

1

2
r(a)T r(a) for a ∈ Rk (2.64)

is called a Non-Linear Least-Squares (NLLS) functional. If we differentiate ϕ(.) with respect to
a ∈ Rk (e.g., we compute its gradient at a) and equate the derivative to zero, this leads to the
following equation

∇ϕ(a) = J
(
r(a)

)T
r(a) = 0k , (2.65)

which may be used in practice to test the convergence of NLLS iterative algorithms employed for
minimizing ϕ(.) over Rk [148][45][123]. This last equation shows that the vector r(a) is orthogonal
to ran(J (r(a))), the linear subspace spanned by the columns of the Jacobian matrix of the real q-
vector function r(.) at a, if a is a stationary point of ϕ(.). Furthermore, if ϕ(.) is a NLLS functional
then its Hessian matrix is

∇2ϕ(a) = J
(
r(a)

)T
J
(
r(a)

)
+

q∑
l=1

rl(a)∇2rl(a) , (2.66)

where ∇2rl(a) is the Hessian matrix of the lth component of the q-vector function r(.) at a (i.e.,
rl(a)) given by

[
∇2rl(a)

]
ij
=
∂2rl(a)

∂ai∂aj
for i = 1, · · · , k and j = 1, · · · , k ,

for l = 1, · · · , q. Note that the factor 1
2 in the definition 2.64 of the NLLS functional ϕ(.) has

been introduced here only for notational convenience as without it a factor 2 will appear in the two
preceding equations defining ∇ϕ(.) and ∇2ϕ(.) and in many equations of this paper. Furthermore,
the second-order Taylor expansion of the NLLS functional ϕ(.) at a point a ∈ Rk has the following
form

ϕ(a+ da) = ϕ(a) + daTJ (r(a))T r(a) +

1

2
daT

(
J (r(a))TJ (r(a)) +

q∑
l=1

rl(a)∇2rl(a)

)
da+O(∥da∥32) .

These special forms of the gradient, Hessian and Taylor expansion of ϕ(.) are exploited by methods
for solving NLLS problems, see Subsection 5.1 and [45][123][87] for details.

Finally, we give the following definition, which will be also useful in the next sections:

Definition 2.10. Let m,n, p, k ∈ N∗ (e.g., the set of strictly positive integers). A NLLS problem
associated with a cost function ϕ(.) from Rk into R and a residual real-vector function r(.) from Rk
into Rm is said to be separable if the parameter vector a ∈ Rk can be partitioned as

a =

[
b
c

]
with b ∈ Rn, c ∈ Rp and n+ p = k ,

in such a way that the subproblem

min
c∈Rp

ϕ
([b

c

])
=

1

2

∥∥r([b
c

]
)
∥∥2
2

is easy to solve numerically for every fixed b ∈ Rn [63][166][87].

31

In the following, we will be particularly interested in the particular case when r(

[
b
c

]
) is linear in

c ∈ Rp, i.e.,

r(

[
b
c

]
) = F(b)c− g(b) with F(b) ∈ Rq×p and g(b) ∈ Rq .

Let c(b) denotes one solution of the above subproblem for a given b ∈ Rn and formulate the
problem

min
b∈Rn

ψ
(
b
)
= ϕ

([b
c(b)

])
=

1

2

∥∥r([b
c(b)

]
)
∥∥2
2
.

In doing that we have replaced our initial k-dimensional NLLS minimization problem by a n-
dimensional one and we have separated the vector variables b and c [166][65]. This definition is
also valid for a cost function ϕ(.) from Rp×k into R and a residual real-matrix function r(.) from
Rp×k into Rn×m. Algorithms for minimizing a separable real function ψ(.) with a vector or matrix
argument are called variable projection methods [63][95][96][166][10][149].

3 Alternative and separable forms of the weighted low-rank approxi-
mation problem

In this section, we first provide some theoretical insights into the WLRA problem and the exis-
tence of solutions for it. Of course, some information on the subject is already available in the
literature [125][33][171][62][167], but further investigations are clearly needed both theoretically
and numerically, especially about the solvability of the WLRA problem. Moreover, the WLRA
problem in its general form is much less well understood that the matrix completion or low-rank
approximation problems [62][167]. We also explain how the WLRA problem can be reformulated
in several different, but related, ways such that variable projection algorithms for separable NLLS
problems [63][96][166][10] can be used to solve it efficiently even when the number of missing
entries in the input matrix is high. Finally, we highlight the closed links between variable projection
methods and Riemannian optimization on Grassmann manifolds [3][11], which are two seemingly
different approaches often used to solve the WLRA problem numerically. Despite the similarity of
the two frameworks has already been highlighted in some studies (e.g., [82]), the near equivalence
of these two approaches (from a numerical point of view) in the context of the WLRA problem
has not been well appreciated in the literature, probably because these two approaches have been
developed in different communities [51][125][28][14][81][88].

3.1 Nonconvex formulations of the WLRA problem

A reasonable and efficient way to tackle the low-rank constraint in the formulation (P0) of the
WLRA problem is to introduce a bilinear factorization model of the low-rank matrix solution as
Y = AB with A ∈ Rp×k and B ∈ Rk×n [57][72][171]. This non-convex bilinear formulation has
a very long history in statistics [191][192][93] and has been revitalized recently for solving simi-
lar semi-definite problems [18]. This re-parametrization technique is justified by the fact that any
matrix Y of rank at most k can be written as Y = AB, with A ∈ Rp×k and B ∈ Rk×n and that,
reciprocally, any such matrix product AB is of rank at most k (see Subsection 2.1 for details). Note
that a similar multiplicative formulation holds for the (Eckart-Young) Theorem 2.1, which solves
the WLRA problem in the simple case where all elements of W are equal to one [57]. In recent
decades, this bilinear factorization approach for low-rank matrix decomposition (often called the
Burer-Monteiro factorization in the machine learning literature [18]) has also been the subject of
intense research (for efficiency reasons) in solving large-scale convex optimization problems as this
(nonconvex) reformulation of the original convex problems allows to drastically reduce the num-
ber of optimization variables from p.n to (p + n).k, when k is small (e.g., k ≪ min(p, n)), and,
thus, allowing it to scale to problems with thousands or even millions of variables [86][156][117].
However, as we will illustrate below, this increased efficiency comes with a price as the intrinsic

32

bilinearity of the multiplicative (Burer-Monteiro) formulation makes the landscape and geometry of
the factored objective functions much more complicated than the original (convex) ones with addi-
tional first-order critical and solution points that are not global optima of the factored optimization
problems, which can be also badly-conditioned matrices [117].

We begin with the following well-known and simple result:

Theorem 3.1. For X ∈ Rp×n, W ∈ Rp×n+ (i.e., Wij ≥ 0),
√
W ∈ Rp×n+ with

√
Wij =

√
Wij

and any fixed integer k ≤ rank(X) ≤ min(p, n), the problem (P0) is equivalent to the problem
(P1):

min
A∈Rp×k , B∈Rk×n

φ∗(A,B) =
1

2
∥
√
W ⊙ (X−AB)∥2F . (P1)

In other words, if we consider the range of φ(.)

Cφ =
{
y ∈ R+ / ∃Y ∈ Rp×n≤k with y = φ(Y)

}
,

and the range of φ∗(.)

Cφ∗ =
{
y ∈ R+ / ∃(A,B) ∈ Rp×k × Rk×n with y = φ∗(A,B)

}
,

these two subsets of R have the same infimum (e.g., greatest lower bound) and if this infimum is a
minimum for one subset, the other subset also admits a minimum and these two minima are equal.

Proof. Since elements of the ranges Cφ and Cφ∗ are sums of squares, they are bounded below by
zero and both Cφ and Cφ∗ admit an infimum greater or equal to zero, say c̄φ and c̄φ∗ , respectively.
Now, we will demonstrate the stronger result Cφ = Cφ∗ in which case the assertions in the theorem
are obvious.

Suppose first that y ∈ Cφ. Then, ∃Y ∈ Rp×n≤k such that y = φ(Y). Now let

Y = UΣVT

be the SVD of Y, where it is assumed that Σ is a diagonal matrix with the singular values of Y
arranged in decreasing order of magnitude in the diagonal. Since Y is of rank less than or equal
to k, this SVD will have no more than k singular triplets with a singular value distinct from zero.
Thus,

Y = UkΣkV
T
k ,

where Uk and Vk stand for submatrices formed by the first k columns of U and V, respectively,
and Σk is the submatrix defined by the first k columns and rows of Σ. Defining A = Uk and
B = ΣkV

T
k , Y can be factorized as

Y = AB with A ∈ Rp×k and B ∈ Rk×n .

However, the equation Y = AB implies that y = φ(Y) = φ∗(A,B) and, thus, y ∈ Cφ∗ .

Reciprocally, assume that y ∈ Cφ∗ . Then, it exists (A,B) ∈ Rp×k×Rk×n such that y = φ∗(A,B).
If we define Y = AB, we have rank(Y) ≤ min

(
rank(A), rank(B)

)
≤ k according to equa-

tion (2.2) and we conclude that Y ∈ Rp×n≤k . In these conditions, y = φ∗(A,B) = φ(Y) and
y ∈ Cφ and we are done.

Remark 3.1. Since any p× n matrix Y of rank at most k can also be written as Y = AB with

1) A ∈ Rp×kk , B ∈ Rk×n ,
2) A ∈ Rp×k, B ∈ Rk×nk ,

3) A ∈ Op×k, B ∈ Rk×n ,
4) A ∈ Rp×k, B ∈ Ok×n

t ,

33

and, reciprocally, any of these AB matrix products is also of rank at most k and the range of φ∗(.)
is also equal to

Cφ∗ =
{
y ∈ R+ / ∃(A,B) ∈ Rp×kk × Rk×n and y = φ∗(A,B)

}
=
{
y ∈ R+ / ∃(A,B) ∈ Rp×k × Rk×nk and y = φ∗(A,B)

}
=
{
y ∈ R+ / ∃(A,B) ∈ Op×k × Rk×n and y = φ∗(A,B)

}
=
{
y ∈ R+ / ∃(A,B) ∈ Rp×k ×Ok×n

t and y = φ∗(A,B)
}
.

In these conditions, it is immediate that the problems (P0) and (P1) are also equivalent to the prob-
lems:

1) min
A∈Rp×k

k , B∈Rk×n

φ∗(A,B) ,

2) min
A∈Rp×k , B∈Rk×n

k

φ∗(A,B) ,

3) min
A∈Op×k , B∈Rk×n

φ∗(A,B) ,

4) min
A∈Rp×k , B∈Ok×n

t

φ∗(A,B) ,

where φ∗(A,B) = 1
2∥
√
W⊙ (X−AB)∥2F and we will use these alternative forms to demonstrate

some important properties of the WLRA problem in this section and the followings. ■

Remark 3.2. By using the rank-nullity relationship (2.1) in Subsection 2.1, another way to tackle
the low-rank constraint in the WLRA problem is to impose this low-rank constraint on the di-
mensions of the null space of Y (or YT) instead on the range of Y (or YT) as in the formula-
tion (P0) [51][125][127][182]. Since, from equation (2.4), we have

null(Y) = ran(YT)⊥ and null(YT) = ran(Y)⊥ .

This is equivalent to impose the low-rank constraint on the dimensions of the orthogonal comple-
ments of ran(Y) or ran(YT) and leads to what we will call the formulation (P2) of the WLRA
problem, which has the following form if the low-rank constraint is imposed on the dimension of
ran(Y)⊥

min
N∈Rp×(p−k)

p−k , Y∈Rp×n with NTY=0(p−k)×n

φ∗∗(N,Y) =
1

2
∥
√
W ⊙ (X−Y)∥2F , (P2)

or its transpose formulation (P2t), if the low-rank constraint is imposed on the dimension of null(Y) =
ran(YT)⊥,

min
N∈Rn×(n−k)

n−k , Y∈Rp×n with YN=0p×(n−k)

φ∗∗(N,Y) =
1

2
∥
√
W ⊙ (X−Y)∥2F . (P2t)

If p < n, the formulation (P2) should be preferred as the number of parameters to be estimated is
reduced and vice versa if p > n. Here, the rank constraint is imposed by the equalities

NTY = 0(p−k)×n and YN = 0p×(n−k) ,

which are, respectively, equivalent to

dim
(
null(YT)

)
≥ p− k and dim

(
null(Y)

)
≥ n− k ,

since all the columns of N belong to the null space of YT , or Y in the second case, and N is of full
column rank in both cases. Obviously, since by the rank-nullity relationship (2.1) we have

dim
(
null(YT)

)
+ rank

(
YT
)
= p, dim

(
null(Y)

)
+ rank

(
Y
)
= n and rank(YT) = rank(Y) ,

34

this is equivalent in both cases to the rank constraint rank(Y) ≤ k, which is used in the formu-
lation (P0) of the WLRA problem. Further inspection along the same lines of Theorem 3.1 will
demonstrate that this formulation (P2) is also equivalent to the formulations (P0) and (P1). When
W ∈ Rp×n+∗ , Edelman et al. [51] and Manton et al. [125] have proposed a Grassmann manifold
framework to solve problem (P2) as the solution of this problem depends only on the span of the
columns of N. A Grassmann manifold is the collection of all linear subspaces of a given dimension
in a particular Euclidean or Frobenius space, see Subsection 2.4 and [11] for a good introduction
on manifolds and optimization on manifolds. Furthermore, they have described a large variety of
first- and second-order algorithms for minimizing the cost function φ∗∗(.) in this framework. As
we will illustrate below, the solutions of the problem (P1) also do not depend on the individual
elements of the matrices A and B, but only on the range of A and, thus, can also be formulated as
an optimization problem on the Grassmann manifold [47][14].

In these conditions, it is not difficult to recognize that each algorithm develops for minimizingφ∗∗(.)
(when W ∈ Rp×n+∗) has a dual formulation for minimizing φ∗(.) and vice versa, as determining the
range of A leads implicitly to determine its orthogonal complement. In practical applications, the
choice between an algorithm to minimize φ∗(.) or its dual version to minimize φ∗∗(.) will depend
on the values of k, p and n. For small values of k, the formulation (P1) is likely to be more efficient
as the size of the matrix variables will be smaller and, conversely, the formulation (P2) can be a
better choice for large values of k as we will deal with smaller matrix variables when minimizing
φ∗∗(.). We will come back to these alternatives in the next sections. Finally, we mention that it is
probably possible to extend the algorithms proposed by Manton et al. [125] to minimize the cost
function φ∗∗(.) to the case where W ∈ Rp×n+ instead of Rp×n+∗ , see [28] for work in this direction.
But, this is not pursued here, as in most applications, we use values of k which are much more
smaller than min(p, n) for which the formulation (P1) is likely more economical. ■

Remark 3.3. A popular way to tackle the WLRA problem is also to consider the simpler problems:

min
Y∈Rp×n

k

φ(Y) =
1

2
∥
√
W ⊙ (X−Y)∥2F , (3.1)

or
min

A∈Rp×k
k , B∈Rk×n

k

φ∗(A,B) =
1

2
∥
√
W ⊙ (X−AB)∥2F , (3.2)

which are equivalent (as rank(AB) = k if rank(A) = rank(B) = k, see Subsection 2.1) and are
also frequently solved by Riemannian optimization methods applied to smooth fixed-rank matrix
manifolds [186][130][132] as the cost functions φ(.) and φ∗(.) are infinitely differentiable (e.g.,
of class C∞) and the set Rp×nk is a smooth (C∞) embedded submanifold of Rp×n of dimension
(p + n − k)k (see Proposition 1.14 in Chap. 5 of [77], Example 8.14 of [106] or Section 7.5 in
Chap. 7 of [11]). This approach is justified by the fact that Rp×nk is dense and open in Rp×n≤k (see
Theorem 2.3) meaning that with an initial guess in Rp×nk , an iterate belonging to Rp×n<k or a non-
smooth point of φ(.) are both unlikely to occur in practice.

However, these two simpler problems are not mathematically equivalent to (P0) and (P1) for any
choice of the weight matrix W as the submanifold Rp×nk is not closed in Rp×n and a solution of
these simpler problems may be on the frontier of Rp×nk , which is Rp×n<k , as stated in Theorem 2.3.
This implies that these simpler problems may not admit a global minimizer, while such global mini-
mizer will exist for problems (P0) and (P1) [33]. Furthermore, closedness of the domain is important
in (non-convex) nonlinear optimization to garantee that the limit point of the iterative sequence is
still in the domain of interest. As the set Rp×nk is not closed, some matrices in Rp×n<k can be the limit
points of the iterative sequences in Rp×nk leading to so-called spurious critical points which do not
belong to the smooth fixed-rank manifold Rp×nk [112]. Similarly, a sequence might also cross the
frontier of Rp×nk at a certain iterate and the rank might fall below k breaking the sequence. For all
these reasons, it is better to solve the WLRA problem over Rp×n≤k rather than over Rp×nk . Note, on the

35

other hand, that optimization algorithms on smooth fixed-rank manifolds are not strictly applicable
on Rp×n≤k as this set is a (non-smooth) real algebraic variety, not an embedded smooth submanifold
of Rp×n (see Proposition 1.1 in [22], Lecture 9 of [74] or [11][173] for details). More precisely,
Y ∈ Rp×n≤k is, by definition, a space of matrices with a given upper bound on their ranks and is
naturally an algebraic variety as the rank condition on a matrix is equivalent to the vanishing of all
of its (k + 1, k + 1)-minors, which are polynomials of degree k + 1. Rp×n≤k is then defined as the
solution set of polynomial equations therefore a so-called real determinantal variety [74]. Extending
(first-order) optimization algorithms developed for smooth fixed-rank manifolds to real determinan-
tal varieties like Rp×n≤k is a very active area of research recently [173][112][145][143], but variable
projection techniques, which are the focus of this monograph, can also be used for that purpose. ■

Thus, it is equivalent to minimize φ(Y) or φ∗(A,B) for solving the WLRA problem. However,
the WLRA problem (e.g., in the formulations (P0) and (P1)) has no known closed form solution
in the general case and is known to be NP-hard [62] as already discussed in the Introduction 1.
For certain classes of weighting matrices, a globally optimal solution can be found and one such
class is obviously the unweighted case (e.g., Wi,j = 1), since in that case the solution of the
WLRA problem is given by the Eckart-Young Theorem 2.1. Another very important specialization
of this is the case where all the elements of W are greater than 0 in which case it is possible to
demonstrate that the WLRA problem has a well-defined solution as demonstrated in Theorem 3.3
below. Moreover, in the case where all the elements of W are greater than 0 and the rank of W is
equal to 1, the solution of the WLRA problem can also be found via a generalization of the SVD
in which we use diagonal metrics and scalar products different from the identity matrix in Rp and
Rn (see Theorem 3 of [125] and also [62][167]). Finally, if k = rank(X), the WLRA problem
is equivalent to the consistent matrix completion problem, which is to find one matrix X̂ of rank
at most k consistent with the observed entries (e.g., Wij ̸= 0) of X ∈ Rp×nk (e.g., the problem
of recovering large matrices of low rank when most of the entries are unknown). In this case, the
problem is also well-posed since X is obviously a solution to the consistent completion problem
and we have φ(X̂) = 0 for all solution matrices X̂ [46][47]. In the general case, a very large variety
of iterative methods have been previously suggested to solve the WLRA problem or convex and
smooth proxies of it, especially in the framework of low-rank matrix completion, which is also NP-
hard [30], and is the focus of lot of recent research [157][177][30][32][188][100][86][140]. Both
the WLRA and matrix completion problems are also frequently recast as an optimization problem
on smooth matrix manifolds as already noted above [3][125][169][47][14][11].

The formulation (P0) of the WLRA problem is well suited to derived theoretical properties of the
WLRA problem such as the existence of solutions for this problem. On the other hand, the interest
of the alternative formulation (P1) and its variants (see Remark 3.1), is that smaller matrices are
manipulated and the introduction of the (non-unique) parameterization Y = AB allows us to re-
cast the WLRA problem as a standard unconstrained NLLS minimization problem as we will show
below. This is particularly useful to derive practical algorithms to solve the WLRA problem as we
will illustrate in the next sections.

Remark 3.4. The problem (P1) or its variants is over-parameterized. More precisely, if C is a k× k
invertible matrix, we have

AB = A(CC−1)B = (AC)(C−1B) and φ∗(A,B) = φ∗(AC,C−1B) .

Consequently, the set of global minimizers of φ∗(.) can be empty or infinite, but never finite or an
isolated minimum implying that the Hessian of φ∗(.) is at best positive semi-definite, but never pos-
itive definite, see Subsection2.4 for details. This can severely degrade the performance of standard
optimization algorithms, which are mostly developed for isolated optima [45][139]. Furthermore,
this scaling ambiguity tends to make the cost function φ∗(.) of problem (P1) badly-conditioned,
especially when the matrix C or its inverse is nearly singular. To overcome this difficulty, many au-
thors have proposed to add different regularizers to φ∗(.) as we will discussed later in this section.

36

Notice also that, if A ∈ Rp×kk and B ∈ Rk×nk , these two full rank matrices have p.k and k.n
degrees of freedom, respectively. However, specifying the matrix product AB in φ∗(.) is equivalent
to use the matrix product (AC)(C−1B) for any k × k matrix C of rank k, which is equivalent to
specify the column space of AB. Hence, the matrix product AB, or its column space, has only
p.k + k.n − k.k = (p + n − k).k degrees of freedom in general, which is consistent with the fact
that the set Rp×nk is a smooth submanifold of Rp×n of dimension (n+ p− k).k as already noted in
Remark 3.3 above.

More generally, as all the matrix products (AC)(C−1B) share the same column space, possibly
remedies for the implicit over-parameterization in the formulation (P1) can be to recast the WLRA
problem as an optimization problem on a Grassmann manifold [47][28][14][125][130][132] as dis-
cussed in Remark 3.3 or to use variable projection methods [158][27][150][147]. Moreover, these
two seemingly different approaches for solving the WLRA problem are in fact tightly related as we
will illustrate below. ■

The cost functionsφ(.) andφ∗(.) are the composition of several infinitely differentiable functions on
their respective domain of definition and, consequently, are also infinitely differentiable as smooth-
ness is preserved by composition thanks to the standard chain rule [26]. Since φ(.) and φ∗(.) are
smooth, they are also continuous on their respective domains. However, in the next theorem, we
give a direct demonstration of the continuity of φ(.) and φ∗(.) by making clear that the WLRA
problem differs from the standard low-rank approximation problem only by the choice of a differ-
ent metric than the standard Frobenius metric on Rp×n. This metric is derived from the norm or
seminorm induced by the choice of the weight matrix W ∈ Rp×n+ .

Theorem 3.2. Using the same notations and definitions as in Theorem 3.1, the objective function
defined in problem (P0)

φ : Rp×n −→ R : Y 7→ φ(Y) =
1

2
∥
√
W ⊙ (X−Y)∥2F ,

and the objective function defined in problem (P1)

φ∗ : Rp×k × Rk×n −→ R : (A,B) 7→ φ∗(A,B) =
1

2
∥
√
W ⊙ (X−AB)∥2F ,

are continuous on their respective domains of definition.

Proof. We first define a weighted norm or seminorm (if some of elements of W are equal to zero)
of an p× n real matrix Y as

∥Y∥2W = vec(Y)T diag
(
vec(W)

)
vec(Y) ,

where vec(Y) stands for the vectorized form of Y, i.e., a vector formed by stacking the consecutive
columns of Y in one p.n-dimensional vector (see equation (2.25) in Subsection 2.2). If none of
the elements of W is equal to zero, ∥∥W is obviously a norm on Rp×n and, as Rp×n is a finite-
dimensional vector space over R, all norms on Rp×n are equivalent, induce the same topology and
are continuous functions on Rp×n with respect to this topology [26][12]. On the other hand, if some
of the elements of W are equal to zero, ∥∥W is only a seminorm on Rp×n, e.g., ∥∥W is a real-valued
function : Rp×n −→ R, which verifies, for all Y,Z ∈ Rp×n and α ∈ R,

∥Y∥W ≥ 0 ,

∥αY∥W = |α|∥Y∥W ,

∥Y + Z∥W ≤ ∥Y∥W + ∥Z∥W .

However, even if ∥∥W is only a seminorm, it is still continuous with the respect to the unique
topology on Rp×n as demonstrated by Goldberg [58].

37

Now, φ(Y) may be expressed as

φ(Y) =
1

2
∥
√
W ⊙ (X−Y)∥2F

=
1

2
∥vec

(√
W ⊙ (X−Y)

)
∥22

=
1

2
∥vec(

√
W)⊙ vec(X−Y)∥22

=
1

2
vec(X−Y)T diag

(
vec(W)

)
vec(X−Y)

=
1

2
∥X−Y∥2W .

In other words, φ(.) is the composition of the residual matrix function: Y 7→ X −Y, the norm or
seminorm: Z 7→ ∥Z∥W and the square function: y 7→ y2. As all these functions are continuous on
their respective domain of definition, we conclude that φ(.) is also continuous on Rp×n.

Similarly, φ∗(A,B) may be expressed as

φ∗(A,B) =
1

2
∥
√
W ⊙ (X−AB)∥2F

=
1

2
vec(X−AB)T diag

(
vec(W)

)
vec(X−AB)

=
1

2
∥X−AB∥2W

and φ∗(.) is also the composition of several continuous functions on their respective domain of
definition and, consequently, φ∗(.) is also continuous on Rp×k × Rk×n.

As φ(.) is continuous on its domain of definition, it is not difficult to show that the problem (P0) has
a well-defined solution when all the elements of the weight matrix W are strictly positive as stated
in the next theorem.

Theorem 3.3. For X ∈ Rp×n different of the zero matrix of Rp×n and W ∈ Rp×n+∗ (i.e., Wij > 0),
and any fixed integer k ≤ rank(X) ≤ min(p, n), the set of global minimizers of φ(Y) on Rp×n≤k is
nonempty and compact.

Proof. This theorem is a direct consequence of Theorem 3.1 stated without proof in Chu et al. [33],
but we give a direct proof for completeness.

As W ∈ Rp×n+∗ by hypothesis, we first observe that ∥∥W defines a norm on Rp×n. Let us now
consider the closed ball with center X and radius r = ∥X∥W with respect to this norm in Rp×n:

B̄p×n(X, r) =
{
Y ∈ Rp×n and ∥X−Y∥W ≤ r

}
.

B̄p×n(X, r) is not empty as the zero matrix of Rp×n, which is also an element of Rp×n≤k , is in this
closed ball. As Rp×n is a finite-dimensional vector space, this closed ball is also a compact set
(as it is by definition a bounded set). Furthermore, as Rp×n≤k is closed in Rp×n (see Theorem 2.3),
the intersection of Rp×n≤k and B̄p×n(X, r) is also closed and bounded and, thus, compact in Rp×n.
Now, as φ(.) is continuous on Rp×n and the image of a compact set by a continuous function is also
compact, we conclude that φ

(
Rp×n≤k ∩ B̄p×n(X, r)

)
⊂ Cφ is a compact set in R and, thus, a closed

and bounded interval of R. Thus, φ(.) attains its infimum on Rp×n≤k ∩ B̄p×n(X, r). In other words,

it exists Ŷ ∈ Rp×n≤k ∩ B̄p×n(X, r) such that

φ(Ŷ) ≤ φ(Y) , ∀Y ∈ Rp×n≤k ∩ B̄p×n(X, r) .

38

It remains to show that φ(Ŷ) = c̄φ where c̄φ is the infimum of φ(.) on Rp×n≤k , i.e., that Ŷ is also

a global minimizer of φ(.) on Rp×n≤k . By definition of c̄φ, we already have c̄φ ≤ φ(Ŷ) and it is

sufficient to show that φ(Ŷ) ≤ c̄φ to demonstrate the theorem.
Suppose on the contrary that φ(Ŷ) > c̄φ, then it exists Y ∈ Rp×n≤k such that φ(Ŷ) > φ(Y) ≥ c̄φ
by definition of c̄φ. However, this implies that

1

2
∥
√
W ⊙ (X−Y)∥2F = φ(Y) < φ(Ŷ) =

1

2
∥
√
W ⊙ (X− Ŷ)∥2F ,

and it follows that
∥X−Y∥W < ∥X− Ŷ∥W ≤ ∥X∥W = r .

In other words, Y ∈ Rp×n≤k ∩ B̄p×n(X, r) and φ(Y) < φ(Ŷ), which contradicts the assertion that

Ŷ is a minimizer of φ on Rp×n≤k ∩ B̄p×n(X, r) and we are done.

Remark 3.5. Using the equivalence between problems (P0) and (P1) stated in Theorem 3.1 above,
we conclude that the set of global minimizers of φ∗(.), when the weight matrix is strictly positive,
is also nonempty. However, in the formulation (P1) of the WLRA problem, an important point to
keep in mind is that, if the solution set is not empty, problem (P1) has an infinity of solutions as
Â and B̂ are not determined uniquely and we can normalize them in an arbitrary manner without
changing the value of φ∗(Â, B̂) (see Remark 3.4 above). Moreover, if α ∈ R∗, (α.Â, 1α .B̂) is also
a solution of (P1), which shows that the set of solutions in Rp×k × Rk×n is unbounded and, thus,
not compact despite the set of global minimizers of φ(.) is compact in Rp×n. ■

Remark 3.6. In the unweighted case (and with no missing values), the WLRA problem has an
unique global minimum and all critical points of φ(.) or φ∗(.) which are not global minimizers are
saddle points (e.g., critical points whose every neighborhood contains both ”higher” and ”smaller”
points for φ(.) or φ∗(.)), see Section 2.1 of [171] and Theorem 1.14 of [75] for details. In other
words, φ(.) or φ∗(.) do not admit local minima in the unweighted case despite they are not convex
functions.
While Theorem 3.3 shows that the WLRA problem has still well defined solutions when W ∈ Rp×n+∗
because ∥∥W is a norm, several authors have illustrated by examples that φ(.) or φ∗(.) can have
multiple local minima in addition to saddle points when the weights are all different of zero, but
not uniform (see Section 2.1 of [171] and Example 1 of [62]). Such local minima emerge espe-
cially when the weights become significantly non-uniform (see Figure 1 of [171] for illustration).
When W has zero entries, the situation is even worse as φ(.) or φ∗(.) may have multiple local
minima [91], but the infimum of φ(.) or φ∗(.) can also be unattained, see Example 2 of [62] for
illustration. ■

An alternative and insightful demonstration of the above theorem can also be given using the notion
of the level sets of a continuous real function as defined in Chapter 4 of Ortega and Rheinboldt [148].
More precisely, for γ ∈ R, the level set of φ(.) at level γ is the set L(γ) =

{
Y ∈ Rp×n≤k / φ(Y) ≤

γ
}

. In other words, L(γ) is the subset of Rp×n≤k whose elements Y verify the inequality φ(Y) ≤ γ.
Obviously, L(γ) is empty if γ < c̄φ, where c̄φ is the infimum of φ(.), and is the set of the global
minimizers of φ(.) if γ = c̄φ (which can be also empty in the general case where W ∈ Rp×n+ as
discussed above).
As φ(.) is continuous on the closed set Rp×n≤k and the range of φ(.), Cφ, is included in the non-
negative half-space of R, then every level set of φ(.) at level γ for γ ≥ c̄φ is closed in Rp×n as
the reciprocal image of the closed interval [c̄φ, γ] by a continuous and real function is also closed.
Under these conditions, a necessary and sufficient condition for the set of global minimizers of φ(.)
to be nonempty and compact is that φ(.) has a nonempty and bounded level set L(γ) as this implies
that L(γ) is compact in Rp×n (see Propositions 4.2.2 and 4.3.1 in Chap. 4 of [148]). However,

39

since L(γ) is simply the intersection of Rp×n≤k and the closed ball with center X and radius
√
2.γ

(with respect to the norm ∥∥W) if all the elements of W are strictly positive, L(γ) is nonempty and
bounded by definition for all γ > c̄φ. This also proves that the set of global minimizers of φ(.) is
nonempty and compact if all the elements of W are strictly positive as stated in Theorem 3.3.

In the more difficult case, where some elements of W are equal to zero, φ(.) is still continuous
as ∥∥W defines a seminorm on Rp×n and every level set of φ(.) is also automatically closed and the
question of the existence of a global minimizer of φ(.) reduces again to the existence of a bounded
level set L(γ) according to the previous discussion. However, in the case where some of the ele-
ments of W are equal to zero, the seminorm ∥∥W does not define the topology of Rp×n [58] and
the level set L(γ) is not automatically bounded, so that the question of the existence of a nonempty
and compact set of global minimizers is still unanswered in that case.

In order to discuss in more details, the existence of a nonempty and compact set of global mini-
mizers of φ(.) when some elements of W are equal to zero, let Ω ⊂ [p] × [n] be the set of indices
of the elements of W such that Wij ̸= 0, where [L] = [1, 2, ..., L]. With this definition, from a
weight matrix W with some zero elements and any λ ∈ R+∗ (e.g., λ > 0), we can define a new
p× n weight matrix Wλ as follows

[
Wλ

]
ij
=

{
Wij if (i, j) ∈ Ω

λ if (i, j) /∈ Ω
.

This new weight matrix Wλ induces a norm ∥∥Wλ
on Rp×n, which is closely related to the semi-

norm ∥∥W. More precisely, for any λ ∈ R+∗ and Y ∈ Rp×n, we have ∥Y∥W ≤ ∥Y∥Wλ
, which

provides another simpler and different proof that ∥∥W is a continuous real-valued function on Rp×n
(see Theorem 3.2), and also

lim
λ→0

∥Y∥Wλ
= ∥Y∥W .

Furthermore, for any γ ∈ R+∗ with γ ≥ c̄φ, we have the implications

∥X−Y∥Wλ
≤
√

2.γ ⇒ ∥X−Y∥W ≤
√
2.γ ⇒ φ(Y) ≤ γ .

This shows that Rp×n≤k ∩ B̄p×n(X,
√
2.γ) ⊂ L(γ) where B̄p×n(X,

√
2.γ) is the closed ball of center

X and radius
√
2.γ with respect to the norm ∥∥Wλ

on Rp×n. While the reciprocal inclusion L(γ) ⊂
B̄p×n(X,

√
2.γ) is obviously false in general, the fact that limλ→0 ∥Y∥Wλ

= ∥Y∥W suggests
that for some weight matrices W, it may still exist γ ≥ c̄φ and λ ∈ R+∗ sufficiently small such
that L(γ) ⊂ B̄p×n(X,

√
2.γ) so that L(γ) = Rp×n≤k ∩ B̄p×n(X,

√
2.γ) because of the imposed

rank constraint on the p × n matrix Y in the formulation (P0). In such cases, φ(.) will have a
bounded level set and, consequently, the set of global minimizers of φ(.) will be nonempty and
compact.

3.2 Landscape connections of formulations P0 and P1 of the WLRA problem

As noted above, the cost functions φ(.) and φ∗(.) are obviously infinitely differentiable as they are
polynomial functions of the entries of Y or (A,B), respectively. In these conditions, a natural and
more modest question to ask, in addition of the existence of an absolute minimum of these cost
functions, is the following: is there a connection between the first- and second-order critical points
of φ(.) and φ∗(.)?

To begin with, we first derive the gradient of φ(.) at Y ∈ Rp×n. We have the following differentia-
tion rule for a differentiable function g(.) defined from Rp×n to Rp×n and ∀Y,H ∈ Rp×n:

D
(
Y ↣

1

2
∥g(Y)∥2F

)
(Y)[H] = ⟨Dg(Y)[H], g(Y)⟩F .

40

Here, we have φ(Y) = 1
2∥g(Y)∥2F with g(Y) =

√
W ⊙ (X−Y), and we get

Dφ(Y)[H] =
〈
Dg(Y)[H], g(Y)

〉
F

=
〈√

W ⊙−H,
√
W ⊙ (X−Y)

〉
F

=
〈
W ⊙ (Y −X),H

〉
F
.

By the unicity of the Frobenius gradient of φ(.), this implies that

∇φ(Y) = W ⊙ (Y −X) , ∀Y ∈ Rp×n . (3.3)

In particular, the gradient of φ(.) at X is ∇φ(X) = W ⊙ (X−X) = 0p×n, which implies that X
is a first-order critical point of φ(.) if the feasible set is the whole linear space Rp×n. However, in
most cases, especially when W ∈ Rp×n+∗ , X is the unique first-order critical point of φ(.) considered
as a function defined on the whole linear space Rp×n. In other words, and as expected from Sub-
section 2.4, for Y ∈ Rp×n≤k , ∇φ(Y) cannot be used alone as a test of the optimality of Y in solving
the WLRA problem (P0) because perturbations of Y which take it out of the feasible set Rp×n≤k are
not allowed and they may correspond to a decrease of the cost function φ(.).

In general term, ∇2φ(Y) is a 4th order tensor of dimension p × n × p × n, but ∇2φ(Y) can
also be viewed as a bilinear form

(
∇2φ(Y)

)
from Rp×n × Rp×n to R and also as a self-adjoint

linear operator
[
∇2φ(Y)

]
from Rp×n to Rp×n (see Subsection 2.4 for details), and we have the

equality (
∇2φ(Y)

)(
C,D

)
= ⟨
[
∇2φ(Y)

]
(C),D⟩F , ∀C,D ∈ Rp×n .

Taking into account the particular form of ∇φ(Y) derived in equation (3.3), we have simply[
∇2φ(Y)

]
(C) = W ⊙C , ∀C ∈ Rp×n ,

and, thus, the bilinear form of ∇2φ(Y) is defined by(
∇2φ(Y)

)(
C,D

)
=
〈
W ⊙C,D

〉
F
, ∀C,D ∈ Rp×n .

In particular, the Hessian quadratic form
(
∇2φ(Y)

)
for any p × n matrices Y and C is simply

given by (
∇2φ(Y)

)(
C,C

)
= ∥

√
W ⊙C∥2F ≥ 0 . (3.4)

Thus,
(
∇2φ(Y)

)
is always positive semi-definite and is even always positive definite when W ∈

Rp×n+∗ .

In summary, for Y ∈ Rp×n≤k , ∇φ(Y) and ∇2φ(Y) cannot be used alone as test conditions for the
global or local optimality of Y in solving the WLRA problem (P0) because in most settings the
unconstrained local or global minimizers of φ(.) do not satisfy the rank constrained rank(Y) ≤ k
and, also, for a given matrix Y of rank less than k, not all the search directions or perturbations
have to be taken into account for determining the criticality conditions only those for which the
rank constraint will be satisfied.

Thus, to continue with, we now characterize precisely the critical points of the rank-constrained
minimization problem (P0) over the real-algebraic variety Rp×n≤k , which is a closed subset of the
matrix space Rp×n as stated in Theorem (2.3). To this end, we first identify Rp×n and Rp.n with
the two isomorphisms vec(.) and mat(.), defined in equations (2.25) and (2.26). Next, we note that
the Euclidean scalar product in Rp.n and the Frobenius inner product in Rp×n are intimately related
since

⟨C,D⟩F = Tr
(
CTD

)
=
〈
vec(C), vec(D)

〉
2
, ∀C,D ∈ Rp×n

and, reciprocally,
⟨c,d⟩2 =

〈
mat(c),mat(d)

〉
F
, ∀c,d ∈ Rp.n .

41

Based on these considerations, it is rather straightforward to extend the notions of tangent vectors,
Bouligand tangent and Frechet normal cones, and metric projection in Rp.n summarized in Subsec-
tion 2.4, especially, Theorem (2.6) and equations (2.59), to the case of the matrix space Rp×n.

Thus, a matrix D ∈ Rp×n is said to be tangent to Rp×n≤k at Ȳ ∈ Rp×n≤k if there exist a matrix sequence
(Yi)i∈N∗ in Rp×n≤k tending to Ȳ and a real sequence (ti)i∈N∗ in R+∗ tending to zero such that

lim
i→∞

(Yi − Ȳ)

ti
= D.

The set of all tangent matrices to Rp×n≤k , at Ȳ is a closed cone (see Theorem (2.4) for details), also
called the Bouligand tangent cone to Rp×n≤k at Ȳ, and denoted by T B

Ȳ
Rp×n≤k , similarly to the case of

the vector space Rp.n discussed in Subsection 2.4. Its polar is defined by

(T B
ȲRp×n≤k)o =

{
D ∈ Rp×n / ⟨D,Y⟩F ≤ 0 , ∀Y ∈ T B

ȲRp×n≤k
}

and is also a closed convex cone called the Frechet normal cone to Rp×n≤k at Ȳ, noted as NF
Ȳ
Rp×n≤k ,

again similarly to the case of the vector space Rp.n discussed in Subsection 2.4.

Finally, a point Ȳ ∈ Rp×n≤k is a Frechet first-order stationary point for the WLRA problem (P0) if
one of the following equivalent conditions is satisfied

⟨∇φ(Ȳ),Y⟩F ≥ 0 , ∀Y ∈ T B
ȲRp×n≤k ,

−∇φ(Ȳ) ∈ NF
ȲRp×n≤k , (3.5)

PT B
Ȳ
Rp×n
≤k

(−∇φ(Ȳ)) = {0p×n} ,

where ∇φ(Ȳ) is given by equation (3.3) and PT B
Ȳ
Rp×n
≤k

(−∇φ(Ȳ)) is the metric projection of the

antigradient −∇φ(Ȳ) onto T B
Ȳ
Rp×n≤k defined by

PT B
Ȳ
Rp×n
≤k

(−∇φ(Ȳ)) = Arg min
Y∈T B

Ȳ
Rp×n
≤k

∥ − ∇φ(Ȳ)−Y∥2F .

Note that the set PT B
Ȳ
Rp×n
≤k

(−∇φ(Ȳ)) is always nonempty as T B
Ȳ
Rp×n≤k is a closed cone, but it is

not necessarily reduced to a singleton as T B
Ȳ
Rp×n≤k is not convex in Rp×n, see Subsection 2.4 for

details.

However, ∀Z ∈ PT B
Ȳ
Rp×n
≤k

(−∇φ(Ȳ)), we have

∥Z∥F =
√
∥ − ∇φ(Ȳ)∥2F − d(−∇φ(Ȳ), T B

Ȳ
Rp×n≤k)2 ,

where the distance from −∇φ(Ȳ) to T B
Ȳ
Rp×n≤k is given by

d(−∇φ(Ȳ), T B
ȲRp×n≤k) = inf

T∈T B
Ȳ
Rp×n
≤k

∥ − ∇φ(Ȳ)−T∥F

= min
T∈T B

Ȳ
Rp×n
≤k

∥ − ∇φ(Ȳ)−T∥F ,

again because T B
Ȳ
Rp×n≤k is a closed set. In other words, all elements of PT B

Ȳ
Rp×n
≤k

(−∇φ(Ȳ)) have

the same Frobenius norm and by the same small abuse of notation as used in equation (2.60) of
Subsection 2.4, the Frechet first-order stationary condition for φ(.) can be expressed as

∥PT B
Ȳ
Rp×n
≤k

(−∇φ(Ȳ))∥F = 0 ,

42

where PT B
Ȳ
Rp×n
≤k

(−∇φ(Ȳ)) designs now any of its elements. However, to use these results, we first

need to find convenient practical expressions for T B
Ȳ
Rp×n≤k and the metric projection operator onto

this closed set.

In order to derive a more convenient way for checking if a matrix Ȳ ∈ Rp×n≤k is a Frechet first-order
stationary point for φ(.), we first note that the set Rp×n≤k stratifies into the set Rp×ns for s = 1, · · · , k,
e.g.,

Rp×n≤k =

k⋃
s=1

Rp×ns .

Furthermore, it is well-known, that each set Rp×ns is a smooth submanifold of dimension (p+n−s).s
embedded in Rp×n and that its tangent space at Y ∈ Rp×ns is given by

TYRp×ns =
{
UYMVT

Y +UVT
Y +UYVT /M ∈ Rs×s,U ∈ Rp×s,V ∈ Rn×s

with UT
YU = VT

YV = 0s×s
}

=
{
[UYU⊥

Y]

[
A B

C 0(p−s)×(n−s)

]
[VYV⊥

Y]T

with A ∈ Rs×s,B ∈ Rs×(n−s) and C ∈ R(p−s)×s} ,
where Y = UYΣYVT

Y is the thin SVD of Y with UT
YUY = VT

YVY = Is and ΣY is a s ×
s diagonal matrix with strictly positive diagonal elements (e.g., the singular values of Y), and
[UYU⊥

Y] and [VYV⊥
Y] are, respectively, p× p and n× n orthogonal matrices. See Example 8.14

of Lee [106], Section 7.5 of Boumal [11] or Proposition 4.1 of Helmke and Shayman [78] for proofs
and further details. Furthermore, the equivalence of the two definitions of the tangent space TYRp×ns

can be easily verified by direct computations.

Interestingly, if each Y ∈ Rp×ns is identified by its singular triplets (UY,ΣY,VY), then the first
formulation of TYRp×ns shows that, to represent an element of TYRp×ns , we only need to store
the small matrices M, U and V. Furthermore, this formulation also shows that the elements of
TYRp×ns have a rank of at most 2.s. On the other hand, the second formulation is useful for deriving
the normal space to Rp×ns at Y, noted NYRp×ns , which is the orthogonal complement of TYRp×ns

in Rp×n with respect to the Frobenius inner product:

NYRp×ns = (TYRp×ns)⊥ ,

and also the orthogonal projectors on both TYRp×ns and NYRp×ns as we will see now.

First, the second formulation reveals immediately the dimension of TYRp×ns as

dim(TYRp×ns) = s.s+ s.(p− s) + s.(n− s) = s.(p+ n− s) .

Next, it is obvious from this formulation of TYRp×ns that NYRp×ns is equal to

NYRp×ns =
{
U⊥

YN(V⊥
Y)T with N ∈ R(p−s)×(n−s)

}
. (3.6)

Obviously and as expected, we have

dim(NYRp×ns) = (p− s).(n− s) = p.n− s.(p+ n− s) = dim(Rp×n)− dim(TYRp×ns)

and the maximum rank of the matrix elements of NYRp×ns is min(p, n) − s according to equa-
tion (2.2). Next, by definition, the orthogonal projection of an arbitrary Z ∈ Rp×n onto TYRp×ns

satisfies both
Z−PTYRp×n

s
(Z) = U⊥

YN(V⊥
Y)T ,

for some N ∈ R(p−s)×(n−s), and

PTYRp×n
s

(Z) = UYMVT
Y +UVT

Y +UYVT ,

43

for some M ∈ Rs×s,U ∈ Rp×s and V ∈ Rn×s with UT
YU = VT

YV = 0s×s. Combined, these
two statements imply that

Z = UYMVT
Y +UVT

Y +UYVT +U⊥
YN(V⊥

Y)T .

If we define now the orthogonal projectors associated with the column and row spaces of Y and
their orthogonal complements

PU = UYUT
Y , PV = VYVT

Y , P⊥
U = Ip −PU and P⊥

V = In −PV ,

we have, using orthogonal relationships,

PUZPV =
(
UYMVT

Y +UYVT
)
PV = UYMVT

Y ,

P⊥
UZPV =

(
UVT

Y +U⊥
YN(V⊥

Y)T
)
PV = UVT

Y ,

PUZP⊥
V =

(
UYMVT

Y +UYVT
)
P⊥

V = UYVT .

Using these results, we deduce that the orthogonal projector onto TYRp×ns is given, equivalently,
by

PTYRp×n
s

(Z) = PUZPV +P⊥
UZPV +PUZP⊥

V

= ZPV +PUZP⊥
V = Z(VYVT

Y) + (UYUT
Y)Z(In −VYVT

Y)

= PUZ+P⊥
UZPV = (UYUT

Y)Z+ (Ip −UYUT
Y)Z(VYVT

Y) ,

from which, we can also derive the orthogonal projector onto NYRp×ns as

PNYRp×n
s

(Z) = P⊥
TYRp×n

s
(Z) = Z−PTYRp×n

s
(Z)

= Z− (UYUT
Y)Z− (Ip −UYUT

Y)Z(VYVT
Y)

= (Ip −UYUT
Y)Z(In −VYVT

Y) = P⊥
UZP⊥

V .

In these conditions, if Z ∈ NYRp×ns , we have PNYRp×n
s

(Z) = Z, which implies that

UT
YZ = UT

Y(Ip −UYUT
Y)Z(In −VYVT

Y) = 0s×n ,

ZVY = (Ip −UYUT
Y)Z(In −VYVT

Y)VY = 0p×s .

Reciprocally, if Z ∈ Rp×n with UT
YZ = 0s×n and ZVY = 0p×s, we have

PTYRp×n
s

(Z) = (ZVY)VT
Y +UY(UT

YZ)(In −VYVT
Y)

= 0p×n + 0p×n = 0p×n

and Z ∈ NYRp×ns . In other words, we get an alternative formulation of NYRp×ns as

NYRp×ns =
{
Z ∈ Rp×n with UT

YZ = 0s×n and ZVY = 0p×s
}
,

where the columns of UY and VY are, respectively, the leading s left and right singular vectors of
Y, which is of rank s.

Armed with these various results on the smooth manifold Rp×ns embedded in Rp×n, we can now
reformulate the definitions of the Bouligand tangent cone to Rp×n≤k at a matrix Y of rank s ≤ k and
of the metric projection onto that closed set as follow.

Theorem 3.4. Let Y ∈ Rp×n≤k with rank(Y) = s ≤ k, the Bouligand tangent cone to Rp×n≤k at Y is
given by

T B
YRp×n≤k = TYRp×ns ⊕

(
NYRp×ns ∩ Rp×n≤k−s

)
,

where ⊕ stands for a direct orthogonal sum with respect to the Frobenius inner product in Rp×n.

44

In addition, the metric projection of an arbitrary Z ∈ Rp×n onto T B
YRp×n≤k is given by

PT B
YRp×n

≤k
(Z) = PTYRp×n

s
(Z) +PRp×n

≤k−s

(
PNYRp×n

s
(Z)
)
,

where PTYRp×n
s

(.) and PNYRp×n
s

(.) are the two unique complementary orthogonal projectors onto

the linear subspaces TYRp×ns and NYRp×ns , which are orthogonal to each other with respect to the
Frobenius inner product in Rp×n, and where PRp×n

≤k−s
(.) is the metric projection onto the closed set

Rp×n≤k−s.

Proof. For a proof, see Theorem 3.2 and Corollary 3.3 of Schneider and Uschmajew [173], Theorem
6.1 of Cason et al. [31] or Example 20.5 of Harris [74].

First note that, in Theorem 3.4, PT B
YRp×n

≤k
(Z) is always a nonempty set as T B

YRp×n≤k is a closed cone,

but it is not neccessarily reduced to a singleton as T B
YRp×n≤k is not convex. More precisely, the

cardinality of PT B
YRp×n

≤k
(Z) relies on the cardinality of the set PRp×n

≤k−s

(
PNYRp×n

s
(Z)
)
.

For an arbitrary T ∈ Rp×n, the metric projection of T onto Rp×n≤k−s is the set defined by

PRp×n
≤k−s

(
T
)
= Arg min

Z∈Rp×n
≤k−s

∥T− Z∥F .

Thus, the elements of PRp×n
≤k−s

(T) are easily determined with the help of the Eckart-Young Theo-

rem 2.1 and are the best approximation of rank at most k − s of T with respect to the Frobenius
norm. In other words, PRp×n

≤k−s

(
PNYRp×n

s
(Z)
)

is single-valued when

σk−s
(
PNYRp×n

s
(Z)
)
> σk−s+1

(
PNYRp×n

s
(Z)
)
,

in which case its unique element is given by the truncated SVD of rank k − s of PNYRp×n
s

(Z)
according to Theorem 2.1), or, when,

σk−s
(
PNYRp×n

s
(Z)
)
= 0 ,

in which case
PRp×n

≤k−s

(
PNYRp×n

s
(Z)
)
= PNYRp×n

s
(Z) .

In the above equations, σi(T) denotes the ith largest singular value of the matrix T. Furthermore,
when PRp×n

≤k−s

(
PNYRp×n

s
(Z)
)

is single-valued then PT B
YRp×n

≤k
(Z) is also single-valued according to

Theorem 3.4.

In order to clarify the practical meaning of Theorem 3.4, it is now useful to distinguish the two cases
rank(Y) = s = k and rank(Y) = s < k.

Obviously, in the first case, when s = k, we get

T B
YRp×n≤k = TYRp×nk

and
PT B

YRp×n
≤k

(.) = PTYRp×n
k

(.) .

In words, when rank(Y) = k, the Bouligand tangent cone to Rp×n≤k at Y coincides with the tangent
linear space to Rp×nk at Y. Furthermore, the metric projection onto this Bouligand tangent cone is
nothing else then the orthogonal projector onto the tangent linear space to Rp×nk at Y. Finally, from
these results, we deduce immediately that the Frechet normal cone to Rp×n≤k at Y, which is defined
as the polar of T B

YRp×n≤k , also coincides with the normal space to Rp×nk at Y (e.g., the orthogonal

45

complement of TYRp×nk in Rp×n with respect to the Frobenius inner product) when rank(Y) = k.
If Z ∈ NF

YRp×n≤k = (T B
YRp×n≤k)o = (TYRp×nk)o then, by definition,

⟨Z,Q⟩F ≤ 0 , ∀Q ∈ TYRp×nk .

However, since TYRp×nk is a linear space, if Q ∈ TYRp×nk then −Q also belongs to TYRp×nk , from
which we deduce

⟨Z,Q⟩F ≥ 0 , ∀Q ∈ TYRp×nk

and we get the equivalences

Z ∈ NF
YRp×n≤k ⇐⇒ ⟨Z,Q⟩F = 0 , ∀Q ∈ TYRp×nk ⇐⇒ Z ∈ (TYRp×nk)⊥ = NYRp×nk .

Summarizing the preceding results, when Y ∈ Rp×nk and Z ∈ Rp×n, we have

T B
YRp×n≤k = TYRp×nk

=
{
UYMVT

Y +UVT
Y +UYVT /M ∈ Rk×k,U ∈ Rp×k,V ∈ Rn×k

with UT
YU = VT

YV = 0k×
}
,

NF
YRp×n≤k = (TYRp×nk)⊥ = NYRp×nk

=
{
T ∈ Rp×n with UT

YT = 0k×n and TVY = 0p×k
}
, (3.7)

PT B
YRp×n

≤k
(Z) = PTYRp×n

k
(Z)

= Z(VYVT
Y) + (UYUT

Y)Z(In −VYVT
Y)

= (UYUT
Y)Z+ (Ip −UYUT

Y)Z(VYVT
Y) ,

PNF
YRp×n

≤k
(Z) = Z−PTYRp×n

k
(Z) = PNYRp×n

k
(Z)

= (Ip −UYUT
Y)Z(In −VYVT

Y) ,

where the columns of UY and VY are, respectively, the leading k left and right singular vectors of
Y, which is of rank k.

These results are further consistent with the more general result that, when M is an arbitrary sub-
manifold embedded in Rp×n or Rp, its tangent and normal spaces at an arbitrary Z ∈ M coincide
exactly with the Bouligand tangent and Frechet normal cones to M at Z, see Example 6.8 of Rock-
afellar and Wets [165] or Theorem 3.15 of Ruszczynski [160] for details.

Furthermore, from the above results, we see that Ȳ ∈ Rp×nk is a Frechet first-order stationary
point for the WLRA problem in its formulation (P0) if it satisfies one of the following equivalent
conditions:

(1)⟨∇φ(Ȳ),Z⟩F ≥ 0 ,∀Z ∈
{
UȲMVT

Ȳ +UVT
Ȳ +UȲVT /M ∈ Rk×k,U ∈ Rp×k,V ∈ Rn×k

}
,

(2)UT
Ȳ∇φ(Ȳ) = 0k×n and ∇φ(Ȳ)VȲ = 0p×k ,

(3)∇φ(Ȳ)(VȲVT
Ȳ) + (UȲUT

Ȳ)∇φ(Ȳ)(In −VȲVT
Ȳ) = 0p×n ,

where the columns of UȲ and VȲ are, respectively, the leading k left and right singular vectors of
Ȳ, which is of rank k.

Obviously, the second condition is the more convenient for our purpose and, as ∇φ(Ȳ) = W ⊙
(Ȳ −X) according to equation (3.3), it translates to the simple statement

UT
Ȳ

(
W ⊙ (Ȳ −X)

)
= 0k×n and

(
W ⊙ (Ȳ −X)

)
VȲ = 0p×k . (3.8)

46

We now consider the case where Ȳ ∈ Rp×n<k , e.g., when rank(Ȳ) = s < k. In that case, we deduce
from Theorem 3.4 that the structure of T B

Ȳ
Rp×n≤k is more complex as it contains TȲRp×ns , but also

matrices of rank less or equal to k−swhich intersect orthogonally Rp×n≤k (with respect the Frobenius
inner product) and also sum of elements belonging to each of these two sets.

A key-remark for deriving a simple condition of Frechet first-order stationarity for φ(.) at a point
Ȳ ∈ Rp×n<k is the following. Assume that rank(Ȳ) = s < k and consider an arbitrary matrix
Z ∈ Rp×n≤k−s. We have

Z = PTȲRp×n
s

(Z) +PNȲRp×n
s

(Z) ,

since PTȲRp×n
s

(.) and PNȲRp×n
s

(.) are two complementary orthogonal projectors with respect

to the Frobenius inner product in Rp×n. Clearly, by definition, PTȲRp×n
s

(Z) ∈ TȲRp×ns and

PNȲRp×n
s

(Z) ∈ NȲRp×ns . Furthermore, as the orthogonal projector PNȲRp×n
s

(.) never increases

the rank of a matrix, we also have PNȲRp×n
s

(Z) ∈ Rp×n≤k−s as Z ∈ Rp×n≤k−s, and we conclude
that

PNȲRp×n
s

(Z) ∈ NȲRp×ns ∩ Rp×n≤k−s ,

which implies finally that Z ∈ T B
Ȳ
Rp×n≤k . In other words, we have the inclusion Rp×n≤k−s ⊂ T B

Ȳ
Rp×n≤k .

From this relationship and Theorem 3.4, it is not difficult to see that an equivalent formulation of
T B
Ȳ
Rp×n≤k is

T B
ȲRp×n≤k = TȲRp×ns + Rp×n≤k−s ,

where the direct orthogonal sum ⊕ is now replaced by an ordinary sum, see Hosseini et al. [84] for
more details.

Now, if Z ∈ Rp×n≤k−s, −Z also belongs to Rp×n≤k−s and, thus, any element of NF
Ȳ
Rp×n≤k needs to be

orthogonal to Z,∀Z ∈ Rp×n≤k−s. Next, if T ∈ NF
Ȳ
Rp×n≤k and T ̸= 0p×n, this implies that T must be

orthogonal (with respect to the Frobenius inner product in Rp×n) to its best approximation of rank
k − s given by the Eckart-Young Theorem 2.1, which is absurd, and we conclude that

NF
ȲRp×n≤k = {0p×n} .

In this condition, if Ȳ ∈ Rp×n<k , the Frechet first-order stationary condition for φ(.) at Ȳ ∈ Rp×n<k

reduces to
∇φ(Ȳ) = 0p×n ,

which translates to the simple matrix equality W ⊙ (Ȳ −X) = 0p×n, using equation (3.3).

Collecting all the above developments, we have demonstrated the following theorem, which is used
without proof in Ha et al. [83] in a slightly larger setting where φ(.) is a continuously differen-
tiable function instead of the objective function associated with the formulation (P0) of the WLRA
problem.

Theorem 3.5. Let Ȳ ∈ Rp×n≤k , with rank(Ȳ) = s ≤ k. Then Ȳ is a Frechet first-order stationary
point for φ(.) if

UT
Ȳ

(
W ⊙ (Ȳ −X)

)
= 0k×n and

(
W ⊙ (Ȳ −X)

)
VȲ = 0p×k ,

when rank(Ȳ) = s = k, or if
W ⊙ (Ȳ −X) = 0p×n ,

when rank(Ȳ) = s < k and the columns of UȲ and VȲ are, respectively, the leading s left and
right singular vectors of Ȳ, which is of rank s.
□

47

Any local minimizer Ȳ of φ(.) in the set Rp×n≤k must satisfy the first-order conditions stated in
Theorem 3.5, though these conditions are not sufficient in general, see Theorem 6.12 in Rockafellar
and Wets [165] and also Ha et al. [83] for more details. However, in the case where rank(Ȳ) < k
and W ⊙ (Ȳ −X) = 0p×n, we deduce immediately that

√
W ⊙ (Ȳ −X) = 0p×n

and Ȳ is obviously a global minimizer of φ(.) and a solution of the WLRA problem in this particular
case.

We now derive a more convenient expression than the one given in Theorem 2.9 to verify that a
matrix Ȳ ∈ Rp×n≤k is a Frechet second-order stationarity point of φ(.) over Rp×n≤k . First, we observe
that, in the case where Ȳ ∈ Rp×n<k is a Frechet first-order stationarity point of φ(.), ∇φ(Ȳ) = 0p×n

and Ȳ ∈ Rp×n<k is a global minimum of φ(.) over Rp×n and, thus,
(
∇2φ(Ȳ)

)
is a positive semi-

definite quadratic form over Rp×n (note, alternatively, that
(
∇2φ(Ȳ)

)
is always positive semi-

definite according to equation (3.4)). From these results, when rank(Ȳ) < k is a Frechet first-
order stationarity point of φ(.), we deduce immediately that the condition (2.61) in Theorem 2.9 is
verified and consistently Ȳ is also a Frechet second-order stationarity point of φ(.) in the sense of
Theorem 2.9.

Next, in the case where Ȳ ∈ Rp×nk , we first recall from equations (3.7) that

T B
ȲRp×n≤k = TȲRp×nk and NF

ȲRp×n≤k = NȲRp×nk

and the Frechet first-order condition is thus equivalent to

∇φ(Ȳ) ∈ NȲRp×nk ,

which is exactly similar to the statement that the Riemannian gradient of φ(.) at Ȳ ∈ Rp×nk is equal
to zero by equation (2.50). In other words, in the case rank(Ȳ) = k, the Frechet first-order condition
for φ(.), considered as a function defined on Rp×n≤k , at Ȳ stated in equation (3.8) is equivalent to the
Riemannian first-order condition for the restriction of φ(.) over the embeddded smooth submanifold
Rp×nk at Ȳ stated in equation (2.50).

Furthermore, when rank(Ȳ) = k and Ȳ is a Frechet first-order stationary point, equation (2.61) in
Theorem (2.9), specialized to the case of Rp×n≤k , simplifies to

⟨∇φ(Ȳ),Z⟩F + ⟨
[
∇2φ(Ȳ)

]
(D),D⟩F ≥ 0 , ∀D ∈ TȲRp×nk , ∀Z ∈ T(Ȳ,D)R

p×n
k .

This condition is strictly equivalent to the statement that the Riemannian Hessian of φ(.) at Ȳ,(
∇2
Rφ(Ȳ)

)
, is positive semi-definite over TȲRp×nk , as noted in [197] and [110]. Next, using the

explicit formulation (in terms of standard Euclidean derivatives) of this Riemannian Hessian of the
smooth function φ(.) defined on the smooth submanifold Rp×nk , derived in Proposition 2.2 of [186]
and Proposition 2 of [115], the statement that

(
∇2
Rφ(Ȳ)

)
is positive semi-definite is equivalent

to (
∇2
Rφ(Ȳ)

)
[D,D] =

(
∇2φ(Ȳ)

)
[D,D] + 2.⟨∇φ(Ȳ),U⊥

ȲCΣ−1
Ȳ

B(V⊥
Ȳ)T ⟩F ≥ 0 , (3.9)

∀D ∈ TȲRp×nk , and where the thin SVD of Ȳ ∈ Rp×nk is given by Ȳ = UȲΣȲVT
Ȳ

with
UT

Ȳ
UȲ = VT

Ȳ
VȲ = Ik and ΣȲ is a k × k diagonal matrix with strictly positive diagonal el-

ements (e.g., the singular values of Ȳ) and

D = [UȲU⊥
Ȳ]

[
A B

C 0(p−k)×(n−k)

]
[VȲV⊥

Ȳ]T ∈ TȲRp×nk ,

where A ∈ Rk×k,B ∈ Rk×(n−k),C ∈ R(p−k)×k and [UȲU⊥
Ȳ
] and [VȲV⊥

Ȳ
] are, respectively,

p× p and n× n orthogonal matrices.

Using equations (3.3) and (3.4), the previous discussion leads to the following theorem, which
characterizes more explicitly the Frechet second-order stationarity points of φ(.).

48

Theorem 3.6. Let Ȳ ∈ Rp×n≤k , with rank(Ȳ) ≤ k. Then Ȳ is a Frechet second-order stationary
point for φ(.) if it is a Frechet first-order stationary point for φ(.) and if, in addition, in the case of
rank(Ȳ) = k, if

∥
√
W ⊙D∥2F ≥ −2.⟨W ⊙ (Ȳ −X),U⊥

ȲCΣ−1
Ȳ

B(V⊥
Ȳ)T ⟩F , ∀D ∈ TȲRp×nk , (3.10)

where the thin SVD of Ȳ ∈ Rp×nk is given by Ȳ = UȲΣȲVT
Ȳ

, the columns of U⊥
Ȳ

∈ Rp×(p−k)

and V⊥
Ȳ

∈ Rn×(n−k) form, respectively, orthonormal bases of ran(Ȳ)⊥ and ran(ȲT)⊥ and

D = [UȲU⊥
Ȳ]

[
A B

C 0(p−k)×(n−k)

]
[VȲV⊥

Ȳ]T ∈ TȲRp×nk ,

where A ∈ Rk×k,B ∈ Rk×(n−k),C ∈ R(p−k)×k.
□

Interestingly, observe that, using equation (3.6), when Ȳ ∈ Rp×nk is a Frechet first-order stationary
point for φ(.), both ∇φ(Ȳ) = W ⊙ (Ȳ −X) and U⊥

Ȳ
CΣ−1

Ȳ
B(V⊥

Ȳ
)T are elements of NȲRp×nk

as CΣ−1
Ȳ

B ∈ R(n−k)×(n−k).

We now characterize the critical points of the factorized cost function φ∗(.), which is used in the
formulation (P1) of the WLRA problem. φ∗(.) is defined on the product space Rp×k × Rk×n,
which is a ”standard” Euclidean linear (product) space. In other words, the gradient, Hessian and
critical points of φ∗(.) are defined in the usual way (see Subsection 2.4) as there are no additional
constraints on the matrix variables A ∈ Rp×k and B ∈ Rk×n. Thus, the pair (A,B) is a first-order
stationary point of φ∗(.), if and only if,

∇φ∗(A,B) = (0p×k,0k×n) ,

and a second-order stationary point of φ∗(.) if, in addition,(
∇2φ∗(A,B)

)(
(C,D), (C,D)

)
≥ 0 , ∀(C,D) ∈ Rp×k × Rk×n ,

where the second derivative (Hessian)
(
∇2φ∗(A,B)

)
is a (symmetric) quadratic form mapping

from (Rp×k × Rk×n)× (Rp×k × Rk×n) to R.

By definition, φ∗(.) is the composition of φ(.), from Rp×n to R, with the bilinear mapping, from
Rp×k × Rk×n to Rp×n, defined by (A,B) −→ AB , ∀(A,B) ∈ Rp×k × Rk×n. Furthermore,
φ(.) and this bilinear mapping are C∞ differentiable. Thus, using the standard chain rule on the
differential of the composition of two differentiable functions, we can easily obtain the two partial
derivatives of φ∗(.) since, ∀(C,D) ∈ Rp×k×Rk×n, we have, using properties of the Tr(.) operator
stated in Subsection 2.1,

Dφ∗
A(A,B)(C) =

〈
∇φ(AB),CB

〉
F

= Tr
(
∇φ(AB)TCB

)
= Tr

(
CB∇φ(AB)T

)
= Tr

(
C
(
∇φ(AB)BT

)T)
= Tr

((
∇φ(AB)BT

)T
C
)

=
〈
∇φ(AB)BT ,C

〉
F

and, similarly,

Dφ∗
B(A,B)(D) =

〈
∇φ(AB),AD

〉
F

= Tr
(
∇φ(AB)TAD

)
= Tr

((
AT∇φ(AB)

)T
D
)

=
〈
AT∇φ(AB),D

〉
F
.

49

Thus, by the unicity of the Frobenius gradients of the partial functions φ∗
A(.) and φ∗

B(.), and equa-
tion (3.3), we get

∇φ∗
A(A,B) = ∇φ(AB)BT =

(
W ⊙ (AB−X)

)
BT ∈ Rp×k ,

∇φ∗
B(A,B) = AT∇φ(AB) = AT

(
W ⊙ (AB−X)

)
∈ Rk×n , (3.11)

and, finally, we obtain the gradient of φ∗(.) at any pair (A,B) ∈ Rp×k × Rk×n as

∇φ∗(A,B) =
(
∇φ∗

A(A,B),∇φ∗
B(A,B)

)
=
((

W ⊙ (AB−X)
)
BT ,AT

(
W ⊙ (AB−X)

))
. (3.12)

Consequently, the pair (A,B) is a first-order stationary point of φ∗(.) if(
W ⊙ (AB−X)

)
BT = 0p×k and AT

(
W ⊙ (AB−X)

)
= 0k×n .

We now derive a convenient expression for the quadratic form
(
∇2φ∗(A,B)

)
in order to character-

ize the second-order stationary points of φ∗(.), which are defined by the conditions

∇φ∗(A,B) = (0p×k,0k×n)

and (
∇2φ∗(A,B)

)(
(C,D), (C,D)

)
≥ 0 , ∀(C,D) ∈ Rp×k × Rk×n .

This will be useful to determine the relationships between the critical points of φ(.) and φ∗(.) in
Theorem 3.7 below.

∀(C,D) ∈ Rp×k × Rk×n, we have by the bilinearity of ∇2φ∗(A,B)(
∇2φ∗(A,B)

)(
(C,D), (C,D)

)
=
(
∇2φ∗(A,B)

)(
(C,0k×n) + (0p×k,D),

(C,0k×n) + (0p×k,D)
)

=
(
∇2φ∗(A,B)

)(
(C,0k×n), (C,0k×n)

)
+
(
∇2φ∗(A,B)

)(
(0p×k,D), (0p×k,D)

)
+ 2.

(
∇2φ∗(A,B)

)(
(0p×k,D), (C,0k×n)

)
. (3.13)

The last equality resulting from the fact that ∇2φ∗(A,B) can also be considered as a self-adjoint
(e.g., symmetric) mapping from Rp×k ×Rk×n to Rp×k ×Rk×n with respect to the inner product in
Rp×k × Rk×n (see Subsection 2.4 for details).

Next, for the same reason, using the expression for ∇φ∗
A(A,B) given in equation (3.11) and prop-

erties of the Tr(.) operator, notice that(
∇2φ∗(A,B)

)(
(C,0k×n), (C,0k×n)

)
=
〈
[∇2φ∗(A,B)]

(
(C,0k×n)

)
, (C,0k×n)

〉
Rp×k×Rk×n

=
(
∇2φ∗

A(A,B)
)
(C,C)

=
〈
[∇2φ∗

A(A,B)](C),C
〉
F

=
〈(
W ⊙CB

)
BT ,C

〉
F

= Tr
((

(W ⊙CB)BT
)T

C
)

= Tr
(
C
(
(W ⊙CB)BT

)T)
= Tr

(
CB

(
W ⊙CB

)T)
= Tr

((
W ⊙CB

)T
CB

)
=
〈
W ⊙CB,CB

〉
F

=
(
∇2φ(AB)

)
(CB,CB) ,

50

where the last equality results from equation (3.4). Similarly, we have(
∇2φ∗(A,B)

)(
(0p×k,D), (0p×k,D)

)
=
〈
[∇2φ∗(A,B)]

(
(0p×k,D)

)
, (0p×k,D)

〉
Rp×k×Rk×n

=
(
∇2φ∗

B(A,B)
)
(D,D)

=
〈
[∇2φ∗

B(A,B)](D),D
〉
F

=
〈
AT
(
W ⊙AD

)
,D
〉
F

= Tr
((

AT (W ⊙AD)
)T

D
)

= Tr
((

W ⊙AD
)T

AD
)

=
〈
W ⊙AD,AD

〉
F

=
(
∇2φ(AB)

)
(AD,AD) .

We now reformulate similarly the last factor in the right-hand side of equation (3.13) in terms of
∇φ(AB) and

(
∇2φ(AB)

)
:(

∇2φ∗(A,B)
)(
(0p×k,D), (C,0k×n)

)
=
〈
DB

(
∇φ∗

A(A,B)
)
(D),C

〉
F

=
〈
DB

(
(W ⊙ (AB−X))BT

)
(D),C

〉
F

=
〈(

W ⊙ (AB−X)
)
DT + (W ⊙AD)BT ,C

〉
F

=
〈(

W ⊙ (AB−X)
)
DT ,C

〉
F

+
〈
(W ⊙AD)BT ,C

〉
F

= Tr
(
D
(
W ⊙ (AB−X)

)T
C
)
+Tr

(
B(W ⊙AD)TC

)
= Tr

(
CD

(
W ⊙ (AB−X)

)T)
+Tr

(
CB(W ⊙AD)T

)
=
〈
W ⊙ (AB−X),CD

〉
F
+
〈
W ⊙AD,CB

〉
F

=
〈
∇φ(AB),CD

〉
F
+
(
∇2φ(AB)

)
(AD,CB) .

Summarizing the preceding results, we have(
∇2φ∗(A,B)

)(
(C,0k×n), (C,0k×n)

)
=
(
∇2φ∗

A(A,B)
)
(C,C) =

(
∇2φ(AB)

)
(CB,CB),(

∇2φ∗(A,B)
)(
(0p×k,D), (0p×k,D)

)
=
(
∇2φ∗

B(A,B)
)
(D,D) =

(
∇2φ(AB)

)
(AD,AD),(

∇2φ∗(A,B)
)(
(0p×k,D), (C,0k×n)

)
=
〈
∇φ(AB),CD

〉
F
+
(
∇2φ(AB)

)
(AD,CB) ,

(3.14)

and this implies, finally, using the symmetry and bilinearity of the bilinear form
(
∇2φ∗(A,B)

)
that (

∇2φ∗(A,B)
)(
(C,D), (C,D)

)
=
(
∇2φ(AB)

)
(CB,CB) +

(
∇2φ(AB)

)
(AD,AD)

+ 2.
(
∇2φ(AB)

)
(AD,CB) + 2.

〈
∇φ(AB),CD

〉
F

=
(
∇2φ(AB)

)
(CB,CB+AD)

+
(
∇2φ(AB)

)
(AD,AD+CB)

+ 2.
〈
∇φ(AB),CD

〉
F

=
(
∇2φ(AB)

)
(CB+AD,CB+AD)

+ 2.
〈
∇φ(AB),CD

〉
F
. (3.15)

Thus, the second-order stationary condition forφ∗(.) at (A,B), e.g., that the quadratic form
(
∇2φ∗(A,B)

)
is positive semi-definite, is equivalent to the inequality(

∇2φ(AB)
)
(CB+AD,CB+AD) ≥ −2.

〈
∇φ(AB),CD

〉
F
,

51

or, using equations (3.3) and (3.4), to the more convenient inequality

∥
√
W ⊙ (CB+AD)∥F ≥ −2.

〈
W ⊙ (AB−X),CD

〉
F
, ∀(C,D) ∈ Rp×k × Rk×n .

Note that, while these inequalities based on the quadratic expression of ∇2φ(AB) and the gradient
∇φ(AB) are sufficient for our purpose in this section, it is rather straightforward to obtain the
general bilinear form of ∇2φ∗(A,B) since(

∇2φ∗(A,B)
)(
(C,D), (E,F)

)
=
(
∇2φ∗(A,B)

)(
(C+E,D+ F), (C+E,D+ F)

)
− 1

4

(
∇2φ∗(A,B)

)(
(C−E,D− F), (C−E,D− F)

)
.

Furthermore, a vectorized formulation of the symmetric bilinear mapping
(
∇2φ∗(A,B)

)
will be

also derived later in Section 4.

We are now in the position to characterize more precisely the connections between the critical points
of φ(.) and φ∗(.) in the following theorem, which is a reformulation and a slight extension in our
WLRA context of results first given in Ha et al. [83] and later refined in Levin et al. [113] and Luo
et al. [115].

Theorem 3.7. Let (A,B) ∈ Rp×k × Rk×n. Then:

(1) If AB ∈ Rp×n≤k is a Frechet first-order stationary point of φ(.) in the sense of Theorem 3.5 then
(A,B) is a first-order stationary point of φ∗(.).

(2) Reciprocally, if (A,B) is a first-order stationary point of φ∗(.) such that AB ∈ Rp×nk then AB
is a Frechet first-order stationary point of φ(.) in the sense of Theorem 3.5.

(3) Moreover, if (A,B) is a second-order stationary point of φ∗(.) such that AB ∈ Rp×n<k , then
AB is a Frechet first-order stationary point of φ(.) in the sense of Theorem 3.5 and, thus, also
a Frechet second-order stationary point of φ(.) and even a solution of the WLRA problem in its
formulation (P0).

(4) Reciprocally, if AB ∈ Rp×n<k is a Frechet second-order stationary point of φ(.) then (A,B) is
a second-order stationary point of φ∗(.) and also a solution of the WLRA problem in its formula-
tion (P1).

(5) Finally, if (A,B) is a second-order stationary point of φ∗(.) such that AB ∈ Rp×nk , then AB
is a Frechet second-order stationary point of φ(.) in the sense of Theorem 3.5.

(6) Reciprocally, if AB ∈ Rp×nk is a Frechet second-order stationary point of φ(.) then (A,B) is a
second-order stationary point of φ∗(.).

Proof. (1) : In order to prove the first assertion, we assume that AB ∈ Rp×n≤k is a Frechet first-order
stationary point of φ(.) and we consider separately the two cases rank(AB) < k and rank(AB) =
k.

If rank(AB) < k, according to Theorem 3.5, we have ∇φ(AB) = 0p×n and we deduce immedi-
ately that

∇φ∗
A(A,B) = ∇φ(AB)BT = 0p×k ,

∇φ∗
B(A,B) = AT∇φ(AB) = 0k×n .

In other words, the pair (A,B) is a first-order critical point of φ∗(.).

On the other hand, if rank(AB) = k, again according to Theorem 3.5, we have

∇φ(AB)TUAB = 0n×k and ∇φ(AB)VAB = 0p×k ,

where the columns of UAB and VAB are, respectively, the first k left and right singular vectors of
the matrix product AB in its thin SVD, e.g., AB = UABΣABVAB .

52

As rank(AB) = rank(A) = rank(B) = k, we have ran(AB) = ran(A) and ran(BTAT) =
ran(BT), and also

ran(UAB) = ran(AB) = ran(A),

ran(VAB) = ran(BTAT) = ran(BT) .

This implies that it exists C ∈ Rk×k and D ∈ Rk×k such that

A = UABC and BT = VABD .

In these conditions, we have

∇φ∗
A(A,B) = ∇φ(AB)BT =

(
∇φ(AB)VAB

)
D = 0p×k ,

∇φ∗
B(A,B) = AT∇φ(AB) = CT

(
UT
AB∇φ(AB)

)
= 0k×n ,

as AB is is a first-order critical point of φ(.). In other words, we have ∇φ∗(A,B) = (0p×k,0k×n)
and the pair (A,B) is a first-order stationary point of φ∗(.).

(2) : Reciprocally, if the pair (A,B) is a first-order stationary point of φ∗(.) such that AB ∈ Rp×nk ,
we have also rank(AB) = rank(A) = rank(BT) = k, which implies again that UAB and A span
the same column space and that their columns form two bases of ran(UAB) = ran(A). Similarly,
VAB and BT span the same column space and their columns form two bases of ran(VAB) =
ran(BT). In these conditions, it exist C ∈ Rk×k and D ∈ Rk×k such that

UAB = AC and VAB = BTD .

Using the first-order optimality conditions of (A,B) for φ∗(.), we have

∇φ(AB)BT = 0p×k and AT∇φ(AB) = 0k×n ,

which implies that

∇φ(AB)VAB =
(
∇φ(AB)BT

)
D = 0p×k ,

∇φ(AB)TUAB =
(
∇φ(AB)TA

)
C =

(
AT∇φ(AB)

)T
C = 0k×n ,

and the matrix product AB is a first-order critical point of φ(.) in the sense of Theorem 3.5.

(3) : To demonstrate the next claim of the theorem, let u1 ∈ Rp, v1 ∈ Rn and σ1 ∈ R+ be,
respectively, the first left and right singular vectors and the first singular value of ∇φ(AB) ∈ Rp×n.
We first recall from equation (2.23) in Subsection 2.1 that the spectral norm of ∇φ(AB) is given
by

∥∇φ(AB)∥S = σ1 = uT1 ∇φ(AB)v1 .

Moreover, as demonstrated just before Theorem 3.7, the hypothesis that the pair (A,B) is a second-
order stationary point of φ∗(.) is equivalent to the inequality

∥
√
W ⊙ (AD+CB)∥F ≥ −2.

〈
∇φ(AB),CD

〉
F
, ∀(C,D) ∈ Rp×k × Rk×n .

Now, suppose that AB ∈ Rp×n<k then A or B are not of full rank since k ≤ min(p, n). Without
loss of generality suppose that rank(A) < k. By the rank-nullity theorem (2.1), this implies that it
exists a unit vector w ∈ Rk such that Aw = 0p. Let

(Cc,Dc) = (−u1w
T , c.wvT1) ∈ Rp×k × Rk×n , ∀c ∈ R+∗ .

By hypothesis, the pair (A,B) is a second-order stationary point of φ∗(.), which implies that

∥
√
W ⊙ (ADc +CcB)∥F ≥ −2.

〈
∇φ(AB),Cc,Dc

〉
F
.

53

Now, we have
ADc +CcB = c.AwvT1 − u1w

TB = −u1w
TB ,

since Aw = 0p. Furthermore, as ∥w∥22 = wTw = 1, ∥∇φ(AB)∥S = uT1 ∇φ(AB)v1 = σ1 and

Tr
(
EFG

)
= Tr

(
GEF

)
, ∀E ∈ Rp×n,F ∈ Rn×m,G ∈ Rm×p ,

we deduce that 〈
∇φ(AB),Cc,Dc

〉
F
=
〈
∇φ(AB),−c.u1w

TwvT1
〉
F

= −c.
〈
∇φ(AB),u1v

T
1

〉
F

= −c.Tr
(
∇φ(AB)Tu1v

T
1

)
= −c.Tr

(
vT1 ∇φ(AB)Tu1

)
= −c.vT1 ∇φ(AB)Tu1

= −c.uT1 ∇φ(AB)vT1

= −c.σ1 .

Using these different results, the preceding inequality simplifies to

∥
√
W ⊙ (u1w

TB)∥F ≥ 2.c.σ1 = 2.c.∥∇φ(AB)∥S ,

which holds for any c > 0. On the other hand, since the left-hand side of the last inequality is the
Frobenius norm of a fixed element of Rp×n, which is not a function of c, it must be finite and this
implies that ∥∇φ(AB)∥S = σ1 = 0, i.e., ∇φ(AB) = 0p×n. Consequently, since rank(AB) < k
by hypothesis, AB is a Frechet first-order stationary point of φ(.) in the sense of Theorem 3.5 and
even a solution of the WLRA problem in its formulation (P0).

(4) : if AB ∈ Rp×n<k is a Frechet second-order stationary point of φ(.) then this pair is a fortiori
a Frechet first-order stationary point of φ(.) and, according to Theorem 3.5, also a solution of the
WLRA problem in its formulation (P1). By an application of Theorem 3.1, we deduce immediately
that the pair (A,B) is a solution of the WLRA problem in its formulation (P1) and, thus, also a
second-order stationary point of φ∗(.).

(5) and (6) : the proofs of these two assertions can be found in Luo et al. [115], especially their
Corollary 2, and we omit them here.

On the other hand, we highlight that, if the pair (A,B) is a first-order stationary point of φ∗(.) such
that AB ∈ Rp×n<k , then AB is not necessarily a Frechet first-order critical point of φ(.), as noted by
Ha et al. [83]. As an illustration, consider the pair (0p×k,0k×n). Obviously, this pair is a first-order
critical point of φ∗(.), but 0p×k0k×n = 0p×n is not a Frechet first-order critical point of φ(.) in the
sense of Theorem 3.5 as ∇φ(0p×n) = −W ⊙ X, which is not equal to 0p×n as soon as we have
for some pair of integers (i, j), Xij ̸= 0 and Wij > 0. Thus, in general, 0p×n is not a Frechet
first-order stationary point of φ(.) and is obviously not a solution of of the WLRA problem in its
formulation (P0).

In addition, it is also possible to demonstrate that if the pair (A,B) is not a second-order stationary
point of φ∗(.), then AB ∈ Rp×n≤k is not a (local) minimizer of φ(.) over Rp×n≤k , see Ha et al. [83]
and Levin et al. [113] for details.

3.3 Approximate and regularized forms of the WLRA problem

In practice, instead of an exact solution of the WLRA problem, which can even not exist if missing
values are present as noted above, one often seeks an approximation of X such that

∥
√
W ⊙ (X− X̂)∥2F ≤ (1 + ε)c̄φ ,

54

where X̂ ∈ Rp×n≤k denotes the approximation, c̄φ is the infimum of φ(.) and ε ∈ (0, 1) is a tolerance
parameter called the approximation error. In such framework, Razenshteyn et al. [167] recently
show that in the case that W has at most r distinct rows and r distinct columns, there is an algo-
rithm solving the above approximate version of the WLRA problem in 2O(k2.r/ε)poly(n) time with
probability of success at least 9/10. In the case that W has at most r distinct columns, but any
number of distinct rows, there is also an algorithm solving the approximate version of the WLRA
problem in 2O(k2.r2/ε)poly(n) time with probability 9/10. These bounds imply that for constant r
and ε, even if r is as large as Θ

(
log(n)

)
in the first case, and Θ

(√
log(n)

)
in the second case, the

corresponding algorithms are polynomial time. Razenshteyn et al. [167] also consider the case when
the rank of the weight matrix W is at most r, which includes as special cases the two above cases,
and devise an nO(k2.r/ε) time algorithm for this more general case again with probability 9/10. In
other words, assuming that W has low rank, the algorithms of [167] achieve a 1 + ε multiplicative
approximation to the infimum of φ(.).

Alternatively, some authors have recently developed simple and greedy algorithms with additive
error bounds for the WLRA problem which do not require any structural assumption on W, see
Bhaskara et al. [25] for general weights and also Musco et al. [135] in the case of binary weights.
In such approach, one seeks an approximation X̂ of X such that

∥
√
W ⊙ (X− X̂)∥2F ≤ c̄φ + ε∥X∥2F or ∥

√
W ⊙ (X− X̂)∥2F ≤ γ + ε∥X∥2F ,

where γ is a (small) real constant of the order of c̄φ and the rank of X̂ is of the order of k. Such
methods with additive guarantees are interesting in applications (e.g., give sufficient matrix com-
pression) when c̄φ is only a small fraction of the squared Frobenius norm of X.

However, as these different algorithms with provable guarantees are inherently slow due the hard-
ness of the WLRA problem and it is an open problem to determine when the WLRA problem has
a closed form solution in general when some of the weights are zero, several authors have also
proposed to minimize other related cost functions, which are convex, more smooth, and with a
well-defined, nonempty and compact set of global minimizers, instead of problems (P0) or (P1) to
address these issues [47][14][129][131][157][177][100][101][23].

As a first illustration, [129][131] have proposed the following convex relaxation to the rank con-
straint imposed in the formulation (P0):

min
Y∈Rp×n

φλ(Y) =
1

2
∥
√
W ⊙ (X−Y)∥2F + λ∥Y∥∗ .

Here ∥Y∥∗ is the nuclear norm (also called the trace norm), which is equal to the sum of the singu-
lar values of the p× n matrix Y and λ ∈ R+∗ is a regularization parameter controlling the nuclear
norm of the minimizer Ŷ(λ) of this Lagrange form of (P0). φλ(.) defines a convex function of its
argument so that the above problem as an unique solution. Furthermore, it can be demonstrated that
the rank of Ŷ(λ) tends to zero when λ grows unbounded so that this proxy can provide suboptimal
low-rank minimizers of problem (P0) when this Lagrange form of (P0) is solved for a range of val-
ues of λ [129][131]. Moreover, as the rank of Ŷ(λ) increases when λ decreases, if this problem is
solved for a range of decreasing values of λ, the iterative algorithm can use efficiently the solution
for the previous value of λ as warm starts [129][86].

Another class of related methods are maximum margin matrix factorization (MMMF) methods [157]
[177][23][117], which use a factorization model of the matrix Y, as in the formulation (P1) of the
WLRA problem, but are also equipped with a regularization term λ ∈ R+∗ as in the above Lagrange
form of problem (P0):

min
A∈Rp×k , B∈Rk×n

φ∗
λ(A,B) =

1

2
∥
√
W ⊙ (X−AB)∥2F +

λ

2
(∥A∥2F + ∥B∥2F) . (MMMF)

55

Not surprisingly (e.g., taking into account the equivalence between the original problems (P0)
and (P1) stated in Theorem 3.1), there are closed relationships between the set of global mini-
mizers of these Lagrange and regularized formulations of problems (P0) and (P1), see Theorem 3
and Lemma 6 in Mazumder et al. [129] and also Hastie et al. [86] for details. However, the above
MMMF criterion is not convex in (A,B), but only bi-convex as for the original problem (P1), e.g.,
for a fixed B matrix, the modified function φ∗

λ(.) is convex in A, and for a fixed A matrix, the func-
tion φ∗

λ(.) is convex in B. As the MMMF criterion is not convex, it can have possibly several local
minima as the original problem (P1) [72][171][157] and ALS algorithms (see Section 4), which are
very often used to solve these MMMF and (P1) problems, get frequently stuck in sub-optimal local
minima for a small value of k or a poorly chosen starting point, especially if some elements of the
weight matrix W are equal to zero [72][171]. However, Ban et al. [23] have demonstrated, extend-
ing the results of Razenshteyn et al. [167], that it also exists polynomial time algorithms solving
this weighted and regularized MMMF formulation of the WLRA problem, with provable guaran-
tees, and also sharper time bounds than those proved in [167].

Some other recent works have proposed to add to φ∗(A,B), or similar regularized cost functions
using the bilinear Burer-Monteiro approach, a balancing regularizer of the form

R(A,B) =
λ

4
∥ATA−BTB∥2F ,

where λ controls the weight for the regularizer as before [156][193][200][201]. R(A,B) implicitly
forces the A and B matrices to have the same energy and, thus, helps to remove the scaling ambi-
guity which inherently affects the cost function φ∗(.) and the minimization of φ∗(A,B) in the (P1)
formulation of the WLRA problem as discussed in Remark 3.2 above. Moreover, for many cost
functions which use the bilinear Burer-Monteiro approach, adding this balancing regularizer does
not compromise the quality of the solutions [156][117][201][146].

Many of the proposed recent approaches also recast the WLRA problem as an optimization prob-
lem on the Grassmann manifold Gr(p, k) or on the two Grassmann manifolds Gr(p, k) and Gr(n, k)
(where Gr(p, k) is the set of k-dimensional linear subspaces of Rp) and introduce a regularization
parameter λ ∈ R+∗ as in the above Lagrange forms of problems (P0) and (P1) in order to ensure
smoothness of the objective function and hence obtain good convergence at the expense of slight
increase of the objective [100][101][47][131][14]. An interesting example in this class of methods,
as it is closely related to the formulations (P0) or (P1) of the WLRA problem, is the unconstrained
Riemannian optimization methods on a single Grassmann manifold Gr(p, k) described in Boumal
and Absil [13][14] for solving the matrix completion problem, which we now discussed in some
details.

To this end, for any weight matrix W ∈ Rp×n+ , let us define the set Ω̄ ⊂ [p] × [n], be the set
of indices of the elements of W with Wij = 0 (e.g., Ω̄ is the complement of Ω in [p]× [n]) and the
seminorms

∥Y∥2Ω =
∑

(i,j)∈Ω

Y2
ij and ∥Y∥2Ω̄ =

∑
(i,j)∈Ω̄

Y2
ij .

With these definitions and in our notations, Boumal and Absil [13][14] proposed to solve the fol-
lowing optimization problem

min
Y∈Rp×n

≤k

g(Y) =
1

2
∥
√
W ⊙ (X−Y)∥2Ω +

λ

2
∥Y∥2Ω̄ ,

where, as before, λ ∈ R+∗ is a regularization parameter, which ensures that the solution to this
problem exists and the cost function g is smooth. They give the following interpretation for the
minimization of the cost function g, which makes sense for the matrix completion problem: ”we

56

are looking for an optimal matrix X̂ of rank at most k and we have confidence
√
Wij that X̂ij

should equal Xij for (i, j) ∈ Ω and smaller confidence λ that X̂ij should equal zero for (i, j) ∈ Ω̄”.
They have also illustrated that the solutions of this problem are largely insensitive to the value of
λ provided it is much smaller than the strictly positive values Wij . As an illustration, for matrix
completion problems in their experiments, they used λ = 10−6 and Wij = 1 if (i, j) ∈ Ω. Finally,
they describe and apply second-order Riemannian trust-region methods (RTRMC2) and Rieman-
nian conjugate gradient methods (RCGMC) [11] to solve this problem efficiently and accurately,
which are still state-of-the-art algorithms on a wide range of problem instances.

Interestingly, we now show that the minimization of the cost function g(.) proposed by Boumal
and Absil [13][14] is in fact a simple instance of formulation (P0) of the WLRA problem so that
the variable projection framework can also be used to solve this problem as we will illustrate in the
following sections. More precisely, if, for any p×n weight matrix W with some zero elements and
any λ ∈ R+∗ (e.g., λ > 0), we define as above an p× n weight matrix Wλ ∈ Rp×n+∗ as

[
Wλ

]
ij
=

{
Wij if (i, j) ∈ Ω

λ if (i, j) /∈ Ω
, (3.16)

and we introduce the projection operator associated with an p × n weight matrix W by PΩ :
Rp×n −→ Rp×n with PΩ(X) = XΩ where

[
XΩ

]
ij
=

{
Xij if (i, j) ∈ Ω

0 if (i, j) /∈ Ω
, (3.17)

we can rearrange the cost function g(.) introduced by Boumal and Absil [13][14] as

gλ(Y) =
1

2
∥
√
Wλ ⊙ (XΩ −Y)∥2F , (3.18)

and it is readily observed that the minimization of this cost function gλ(.) w.r.t. Y ∈ Rp×n≤k is
equivalent to the form (P0)

min
Y∈Rp×n

≤k

gλ(Y) =
1

2
∥
√

Wλ ⊙ (XΩ −Y)∥2F =
1

2
∥XΩ −Y∥2Wλ

of a standard WLRA problem in which we use the matrices XΩ and Wλ in place of X and W,
respectively. Furthermore, as all the elements of the weight matrix Wλ are greater than zero for any
λ ∈ R+∗, ∥∥Wλ

defines a norm on Rp×k and Theorem 3.3 shows that the set of global minimizers
of gλ(.) is nonempty and compact, so that the minimization of this cost function is a well-posed
problem. In other words, for any λ ∈ R+∗ there exists X̂λ ∈ Rp×n≤k such that

X̂λ = Arg min
Y∈Rp×n

≤k

gλ(Y) .

In addition, if we take a regularization parameter λ (also called the Tikhonov parameter, see [70])
sufficiently small, the following theorem shows that the minimization of gλ(.) with a Tikhonov
parameter tending to zero is an interesting alternative to the formulations (P0) and (P1) of the WLRA
problem, which are not well-posed when some elements of the weight matrix W are equal to zero
as discussed above.

Theorem 3.8. Let X ∈ Rp×n, W ∈ Rp×n+ (i.e., Wij ≥ 0), k ∈ N∗ with k ≤ rank(X) ≤ min(p, n)
and λ ∈ R+∗ (i.e., λ > 0). Furthermore, using definition (3.18) of the cost function, gλ(.), let

X̂λ = Arg min
Y∈Rp×n

≤k

gλ(Y) and f(λ) = gλ(X̂λ) =
1

2
∥XΩ − X̂λ∥2Wλ

for λ ∈ R+∗

57

then
lim
λ→0

f(λ) = c̄φ ,

where c̄φ is the infimum of the cost functionφ(.) used in the formulation (P0) of the WLRA problem
and XΩ = PΩ(X) where PΩ is the projection operator associated with the p× n weight matrix W.

Proof. We first show that f(.) has a well defined limit, c̄f , when f(.) tends to zero. To demonstrate
this result, we first note that f(.) is an increasing function. For α ∈ R+∗ and λ ∈ R+∗ with α ≥ λ,
let

X̂α = Arg min
Y∈Rp×n

≤k

gα(Y) and X̂λ = Arg min
Y∈Rp×n

≤k

gλ(Y)

then we have
∥XΩ − X̂α∥2Wα

≥ ∥XΩ − X̂α∥2Wλ
≥ ∥XΩ − X̂λ∥2Wλ

,

which implies that f(α) ≥ f(λ). Furthermore, for all λ ∈ R+∗, we have

f(λ) =
1

2
∥XΩ − X̂λ∥2Wλ

≥ 1

2
∥XΩ − X̂λ∥2W = φ(X̂λ) ≥ c̄φ ,

which shows that limλ→0 f(λ) exists and that limλ→0 f(λ) = c̄f ≥ c̄φ.

It remains to show that c̄φ ≥ c̄f . To this end, suppose that c̄φ < c̄f , then it exists Y ∈ Rp×n≤k such
that c̄φ ≤ φ(Y) < c̄f , otherwise c̄φ is not the infimum of φ(.). As

lim
λ→0

∥XΩ −Y∥2Wλ
= ∥X−Y∥2W and ∥XΩ −Y∥2Wλ

≥ ∥X−Y∥2W for all λ ∈ R+∗ ,

it also exists α ∈ R+∗ such that

φ(Y) =
1

2
∥X−Y∥2W ≤ 1

2
∥XΩ −Y∥2Wα

< c̄f .

However, we also have

c̄f ≤ f(α) =
1

2
∥XΩ − X̂α∥2Wα

≤ 1

2
∥XΩ −Y∥2Wα

< c̄f

and we obtain a contradiction.

Thus, one way of getting an useful approximate solution to the WLRA problem when missing
values are present is to use a continuation Tikhonov method that approximately solves a sequence of
regularized WLRA problems for a sequence of decreasing Tikhonov parameter λ. The approximate
solution of one regularized WLRA problem with Tikhonov parameter λt (e.g., the minimization
of gλt(.)) is taken as the starting point for the next regularized WLRA problem with Tikhonov
parameter λt+1 < λt. This kind of Tikhonov methods has already been proposed in the context
of ill-conditioned and uniformly rank-deficient NLLS problems [52][53][54], see Section 6 where
such methods are further discussed.

3.4 Variable projection formulation of the WLRA problem

We are now ready to show that the alternative formulation (P1) or its variants (see Remark 3.1) of
the WLRA problem

min
A∈Rp×k ,B∈Rk×n

φ∗(A,B) =
1

2
∥
√
W ⊙ (X−AB)∥2F

is a separable NLLS problem as stated in the Definition 2.10 of Subsection 2.4 [63][166]. This
means that the minimization of φ∗(A,B) is a mixed linear-nonlinear least-squares problem where
the associated residual function e(A,B) is linear in some variables and nonlinear in others.

58

In order to demonstrate this result, we first write φ∗(A,B) as

φ∗(A,B) =
1

2
∥e(A,B)∥22 =

1

2
e(A,B)T e(A,B) ,

where the residual vector function e(A,B) ∈ Rp.n is defined by

e(A,B) = vec
(√

W ⊙ (X−AB)
)
. (3.19)

Using equations (2.27) and (2.33), the residual function e(A,B) can be further transformed as

e(A,B) = diag
(
vec(

√
W)

)
vec(X−AB)

= vec(
√
W ⊙X)− diag

(
vec(

√
W)

)
vec(AB)

= vec(
√
W ⊙X)− diag

(
vec(

√
W)

)
(In ⊗A) vec(B) ,

and e(A,B) is finally equal in explicit matrix form to

√
W.1X.1

...√
W.jX.j

...√
W.nX.n

−

diag(
√
W.1)A 0 . . . 0 0

0
. . . 0 . . . 0

... 0 diag(
√
W.j)A 0

...

0 . . . 0
. . . 0

0 0 . . . 0 diag(
√
W.n)A

B.1

...
B.j

...
B.n

 .

In this residual function, we first note that all the lines corresponding to a zero weight (e.g., Wij =
0) can be eliminated when evaluating this function in real computations. The same is true for all the
equations of the following sections and in a practical computer implementation of the algorithms
used to minimize φ∗(.). However, for notational simplicity and because we want to consider at the
same time both the cases W ∈ Rp×n+ and W ∈ Rp×n+∗ , we do not introduce an incidence matrix
in our equations to indicate which rows or columns must be eliminated as was done for example
in [147][28][37][66][14]. Then, we may write

φ∗(A,B) =
1

2
∥x− F(a)b)∥22 ,

where x = vec(
√
W⊙X), a = vec(AT), b = vec(B) and F(a) is the block diagonal matrix

F(a) =
n⊕
j=1

Fj(a) =

F1(a) 0 . . . 0 0

0
. . . 0 . . . 0

... 0 Fj(a) 0
...

0 . . . 0
. . . 0

0 0 . . . 0 Fn(a)

= diag

(
vec(

√
W)

)(
In ⊗A

)
,

(3.20)
where

Fj(a) = diag(
√
W.j)A = diag(

√
W.j)

(
matk×p(a)

)T
.

The reason and interest of defining the vectorized form of A as

a = vec(AT) , (3.21)

instead of simply vec(A) as usually done, will become clear in the next sections. From this formu-
lation, it is clear that minimizing φ∗(.) is a separable NLLS problem, since for a fixed matrix A, we
have a linear least-squares problem to determine the optimal vector b̂ = vec(B̂), i.e.,

b̂ = Arg min
b∈Rn.k

φ∗(A,B) =
1

2
∥x− F(a)b)∥22 .

59

Moreover, we observe that the residual function e(A,B) is linear in both A and B, since

F(a)b =
(n⊕
j=1

diag(
√
W.j)A

)
b

= diag
(
vec(

√
W)

)(
In ⊗A

)
vec(B)

= diag
(
vec(

√
W)

)
vec(AB)

= diag
(
vec(

√
W)

)(
BT ⊗ Ip

)
vec(A)

= diag
(
vec(

√
W)

)(
BT ⊗ Ip

)
K(k,p)K(p,k)vec(A)

= diag
(
vec(

√
W)

)(
BT ⊗ Ip

)
K(k,p)vec(AT)

= diag
(
vec(

√
W)

)
K(n,p)

(
Ip ⊗BT

)
a

= K(n,p)diag
(
vec(

√
W

T
)
)(
Ip ⊗BT

)
a

= K(n,p)

(p⊕
i=1

diag(
√
Wi.)B

T
)
a .

Defining now

G(b) =

p⊕
i=1

Gi(b) =

G1(b) 0 . . . 0 0

0
. . . 0 . . . 0

... 0 Gi(b) 0
...

0 . . . 0
. . . 0

0 0 . . . 0 Gp(b)

, (3.22)

where
Gi(b) = diag(

√
Wi.)B

T = diag(
√
Wi.)

(
matk×n(b)

)T
,

we note that the residual function e(A,B) may then be written in the following alternative matrix
form

e(A,B) = x− F(a)b

= x−K(n,p)

(p⊕
i=1

diag(
√
Wi.)B

T
)
a

= x−K(n,p)G(b)a

= K(n,p)K(p,n)x−K(n,p)G(b)a

= K(n,p)K(p,n)vec(
√
W ⊙X)−K(n,p)G(b)a

= K(n,p)vec
(
(
√
W ⊙X)T

)
−K(n,p)G(b)a

= K(n,p)

(
z−G(b)a

)
,

where z = vec
(
(
√
W ⊙X)T

)
. This implies that φ∗(A,B) may also be expressed as

φ∗(A,B) =
1

2
(z−G(b)a)T K(p,n)K(n,p) (z−G(b)a)

=
1

2
(z−G(b)a)T (z−G(b)a)

=
1

2
∥z−G(b)a∥22 ,

which shows that the roles of A and B are interchangeable in φ∗(A,B) as already noted in the case
of binary weights for example in [147]. As for the choice between the formulations (P1) and (P2)
of the WLRA problem (see Remark 3.2), the choice between the formulations

φ∗(A,B) =
1

2
∥x− F(a)b)∥22 or φ∗(A,B) =

1

2
∥z−G(b)a∥22

60

depends on the values of p and n, and the first one should be preferred if p < n as the number of
parameters to estimate (e.g., A) will be smaller once the other matrix variable (e.g., B) has been
eliminated as we will show below, and vice-versa if p > n. Furthermore, in what follows, we note
that the matrices A and B can be used in an interchangeable manner with their vectorized forms
a and b, respectively, as the mapping vec(.) is a bijective homeomorphism (see Subsection 2.2 for
details).

Thus, the problem of minimizing φ∗(.) is separable and this property can be exploited in a least-
squares estimation, and a number of special purpose algorithms have been proposed in this con-
text [95][96][63][166][10][149][17]. Moreover, it has been demonstrated that these special algo-
rithms provide greater stability than standard NLLS methods, besides reducing both the dimension-
ality of the optimization problem and the necessary number of iteration steps [136][65][37][17]. In
most cases, the total computational work decreases with separable methods even though the code
describing the separable problem is slightly more complicated than in standard NLLS algorithms.
We now discuss how to reformulate the problems (P0) and (P1) so that we can exploit the separa-
tion property by eliminating one of the matrix variables (e.g., B if p < n) and devise more efficient
algorithms to solve these problems.

Assuming that p < n, for a fixed A matrix, we have a linear least-squares problem to determine
the optimal vector b = vec(B) which will minimize the cost function φ∗(.) and the solution of this
linear least-squares problem is b̂ = F(a)+x where x = vec(

√
W ⊙X) and F(a)+ is the pseudo-

inverse of the p.n×k.n matrix F(a), see Subsection 2.1. Inserting now b̂ in φ∗(.), we obtain a new
nonlinear functional ψ : Rp.k −→ R involving only the vectorized form of the A matrix

ψ(a) =
1

2
∥
(
Ip.n − F(a)F(a)+

)
x∥22 =

1

2
∥P⊥

F(a)x∥
2
2 =

1

2
∥r(a)∥22 , (3.23)

where P⊥
F(a) is the orthogonal projector onto the orthogonal complement of ran

(
F(a)

)
and r(.) is

a nonlinear residual function of a = vec(AT) defined by

r : Rp.k −→ Rp.n : a 7→ P⊥
F(a)x = x− F(a)b̂ = K(n,p)

(
z−G(b̂)a

)
. (3.24)

r(a) is called the variable projection residual of X at A (or equivalently of x at a) and the func-
tional ψ(.) can be termed a variable projection functional since P⊥

F(a) is an orthogonal projector
involving only the vectorized form of the A matrix [63]. Again, if we take into account the block
structure of F(a), we obtain an alternative formulation of ψ(.), which is useful for computational
purposes,

ψ(a) =
1

2

n∑
j=1

ψj(a) ,

where ψj(.) denotes the jth atomic function, which is defined for all a ∈ Rp.k, by

ψj(a) = ∥P⊥
Fj(a)

xj∥22
= ∥
(
Ip − Fj(a)Fj(a)

+
)
xj∥22

= ∥
(
Ip −

(
diag(

√
W.j)A

)(
diag(

√
W.j)A

)+)
(
√
W.j ⊙X.j)∥22 . (3.25)

Here P⊥
Fj(a)

is the orthogonal projector onto the orthogonal complement of ran
(
Fj(a)

)
and xj =√

W.j ⊙X.j .

This new formulation of our NLLS problem, based on the cost function ψ(.), suggests that the min-
imization of φ∗(.) can be separated in two steps. Once a A matrix has been obtained by minimizing
ψ(a), the B matrix can be obtained by solving a large block diagonal least-squares problem, which
is equivalent to solve n independent smaller linear least-squares problems. The rational for em-
ploying this separation of variables to minimize φ∗(.) is given by the following theorem, which is a

61

slight variation of a theorem originally proved by Golub and Pereyra in a more general setting (see
Theorem 2.1 in [63]).

Theorem 3.9. With the same notations and definitions as in Theorem 3.1, the problem (P1) is
equivalent to the problem

min
A∈Rp×k

ψ
(
vec(AT)

)
= ψ(a) =

1

2
∥P⊥

F(a)x∥
2
2 , (VP1)

where a = vec(AT) ∈ Rp.k and x = vec(
√
W ⊙ X) ∈ Rp.n. In other words, if we consider the

range of φ∗(.), Cφ∗ , and the range of ψ(.),

Cψ =
{
y ∈ R / ∃A ∈ Rp×k with y = ψ

(
vec(AT)

)}
,

these two subsets of R have the same infimum and if this infimum is a minimum for one set, the
other set also admits a minimum and these two minima are equal.

Proof. As in Theorem 3.1, Cφ∗ and Cψ are bounded below by zero and, thus, admit an infimum
greater or equal to zero, say c̄φ∗ and c̄ψ, respectively.
Suppose first that c̄ψ < c̄φ∗ . Then, it exists A ∈ Rp×k such that

c̄ψ ≤ ψ
(
vec(AT)

)
= ψ(a) < c̄φ∗ ,

where a = vec(AT) ∈ Rp.k. Now, let b = F(a)+x ∈ Rk.n and define B = mat(b) ∈ Rk×n, we
have

P⊥
F(a)x =

(
Ip.n − F(a)F(a)+

)
x = x− F(a)b

and
∥P⊥

F(a)x∥
2
2 = ∥x− F(a)b∥22 = ∥

√
W ⊙ (X−AB)∥2F ,

which implies that ψ(a) = φ∗(A,B). In other words, we have φ∗(A,B) < c̄φ∗ , which contradicts
the assertion that c̄φ∗ is the infimum of φ∗(.). This shows that c̄ψ ≥ c̄φ∗ .
Suppose now that c̄φ∗ < c̄ψ. Then, it exists (A,B) ∈ Rp×k × Rk×n such that c̄φ∗ ≤ φ∗(A,B) <

c̄ψ, otherwise c̄φ∗ is not the infimum of φ∗(.). However, if we define b̂ = F(a)+x ∈ Rk.n and
B̂ = mat(b̂), we have

∥
√
W ⊙ (X−AB̂)∥2F ≤ ∥

√
W ⊙ (X−AB)∥2F ,

as, for a fixed A matrix, b̂ = vec(B̂) is the solution of the least-squares problem

min
b∈Rk.n

∥x− F(a)b∥22 = min
B∈Rk×n

∥
√
W ⊙ (X−AB)∥2F

This implies that ψ(a) = φ∗(A, B̂) ≤ φ∗(A,B) < c̄ψ, which contradicts the assertion that c̄ψ is
the infimum of ψ(.). This demonstrates that c̄φ∗ ≥ c̄ψ.
Finally, the inequalities c̄φ∗ ≥ c̄ψ and c̄φ∗ ≤ c̄ψ imply that c̄φ∗ = c̄ψ, which proves the first part of
the theorem.

Now assume that Â minimizes ψ(.), e.g., ψ(vec(ÂT)) = ψ(â) = c̄ψ. If we let b̂ = F(â)+x

and B̂ = mat(b̂), we have

ψ(â) =
1

2
∥P⊥

F(â)x∥
2
2 =

1

2
∥x− F(â)b̂∥22 =

1

2
∥
√
W ⊙ (X− ÂB̂)∥2F = φ∗(Â, B̂)

and the equalities c̄φ∗ = c̄ψ and ψ(â) = c̄ψ show that φ∗(Â, B̂) = c̄φ∗ and we conclude that
(Â, B̂) is a global minimizer of φ∗(.).

62

Reciprocally, assume that (Â, B̂) minimizes φ∗(.), e.g., φ∗(Â, B̂) = c̄φ∗ . Let â = mat(ÂT),
b̄ = F(â)+x and B̄ = mat(b̄), we have

c̄ψ ≤ ψ(â) = φ∗(Â, B̄) ≤ φ∗(Â, B̂) = c̄φ∗ = c̄ψ ,

which implies that ψ(â) = c̄ψ and â is a global minimizer of ψ(.) and we are done.

An alternative to the minimization of ψ(.) in the variable projection approach can be introduced
with the help of a QRCP (see equation (2.15) in Subsection 2.1) of the matrix F(a) of rank r ≤
k.n

Q(a)F(a)P =

[
R S

0(p.n−r)×r 0(p.n−r)×(k.n−r)

]
,

where Q(a) is an p.n× p.n orthogonal matrix, P is an k.n× k.n permutation matrix, R is an r× r
nonsingular upper triangular matrix and S an r× (k.n− r) full matrix. Then, if Q(a) is partitioned
into

Q(a) =

[
Q1(a)
Q2(a)

]
,

where Q1(a) and Q2(a) are, respectively, r × p.n and (p.n − r) × p.n submatrices, using results
in Subsection 2.1, we have

Q(a)P⊥
F(a) =

[
0r×p.n

Q2(a)

]
.

This implies that, for all a ∈ Rk.p and x = vec(
√
W ⊙X) ∈ Rp.n,

∥P⊥
F(a)x∥

2
2 = ∥Q(a)P⊥

F(a)x∥
2
2 = ∥Q2(a)x∥22 ,

as first noted by Krogh [95] and Kaufman [96] and later by Shen and Ypma [175]. Thus, instead
of minimizing the variable projection functional ψ(.) to solve the (VP1) problem, we can minimize
the variable orthogonal functional ψ∗(.) defined by

ψ∗(a) = ∥Q2(a)x∥22 , (3.26)

assuming that the rank of F(a) stays constant in a neighborhood of a solution â of the (VP1) prob-
lem. Note that this condition is also implicit when using the variable projection functional ψ(.) as
this condition is required both for the differentiation of P⊥

F(.) and Q2(.) in a neighborhood of â as we
will illustrate below. Thus, in the first step, it is mathematically equivalent to minimizeψ(.) orψ∗(.),
even though minimizing ψ∗(.) may involved slightly different numerical algorithms [96][109][175].
Once a minimum of ψ∗(.) has been determined, one can again determine b̂ by solving the linear
least-squares problem

min
b∈Rk.n

∥x− F(a)b∥22 ,

according to Theorem 3.9.

As there is no constraint on the rank of A ∈ Rp×k in the (VP1) problem stated in Theorem 3.9,
the search space for minimizing the cost functions ψ(.) or ψ∗(.) is at first sight the linear space
Rp×k. However, the following corollaries demonstrate that we can restrict this search space to the
submanifold Rp×kk or even to Op×k, the set of p × k matrices with orthonormal columns, which is
called the Stiefel manifold [11]. Moreover, in many practical instances, for example in the matrix
completion problem in which we are looking for a matrix X̂ of specified and fixed rank k, which
agrees with the observed entries of the input matrix X, or when we solve the WLRA problem to
estimate a consistent factor or principal component model, restricting the search space to the sub-
manifold Rp×kk or even to the Stiefel submanifold is fully justified.

63

Corollary 3.1. With the same notations and definitions as in Theorem 3.9, the problem (P1) is also
equivalent to the following alternative formulations of the problem (VP1) in which the search space
is restricted to Rp×kk and Op×k, respectively:

min
A∈Rp×k

k

ψ
(
vec(AT)

)
= ψ(a) =

1

2
∥P⊥

F(a)x∥
2
2

and
min

A∈Op×k
ψ
(
vec(AT)

)
= ψ(a) =

1

2
∥P⊥

F(a)x∥
2
2 ,

where a = vec(AT) ∈ Rp.k and x = vec(
√
W ⊙X) ∈ Rp.n.

Proof. As in Remark 3.1, we note that for all (A,B) ∈ Rp×k × Rk×n, the matrix product AB is
of rank at most k and can be factored as AB = CD with (C,D) ∈ Rp×kk × Rk×n, which implies
that the range of φ∗(.), Cφ∗ , is equal to the set

{
y ∈ R / ∃C ∈ Rp×kk , ∃D ∈ Rk×n with y =

φ∗(C,D)
}

. Taking into account this property, it is easy to verify that a slight modification of the
demonstration of Theorem 3.9 leads to the assertion that the problem (P1) is also equivalent to the
problem

min
A∈Rp×k

k

ψ
(
vec(AT)

)
= ψ(a) =

1

2
∥P⊥

F(a)x∥
2
2 .

We omit the details.
Now, since Op×k ⊂ Rp×kk and any element A of Rp×kk can also be written as A = UR where
U ∈ Op×k and R ∈ Rk×kk , for example by using the QR or SVD decompositions of A, we have

ψ(a) = φ∗(A, B̂) = φ∗(UR, B̂) = φ∗(U,RB̂) ≥ ψ(u) ,

where a = vec(AT), B̂ = mat(b̂) with b̂ = F(a)+x and u = vec(UT). Reciprocally, if A = UR
with U ∈ Op×k and R ∈ Rk×kk , we have

ψ(u) = φ∗(U, D̂) = φ∗(AR−1, D̂) = φ∗(A,R−1D̂) ≥ ψ(a) ,

where D̂ = mat(d̂) with d̂ = F(u)+x. This implies that ψ(a) = ψ(u) if A = UR, which
demonstrates that the range of ψ(.), Cψ, is equal to the set{

y ∈ R / ∃U ∈ Op×k with y = ψ
(
vec(UT)

)}
.

As a consequence, these two sets have the same infimum and the same minimum, if this minimum
exists, and the problems (P1) or (VP1) are also equivalent to

min
A∈Op×k

ψ
(
vec(AT)

)
= ψ(a) =

1

2
∥P⊥

F(a)x∥
2
2 ,

as claimed in the Corollary.

Corollary 3.2. With the same definitions and notations as in Theorem 3.9 and Corollary 3.1, the
following two assertions are true:

1) ψ(vec(AT)) = ψ(vec(CT)) if A = CD with A ∈ Rp×kk ,C ∈ Rp×kk and D ∈ Rk×kk ,

2) ψ(vec(AT)) = ψ(vec(CT)) if A = CD with A ∈ Op×k,C ∈ Op×k and D ∈ Ok×k .

Proof. The proof is very similar to the one used in Corollary 3.1. Suppose first that A = CD with
A ∈ Rp×kk ,C ∈ Rp×kk and D ∈ Rk×kk and let a = vec(AT) and c = vec(CT). We have

ψ(a) = φ∗(A, B̂) = φ∗(CD, B̂) = φ∗(C,DB̂) ≥ ψ(c) ,

64

where B̂ = mat(b̂) and b̂ = F(a)+x. Reciprocally, we have

ψ(c) = φ∗(C, Ê) = φ∗(AD−1, Ê) = φ∗(A,D−1Ê) ≥ ψ(a) ,

where Ê = mat(ê) and ê = F(c)+x. Finally, we obtain ψ(vec(AT)) = ψ(vec(CT)), and the first
part of the corollary is demonstrated.

The proof of the second assertion is exactly similar and thus omitted.

Remark 3.7. Theorem 3.9 and Corollaries 3.1 and 3.2 also explain why the WLRA problem can be
recast as an optimization problem on the Grassmann manifold Gr(p, k) [47][14], the collection of all
linear subspaces of fixed dimension k of the Euclidean space Rp, which is a smooth (quotient) man-
ifold of dimension k.(p−k) [3][11]. As stated in Theorems 3.1 and 3.9, the formulations (P0), (P1)
and (VP1) of the WLRA problem are equivalent and Corollary 3.1 shows that the search space for
the (VP1) problem can be restricted to Rp×kk or Op×k without loss of generality. Next, Corollary 3.2
demonstrates that ψ(vec(AT)) = ψ(vec(CT)) as soon as the linear subspaces ran(A) and ran(C)

are equal. In other words, the value of ψ(vec(AT)) for A ∈ Rp×kk depends only on the linear
subspace ran(A) as for any matrix C ∈ Rp×kk such that the columns of C is a (orthonormal or not)
basis of ran(A), we have ψ(vec(AT)) = ψ(vec(CT)).
As such, an element U of Gr(p, k) can be represented by any p × k matrix U of full column-rank
such that ran(U) = U , e.g., if the columns of U form a basis of U . For numerical reasons, ele-
ments of Gr(p, k) are very often represented by elements of Op×k [51][125] [28][46][47][14], but
any matrix with the same column space can be used, and we will see below that representing U by
elements of Rp×kk instead of Op×k can also be useful to demonstrate important properties of the cost
function ψ(.) used in the (VP1) form of the WLRA problem, especially when the associated weight
matrix W is not strictly positive.
Stated differently, we can say that two p× k (orthonormal) matrices U and V are equivalent if and
only if they have the same column space or, equivalently, if it exists some Q ∈ Rk×kk (or Q ∈ Ok×k)
such that U = VQ. Because of this equivalence relationship in Rp×kk , Gr(p, k) can be described as
the quotient of Rp×kk by the action of Rk×kk . Alternatively, Gr(p, k) can also be described as the quo-
tient of Op×k by the action of Ok×k, see Subsection 2.4 for details. See [11][24] for a geometrical
and comprehensive description of these different approaches of representing elements of Gr(p, k)
with matrices.
Moreover, the fact that the formulation (P1) of the WLRA problem never has a unique or finite set
of global minimizers is also related to the preceding discussion. If Y = AB with A ∈ Rp×kk , the
elements of the columns of B ∈ Rk×p are the coordinates of the corresponding columns of Y in
the particular basis of ran(A) provided by the columns of A and, thus, these coordinates depend on
the choice of the basis.
Finally, in a similar fashion that the formulation (VP1) and the associated variable projection func-
tionals ψ(.) and ψ∗(.) are derived from the formulation (P1) of the WLRA problem, it is also
possible to reformulate the problem (P2) (see Remark 3.2) as a double-minimization problem

min
N∈Rp×(p−k)

p−k

(
min

Y∈Rp×n with NTY=0(p−k)×n

1

2
∥
√
W ⊙ (X−Y)∥2F

)
,

which will lead to a dual formulation (VP2) of the WLRA problem and its associated variable
projection functional ψ∗∗(.) on the Grassmann manifold Gr(p, p−k) [125]. More precisely, Manton
et al. [125] have demonstrated that the above inner minimization problem has a closed form solution
(see Theorem 1 in [125]), which can be calculated analytically and depends only on the range
of N and not on the particular matrix N when W ∈ Rp×n+∗ (and these results can be probably
extended to the case W ∈ Rp×n+). Thus, problem (P2) is also a separable NLLS problem as stated
in the Definition 2.10 of Subsection 2.4 despite the variable matrix Y does not occur linearly in the

65

residual function associated with problem (P2). This situation is exactly similar to the one described
above for the problem (VP1) and its associated variable projection functional ψ(.) where we proceed
in two steps, namely, first find the matrix Â such that ψ(â) is minimum and, second, determine B̂

by solving a large block diagonal least-squares problem. In other words, for N ∈ Rp×(p−k)
p−k , the

dual variable projection functional

ψ∗∗(N) = min
Y∈Rp×n with NTY=0(p−k)×n

1

2
∥
√
W ⊙ (X−Y)∥2F (3.27)

is well defined and we can attempt to find a solution N̂ (more precisely a subspace N̂ , which is
represented by N̂) of the problem

min
N∈Rp×(p−k)

p−k

ψ∗∗(N) (VP2)

in a first step by any iterative first- or second-order method working on the Grassmann manifold
Gr(p, p− k) [51][125]. Once a minimum N̂ has been found, the best rank-k approximation matrix
Ŷ can be determined in a second step by solving the inner minimization problem analytically for
the matrix N̂. As for the (VP1) problem, the search space for the (VP2) problem can be restricted to
Op×(p−k) without loss of generality for numerical reasons [51][125]. Furthermore, it will be shown
in the following sections, that minimizing the cost function ψ(.) associated with the (VP1) problem
reduces to one of dimension k.(p − k) instead of k.p as for the minimization of the cost func-
tion ψ∗∗(.) associated with the (VP2) problem [51][125], highlighting again the duality between
the (VP1) and (VP2) formulations of the WLRA problem. ■

We address now the question of the continuity of the cost function ψ(.), which must be minimized in
the (VP1) problem, as was done above for the cost functions φ(.) and φ∗(.) associated, respectively,
with the formulations (P0) and (P1) of the WLRA problem. Taking into account that, for all a ∈
Rp.k, we have

ψ(a) =
1

2
∥P⊥

F(a)x∥
2
2 , (3.28)

we see that the continuity of ψ(.) is closely associated to the continuity of the orthogonal projector
P⊥

F(.) (or equivalently PF(.)) as a function of a ∈ Rp.k. Furthermore, due to the block diagonal
structure of F(.), we observe that the continuity of P⊥

F(.) as a function of a is equivalent to the
continuity of the n atomic orthogonal projectors P⊥

Fj(.)
, for j = 1 to n, since, for all a ∈ Rp.k, we

have

P⊥
F(a) =

n⊕
j=1

P⊥
Fj(a)

.

The next theorem gives necessary and sufficient conditions for the continuity of a general orthogo-
nal projector PΦ(.), which is associated with a l × t matrix function Φ(.) of a vector a ∈ Rm, but
let us first give the following definition:

Definition 3.1. Let Φ(.) be a matrix function defined as

Φ : Rm −→ Rl×t : a 7→ Φ(a) .

We say that the matrix function Φ(.) has a local constant rank at a point a0 ∈ Rm if there exists an
open neighborhood Υ of a0 in Rm such that the matrix Φ(a) has a constant rank q ≤ min(l, t) for
all a ∈ Υ.

We then restate the following fundamental result about the continuity of the Moore-Penrose inverse
and orthogonal projectors for real matrix functions, which can be traced back to the seminal works
of Wedin [189] and Stewart [172].

66

Theorem 3.10. Let Φ(.) be a matrix function : Rm −→ Rl×t, which is continuous at a point
a0 ∈ Rm. The following conditions are equivalent.

1) Φ(.) has a local constant rank at a0
2) Φ(.)+ is continuous at a0
3) Φ(.)Φ(.)+ = PΦ(.) is continuous at a0
4) Φ(.)+Φ(.) = PΦ(.)T is continuous at a0

In other words, the continuity of the pseudo-inverse of a continuous matrix function Φ(.) at a point
a0 ∈ Rm is equivalent to the continuity of the orthogonal projectors onto the column or row spaces
of this matrix function at a0 and all these conditions are equivalent to the assertion that Φ(.) has
local constant rank at a0 if Φ(.) is itself continuous at a0.

Proof. See Propositions 8.1 and 8.2 in Chapter 8 of Magnus and Neudecker [124] or Chapter 10 of
Campbell and Meyer [29].

To ease the notation burden in the rest of this section and the following sections, we define the
following linear mapping h(.) and its inverse mapping h−1(.) :

h : Rp.k −→ Rp×k,a 7→ [matk×p(a)]T = A , (3.29)

h−1 : Rp×k −→ Rp.k,A 7→ vec(AT) = a ,

which are homeomorphisms from Rp.k to Rp×k and from Rp×k to Rp.k, respectively, allowing
to identify the elements and the topologies of these two finite dimensional vector spaces. These
notations seem cumbersome, but are related to our definition of the vectorized form of the matrix
A as vec(AT) instead of vec(A), which will be justified in the next sections. In other words, with
these definitions, we have h−1(A) = vec(AT) = a for all A ∈ Rp×k.

Armed with Theorem 3.10, we now consider the continuity of the orthogonal projector P⊥
F(.) (or

equivalently PF(.)), which is used in the cost function ψ(.) of the (VP1) problem. We first observe
that F(.), as a function of a, is a linear mapping from Rp.k to Rp.n×n.k since the mat and transpose
operators are linear mappings, and, the Kronecker and matrix products are bilinear mappings. As
Rp.k and Rp.n×n.k are finite dimensional vector spaces, F(.) is thus continuous for all a ∈ Rp.k.
Similarly, the n atomic matrix functions Fj(.) are also continuous linear mappings from Rp.k to
Rp×k. In these conditions, Theorem 3.9 shows that the continuity of the orthogonal projectors
P⊥

F(.) and P⊥
Fj(.)

(or equivalently PF(.) and PFj(.)) at a point a ∈ Rp.k is equivalent, respectively,
to the propositions that F(.) and Fj(.) have a local constant rank at a. Furthermore, the proposition
that F(.) has a local constant rank at a is equivalent to the proposition that all the n Fj(.) functions,
for j = 1 to n, have also a local constant rank at a.

In the special case where the weight matrix W ∈ Rp×n+∗ (e.g., Wij > 0), we have the following
more precise result:

Theorem 3.11. For X ∈ Rp×n and W ∈ Rp×n+∗ , and any fixed integer k ≤ rank(X) ≤ min(p, n),
define the matrix function PF(.), from Rp.k to Rp.n×p.n, by

a 7→ PF(a) = F(a)F(a)+ ,

where F(a)+ is the pseudo-inverse of F(a) and F(a) is the p.n× n.k block diagonal matrix

F(a) =
n⊕
j=1

diag(
√
W.j)h(a) =

n⊕
j=1

diag(
√
W.j)A .

PF(.) is continuous at all a ∈ h−1(Rp×kk) and discontinuous at all a ∈ h−1(Rp×k<k).

67

Proof. As noted above, the continuity of PF(.) at a point a0 ∈ Rp.k is equivalent to the existence of
an open neighborhood of a0 in Rp.k in which F(.) has a local constant rank. However, since

F(a) =

n⊕
j=1

diag(
√
W.j)A

= diag
(
vec(

√
W)

)[n⊕
j=1

A
]

and rank
(
diag(vec(

√
W))

)
= p.n if W is strictly positive, then

rank
(
F(a)

)
= rank(

n⊕
j=1

A) = n.rank(A) .

Thus, the rank of F(a) is entirely determined by the rank of A = h(a) when the weight matrix is
strictly positive. In other words, the continuity of PF(.) at a0 ∈ Rp.k is equivalent to the existence
of an open neighborhood Υ of A0 = h(a0) ∈ Rp×k such that for all A ∈ Υ, the rank of A = h(a)
is constant.

Now, we have Rp×k = Rp×kk

⋃
Rp×k<k and let us consider separately the two cases A0 ∈ Rp×kk and

A0 ∈ Rp×k<k .

Suppose first that A0 ∈ Rp×kk . Per definition, the rank of A0 is constant and equal to k. Note further
that Rp×kk is an open set of Rp×k as the preimage of the open set R\{0} under the continuous
mapping A 7→ det(ATA) as stated in Theorem 2.3. In other words, for all A0 ∈ Rp×kk , there
is an open neighborhood Υ of A0 included in Rp×kk and we deduce immediately that PF(.) is a
continuous mapping for all a0 ∈ h−1(Rp×kk) using Theorem 3.10.

Suppose now that A0 ∈ Rp×k<k . Since Rp×k<k is the frontier of the open set Rp×kk in Rp×k according
to Theorem 2.3, every open neighborhood Υ of A0 in Rp×k<k also contains some points A ∈ Rp×kk

and as such if A0 ∈ Rp×k<k there is no open neighborhood Υ of A0 in Rp×k in which the rank of A
is constant for all A ∈ Υ. This implies that PF(.) (and, thus, also P⊥

F(.) and ψ(.)) is discontinuous

at all points a0 ∈ Rp.k such that h(a0) = A0 ∈ Rp×k<k .

Corollary 3.3. With the same definitions and notations as in Theorem 3.11, the cost function ψ(.)
of the (VP1) problem

ψ(a) =
1

2
∥P⊥

F(a)x∥
2
2

is continuous at all points a ∈ h−1(Rp×kk), if the weight matrix W ∈ Rp×n+∗ (e.g., if W is strictly
positive). Furthermore, the sets of global minimizers of ψ(.) over the subsets Rp×kk and Op×k of
Rp×k are not empty if W ∈ Rp×n+∗ .

Proof. From Theorem 3.11 above, we know that P⊥
F(.) is a continuous mapping over the set Rp×kk

if the weight matrix W is strictly positive. Thus, in the same conditions, the restriction of ψ(.) to
Rp×kk is the composition of several continuous mappings on their respective domains of definition
and, consequently, the restriction of ψ(.) to Rp×kk is continuous at all points in Rp×kk .

The second part of the corollary results immediately from Theorems 3.3, 3.9 and Corollary 3.1,
which show, respectively, that the set of solutions of the (WLRA) problem is not empty if the
weight matrix is strictly positive and that the (WLRA) and (VP1) problems, or their variants, are
equivalent. Alternatively, it results from the first part of the corollary and the fact that Op×k is

68

included in Rp×kk and is a compact set for the topology of Rp×kk induced by the topology of Rp×k
(as Op×k is compact in Rp×k according to Theorem 2.3). In these conditions, ψ(.) is a continuous
mapping over Rp×kk and attains its infimum over the compact set Op×k, which implies directly that
the set of global minimizers of the (VP1) problem is not empty and we are done.

Consider the preimage of Rp×kk by h(.), e.g., h−1(Rp×kk). As h(.) is continuous and Rp×kk is an
open set for the topology of Rp×k, h−1(Rp×kk) is also an open set of Rp.k. Similarly, as Op×k is
a compact set for the topology of Rp×k, h−1(Op×k) is a compact set of Rp.k (because h(.) is a
homeomorphism or more simply because the reciprocal image of the closed set Op×k by h(.) is
a closed set of Rp.k and ∥h(a)∥F = ∥a∥2 for all a ∈ Rp.k). Then the preceding results suggest
that it is much more convenient to restrict the domain of definition of the cost function ψ(.) to
the open set h−1(Rp×kk) or even to the compact set h−1(Op×k) when we try to solve the (VP1)
problem or its convex variants with a strictly positive weight matrix. In these conditions, the (VP1)
problem is a well-posed problem with a non empty set of solutions and the cost function ψ(.) is
continuous and even smooth over h−1(Rp×kk) or h−1(Op×k). More precisely, the fact that F(.) is a
continuous linear mapping and has the local constant rank property for all neighborhoods included in
h−1(Rp×kk) implies also that P⊥

F(.) (and thus also ψ(.)) is continuously and infinitely differentiable

at each point of h−1(Rp×kk). See Theorem 8.4 in Chapter 8 of Magnus and Neudecker [124] and
Subsection 5.2 for details.

We now discuss the continuity of PF(.), P⊥
F(.) and ψ(.) in the case where some elements of the

weight matrix W are equal to zero. We already know that the (VP1) problem is not well-posed
in these conditions as the set of global minimizers of ψ(.) over h−1(Rp×kk) or h−1(Op×k) can be
empty, as already noted for the equivalent forms (P0) or (P1) of the WLRA problem. In this more
difficult case, PF(.) and P⊥

F(.) are also generally discontinuous at all a ∈ h−1(Rp×k<k), as illustrated
by the following theorem.

Theorem 3.12. Let X ∈ Rp×n and W ∈ Rp×n+ , and k ≤ rank(X). If W.j ∈ Rp+∗ (e.g., if the
jth column of the weight matrix has no zero element), then the matrix function PFj(.) from Rp.k to
Rp×p defined by

a 7→ PFj(a) = Fj(a)Fj(a)
+ ,

where Fj(a)
+ is the pseudo-inverse of Fj(a) and Fj(a) is the p× k matrix

Fj(a) = diag(
√
W.j)h(a) = diag(

√
W.j)A ,

is continuous at all a ∈ h−1(Rp×kk) and discontinuous at all a ∈ h−1(Rp×k<k). Furthermore, in the
same conditions, the matrix function PF(.) from Rp.k to Rp.n×p.n defined by

a 7→ PF(a) =

n⊕
j=1

PFj(a)

is also discontinuous at all a ∈ h−1(Rp×k<k).

Proof. The proof is similar to the one of Theorem 3.11 and is thus omitted.

However, when some weights are equal to zero (e.g., when W ∈ Rp×n+ instead of Rp×n+∗), the
condition that h(a) ∈ Rp×kk is still necessary, but is not sufficient to ensure the continuity of the
orthogonal projectors PF(.) and P⊥

F(.). More precisely, we will demonstrate now that the set of

points of h−1(Rp×kk) for which PF(.) and P⊥
F(.) are discontinuous, is not always empty, can be even

69

infinite and grows in size with the number of zero-elements of the weight matrix (see Theorem 3.13
below). Finally, we will show that the jth atomic function ψj(.) is also discontinuous at all points
of h−1(Rp×kk) for which P⊥

Fj(.)
is discontinuous (see again Theorem 3.13) and, in these conditions,

ψ(.) = 1
2

∑n
j=1 ψj(.) can be hardly continuous or differentiable at those points. These results

generalize the examples given in Dai et al. [46][47] about the discontinuity of some of the jth atomic
functions ψj(.) when some entries of the matrix X are missing in the case of binary weights and
provide a systematic characterization of the subset of points of h−1(Rp×kk) for which some of the
atomic functions ψj(.) are discontinuous when the weight matrix W is not strictly positive. This
systematic assessment of the discontinuities of ψ(.) is possible because we consider h−1(Rp×kk)
as the domain of definition of ψ(.) instead of h−1(Op×k) as in Dai et al. [46][47], who used a
Grassmann manifold’s framework to minimize ψ(.).

In order to identify precisely the points of h−1(Rp×kk) for which the jth atomic function defined
by

ψj(a) =
∥∥P⊥

Fj(a)
xj
∥∥2
2
=
∥∥ (Ip − Fj(a)Fj(a)

+
)
xj
∥∥2
2
, ∀a ∈ Rp.k ,

where P⊥
Fj(a)

is the orthogonal projector onto the orthogonal complement of ran
(
Fj(a)

)
and

xj =
√
W.j ⊙ X.j , is discontinuous, let us first define what we call the jth barrier set Bj asso-

ciated with this jth atomic function ψj(.) and the corresponding p× k matrix function Fj(.).

Definition 3.2. Let W ∈ Rp×n+ and define for all a ∈ Rp.k, the matrix function F(.)

F : Rp.k −→ Rp.n×k.n : a 7→ F(a) =
n⊕
j=1

Fj(a) ,

where Fj(a) = diag(
√
W.j)h(a) ∈ Rp×k is called the jth matrix function. The jth barrier set Bj

associated with the jth atomic and matrix functions, ψj(.) and Fj(.), is the subset of Rp.k defined
by

Bj =
{
a ∈ Rp.k / ∃A ∈ Rp×kk with A = h(a) and Fj(a) = 0p×k

}
,

where 0p×k is the zero p× k matrix.

Remark 3.8. This terminology is due to Dai et al. [46][47], who illustrated by a few examples that
some points belonging to the intersection of a barrier set Bj with h−1(Op×k) act as ”barriers”,
which may prevent gradient descent algorithms used to solve the (VP1) problem from converging
to a global minimum or infimum. ■

Remark 3.9. The subset Bj of Rp.k introduced in Definition 3.2 can also be defined as follows.
Consider again the preimage of Rp×kk by h(.), e.g., h−1(Rp×kk), which is an open set of Rp.k and
also the continuous linear mapping Fj : Rp.k −→ Rp×k,a 7→ Fj(a). The subset of Rp.k such that
Fj(a) = 0p×k is the null space of Fj(.), which is a closed linear subspace of Rp.k. With these
results, we have

Bj = h−1(Rp×kk) ∩ F−1
j ({0p×k}) = h−1(Rp×kk) ∩ null(Fj) ,

e.g., Bj is the intersection of the preimages h−1(Rp×kk) and F−1
j ({0p×k}), which is not open and

nor closed in Rp.k. ■

We first observe that Bj is empty if all elements of the column vector W.j are greater than zero as
in that case we have rank

(
diag(

√
W.j)

)
= p and, thus, rank(Fj(a)) = rank(A) = k if h(a) =

A ∈ Rp×kk , and in these conditions Fj(a) ̸= 0p×k. On the other hand, if the number of zero

70

elements of the column vector W.j is greater or equal to k, Bj is not empty and is an infinite subset
of h−1(Rp×kk) as demonstrated in Theorem 3.13 below.

To demonstrate this proposition, let us introduce again some notations. Suppose that some elements
of the column vector W.j are equal to zero, which is equivalent to say that the corresponding
elements of the column vector X.j are missing. Then, let pu be the number of zero elements of W.j

and po = p− pu the number of elements of W.j which are different from zero, e.g., pu and po are,
respectively, the number of ”unobserved” and ”observed” entries in the column vector X.j . In this
case, we can partition the vectors X.j and W.j as[

Xu
.j

Xo
.j

]
= PjX.j and

[
Wu

.j

Wo
.j

]
=

[
0pu

Wo
.j

]
= PjW.j .

Here Xu
.j ∈ Rpu is the ”unobserved” part of the column vector X.j , Xo

.j ∈ Rpo is the ”observed”
part of this vector and Pj is any p × p permutation matrix, which reorders the elements of W.j so
that the zero elements of W.j appear first. Obviously, Pj is not unique, but we can use any such
permutation in what follows. Note also that this permutation matrix Pj could be different for each
pair of column vectors X.j and W.j , such that some of the elements of W.j are equal to zero, if the
patterns of ”unobserved” entries differ among the columns of the matrix X. Similarly, A ∈ Rp×k
can be partitioned as

PjA =

[
Au

Ao

]
,

where Au ∈ Rpu×k and Ao ∈ Rpo×k. With these notations, we have the following theorem:

Theorem 3.13. Let pu ∈ N∗ and po ∈ N∗ with p = pu + po design, respectively, the numbers of
”unobserved” and ”observed” entries in the jth column of X. If pu ≥ k, the jth barrier set Bj is
equal to the (nonempty) subset of Rp.k

B∗
j =

{
a ∈ Rp.k / ∃Au ∈ Rpu×kk and Pjh(a) =

[
Au

0po×k

]}
,

where 0po×k is the zero po × k matrix and Pj is any p× p permutation matrix, which reorders the
elements of X.j so that the missing elements of X.j appear first. On the other hand, if pu < k then
Bj is empty.

Proof. Suppose first that pu ≥ k and let a ∈ Bj . Then, it exists h(a) = A ∈ Rp×kk and we have the
implications

Fj(a) = 0p×k ⇒ diag(
√
W.j)A = 0p×k

⇒ diag(PT
j Pj

√
W.j)P

T
j

[
Au

Ao

]
= 0p×k

⇒ PT
j diag(Pj

√
W.j)

[
Au

Ao

]
= 0p×k

⇒ diag(
[

0pu√
W

o
.j

]
)

[
Au

Ao

]
= 0p×k

⇒ diag(
√
W

o

.j)A
o = 0po×k

⇒ Ao = 0po×k .

The last implication results from the fact that all elements of the vector Wo
.j are different from zero

by definition. This implies that A = PT
j

[
Au

0po×k

]
. Furthermore, since PT

j is a permutation matrix

71

and, thus, of full rank p, we have k = rank(A) = rank(Au) and Au ∈ Rpu×kk , which shows that
a ∈ B∗

j .

Reciprocally, suppose that a ∈ B∗
j . Then, it exists A = h(a) ∈ Rp×k and Au ∈ Rpu×kk such that

A = PT
j

[
Au

0po×k

]
and A is of rank k as PT

j is of full rank p and Au is of rank k. Then, we have

Fj(a) = diag(
√
W.j)A

= diag(
√
W.j)P

T
j

[
Au

0po×k

]
= diag(PT

j Pj

√
W.j)P

T
j

[
Au

0po×k

]
= PT

j diag(Pj

√
W.j)

[
Au

0po×k

]
= PT

j diag(
[

0pu√
W

o
.j

]
)

[
Au

0po×k

]
= PT

j 0
po×k = 0po×k ,

and a ∈ Bj , which demonstrates the first part of the theorem.

Suppose now that pu < k, then if a ∈ Rp.k and h(a) = A ∈ Rp×k, we have,

Fj(a) = 0p×k ⇒ diag(
√
W.j)A = 0p×k

⇒diag(
[

0pu√
W

o
.j

]
)

[
Au

Ao

]
= 0p×k

⇒diag(
√
W

o

.j)A
o = 0po×k

⇒Ao = 0po×k .

This implies that A = PT
j

[
Au

0po×k

]
with Au ∈ Rpu×k. But, as PT

j is a permutation matrix and, thus,

of full rank p, we have rank(A) = rank(Au) ≤ min(pu, k) = pu < k and we conclude that a /∈ Bj .
In other words, if pu < k, for a ∈ Rp.k we cannot have Fj(a) = 0p×k and h(a) = A ∈ Rp×kk .

Remark 3.10. Using Remark 3.9, it is easy to verify that the first part of Theorem 3.13 results from
(i) the fact that null(Fj) is a linear subspace of Rp.k of dimension pu.k and is equal to

null(Fj) =
{
a ∈ Rp.k / ∃Au ∈ Rpu×k such that Pjh(a) =

[
Au

0po×k

]}
,

and (ii) the property: Let A ∈ Rp×k and Au ∈ Rpu×k with PjA =

[
Au

0po×k

]
. If pu ≥ k :

rank(A) = k ⇐⇒ rank(Au) = k .

■

Theorem 3.14. With the same notations as in Theorem 3.13 and above, if pu ≥ k and po ≥ 1 (e.g.,
if there is at least one observed entry in the column vector X.j), the following two assertions are
true:

1) The orthogonal projectors PFj(.) and P⊥
Fj(.)

are discontinuous at all points of Bj ,

2) If ∥Xo
.j∥2 ̸= 0, then ψj(.) is also discontinuous at all points of Bj .

72

Proof. According to Theorem 3.10, in order to demonstrate the first assertion of the theorem it
suffices to show that the matrix function Fj(.) has no local constant rank for all a ∈ Bj . We first
note that Fj(a) = 0p×k and, thus, rank(Fj(a)) = 0 if a ∈ Bj . In these conditions, it suffices to
show that, ∀α ∈ R+∗, if we consider the open ball Bp.k(a, α), with center a and radius α, in Rp×k,
it exists d ∈ Bp.k(a, α) ∩ h−1(Rp×kk) such that rank(Fj(d)) ̸= 0.

Since a ∈ Bj and pu ≥ k by hypothesis, according to Theorem 3.13, it exists Au ∈ Rpu×kk such that

PjA =

[
Au

0po×k

]
where A = h(a) ∈ Rp×kk . Now, let β ∈ R+∗ such that β < α and Do ∈ Rpo×k

such that Do
11 = β and Do

ij = 0 if i ̸= 1 and j ̸= 1. If we define D = PT
j

[
Au

Do

]
and d = vec(DT),

we have d ∈ h−1(Rp×kk) as D ∈ Rp×kk (since Au ∈ Rpu×kk) and also

∥d− a∥22 = ∥D−A∥2F = β2 ≤ α2 .

Thus, d ∈ Bp.k(a, α)∩h−1(Rp×kk). Obviously, Fj(d) ̸= 0p×k as Do ̸= 0po×k and rank(Fj(d)) =
1 and we conclude that Fj(.) has no local constant rank at all points a of Bj .

For demonstrating the second part of the theorem, we first remark that, for all points a ∈ Bj , we
have Fj(a) = 0p×k and Fj(a)

+ = 0k×p and, thus,

ψj(a) = ∥P⊥
Fj(a)

xj∥22 = ∥xj∥22 = ∥xuj ∥22 + ∥xoj∥22 = ∥xoj∥22 ,

since Wu
.j = 0pu . By hypothesis, we have ∥Xo

.j∥2 ̸= 0 and, thus, ∥xoj∥22 ̸= 0, so let us consider
the open interval

]
1
2∥x

o
j∥22, 32∥x

o
j∥22
[

of R, e.g., the open ball B1

(
ψj(a),

1
2ψj(a)

)
of R. We have

to show that, for all α ∈ R+∗, it exists d ∈ Rp.k such that d ∈ Bp.k(a, α) ∩ h−1(Rp×kk), but
ψj(d) /∈ B1

(
ψj(a),

1
2ψj(a)

)
.

Let β ∈ R+∗ such that β < α, and define Do ∈ Rpo×k by Do
.1 = β.

Xo
.j

∥Xo
.j∥2

and Do
.i = 0po for i = 2

to k, where 0po is the zero vector of dimension po. Setting now

D = PT
j

[
Au

Do

]
∈ Rp×k,d = vec(DT) ∈ Rp.k and do = vec

(
(Do)T

)
∈ Rpo.k ,

we have ∥d− a∥22 = ∥D−A∥2F = β2 ≤ α2 and rank(D) = k. Thus, d ∈ Bp.k(a, α)∩ h−1(Rp×kk)
and

ψj(d) = ∥P⊥
Fj(d)

xj∥22
= ∥xj − Fj(d)Fj(d)

+xj∥22
= ∥xoj − Fj(d

o)Fj(d
o)+xoj∥22

= min
b∈Rk

∥xoj − Fj(d
o)b∥22

= min
b1∈R

∥xoj − (
√
W

o

.j ⊙Do
.1)b1∥22

= min
b1∈R

∥xoj −
β

∥Xo
.j∥2

(
√
W

o

.j ⊙Xo
.j)b1∥22

= min
b1∈R

∥xoj −
β

∥Xo
.j∥2

xojb1∥22

= 0 with b1 =
∥Xo

.j∥2
β

.

In other words, ψj(d) /∈
]
1
2∥x

o
j∥22, 32∥x

o
j∥22
[
= B1

(
ψj(a),

1
2ψj(a)

)
, which demonstrates that ψj(.)

is discontinuous at all points of Bj as claimed in the second part of the theorem.

73

Corollary 3.4. With the same definitions and notations as in Theorem 3.14, the orthogonal projec-
tors PF(.) and P⊥

F(.) are discontinuous at all points a ∈
⋃n
j=1 Bj .

Proof. This results immediately from Theorem 3.14 and the equality

PF(a) =
n⊕
j=1

PFj(a),

which shows that the continuity of PF(.) is equivalent to the continuity of the n atomic orthogonal
projectors PFj(.), for j = 1 to n.

Since Fj(.) is a continuous linear mapping different from the zero constant function, its null space,
null(Fj) = F−1

j ({0p×k}), is closed and not dense in Rp.k and its complement Rp.k/null(Fj)
(in Rp.k), is nonempty and open. Next, using Theorem 3.14 and Corollary 3.4, we know that
P⊥

F(.) is not continuous at all points a ∈
⋃n
j=1 Bj , implying that P⊥

F(.) will not be differentiable
and ψ(.) will also, in general, not be continuous and differentiable at these points. This implies
that the ”feasible” search set for a solution of the (VP1) problem will be severely restricted in the
case of missing values, at least by standard first- and second-order optimization methods, which
require that the objective function must be at least differentiable. Moreover, the ”size” of this
”feasible” search set will also decrease if the number of missing values increases as it is equal to⋂n
j=1[h

−1(Rp×kk)/Bj)].

Hence, when the number of missing values in the data matrix X is very large, one may prefer an
alternative formulation of the WLRA problem that will allow for a continuous and differentiable
objective function ψ(.) for all points of h−1(Rp×kk), no barrier sets Bj and no discontinuities for any
of the atomic functions ψj(.). In this context, when the weights are equal to one or zero (e.g., the
missing value problem), Dai et al. [47] have proposed to replace the traditional Frobenius metric
by what they called a ”geometric performance metric” to avoid these discontinuities of the atomic
functions when solving the matrix completion problem in a Grassmann manifold’s setting. More
generally, as discussed above and demonstrated in Theorem 3.8, the minimization of the separable
form of the cost function gλ(.) defined in equation (3.18) with a small regularization parameter
λ ∈ R+∗ or continuation Tikhonov methods based on a family of such cost functions gλ(.) in
which λ tends to zero during the iterations are also promising alternatives in such difficult situation.
Moreover, these alternatives work with nonuniform weight matrices including zero weights and not
only for the missing value problem with binary weights.

We are now set to describe the different algorithms which may be used to minimize φ∗(.) or ψ(.).
We start by a modern description of several ALS regression methods, which all originate from
the NIPALS algorithm first introduced by Wold and his collaborators [191][192][93], and alternate
between minimization of the two sets of variables, A and B, for solving the formulation (P1) of the
WLRA problem in Section 4. The more complicated separable NLLS algorithms (e.g., first- and
second-order variable projection methods), which explicitly eliminate the linear parameters (for
example b = vec(B)) obtaining a reduced, but somewhat more complicated, functional ψ(.) that
involves only the nonlinear parameters (e.g., a = vec(AT)), are described in Section 5.

4 The block alternating least-squares method and its variants

As noted in Subsection 3.4, if we fix a = h−1(A) = vec(AT), then the problem

min
b∈Rk.n

1

2
∥x− F(a)b∥22 = φ∗(A,B) ,

where F(a) and x are also defined in Subsection 3.4, is a linear least-squares problem with k.n
unknowns Bij . The unique minimum 2-norm solution of this linear least-squares problem for a

74

fixed A matrix is b̂ = F(a)+x as stated in Subsection 2.1. More precisely, if we take into account
the block structure of F(a), we observe that the best choice of b = vec(B) for a given A matrix is
obtained by solving n independent linear least-squares problems, each with k unknowns, and B̂.j ,
for j = 1, · · · , n, can be calculated by

B̂.j =
(

diag(
√
W.j)A

)+
(
√
W.j ⊙X.j) = Fj(a)

+xj , (4.1)

where Fj(a) = diag(
√
W.j)A and xj =

√
W.j ⊙ X.j . Likewise, if b = vec(B) is fixed, the

minimization problem

min
a∈Rp.k

1

2
∥z−G(b)a∥22 = φ∗(A,B) ,

where G(b) and z are again defined in Subsection 3.4, is a linear least-squares problem with k.p
unknowns Aij . The unique minimum 2-norm solution of this linear least-squares problem for a
fixed B matrix is then â = G(b)+z. Again, by taking into account the block structure of G(b),
we observe that the best choice of A for a given B matrix is obtained by solving p independent
linear least-squares problems, each with k unknowns, and Âi., for i = 1, · · · , p, can be calculated
by

Âi. = (
√
Wi. ⊙Xi.)

(
Bdiag(

√
Wi.)

)+
=
(
Gi(b)

+zi
)T

, (4.2)

where Gi(b) = diag(
√
Wi.)B

T and zi =
(√

Wi. ⊙Xi.

)T
.

The above results suggest that we can minimize the cost function φ∗(.) and solve the WLRA
problem in its formulation (P1) by taking the block separable least-squares approach (e.g., NI-
PALS algorithm) of Wold and his collaborators [191][192][93], a method rediscovered and studied
many times after, particularly in the context of low-rank matrix completion and optimization prob-
lems [188][94][76][118][146] or in the computer vision community [176][15][37]. The idea is to
minimize φ∗(.) by alternatively improving the A and B matrices through a sequence of cyclic lin-
ear least-squares optimizations. One starts with some initial guess, say, A0 and iterates from A0 to
B0 then from B0 to A1, etc . . . This method of iterations yields a decreasing sequence of functions
values {φ∗(Ai,Bi)}i∈N as the sandwich inequality

φ∗(Ai,Bi) ≥ φ∗(Ai,Bi+1) ≥ φ∗(Ai+1,Bi+1)

holds for all (Ai,Bi), i ∈ N. Since the continuous real-valued function φ∗(.) is bounded below by
zero, the sequence of function values should converge to an infimum. However, the convergence
can be quite slow, especially in the presence of missing values [15], and the sequence of points
{(Ai,Bi)}i∈N may even cycle, stagnate and not converge to a stationary point of the WLRA prob-
lem [69] as this block separable least-squares approach is a simple instance of a block coordinate
descent method (also known as the block-nonlinear Gauss-Seidel method, see [148][139]) for min-
imizing φ∗(.) and the cost function is not convex [152]. Importantly, subsequence convergence to a
stationary point can still be obtained for this block coordinate descent algorithm applied to a non-
convex function (as φ∗(.)) for special cases such as the existence of an unique minimizer per block
of variables [108][7] or in the case of two block of variables with a nonempty set of minimizers per
block, but without the unicity condition [68], as stated in the following theorem and corollary:

Theorem 4.1. Suppose that f(.) is a continuously differentiable function over a set Ω ⊂ Rl, which
is a Cartesian product of closed convex sets Ω1,Ω2, ...,Ωm, where Ωi ⊂ Rni for i = 1, ...,m and∑m

i=1 ni = l. Suppose that the variable x is also partitioned accordingly as x = (x1, ...,xm) where
xi ∈ Ωi. Furthermore, suppose that for each i and x ∈ Ω, the solution of

min
ζ∈Ωi

f(x1, ...,xi−1, ζ,xi+1, ...,xm)

is uniquely attained. If f(.) is minimized by a block coordinate descent algorithm, in which a single
block of variables, xi, is optimized while the remaining variables are held fixed at each iteration,

75

then any accumulation point of the sequence of points, {xk}k∈N generated by this block coordinate
descent algorithm is also a first-order stationary point of f(.).

Proof. Omitted. See p.195 in [152] or Proposition 2.7.1 in [7] for details.

Corollary 4.1. In the same conditions as in Theorem 4.1, if f(.) is defined only over a Cartesian
product of two closed convex sets, Ω1 and Ω2, and the global minimization of f(.) with respect
to each component is well defined, but not necessarily unique, then any accumulation point of the
sequence of points, {(xk,yk)}k∈N generated by this two-block coordinate descent algorithm is also
a first-order stationary point of f(.).

Proof. Omitted. See Theorem 6.3 in [68].

As Rp×k and Rk×n are closed convex sets and φ∗(.) is continuous as stated in Theorem 3.2 and also
continuously differentiable (as it is a polynomial in (p×k)+(k×n) variables), Corollary 4.1 can be
applied to the two-block separable least-squares approach described above. Note, on the other hand,
that Theorem 4.1 cannot be used here because we cannot assume that all the regression problems for
computing A and B cyclically in the two-block separable least-squares method to minimize φ∗(.)
can be solved uniquely in general. For example, this will not be the case if some rows or columns
of X have less than k ”observed” values. However, using Corollary 4.1, we still obtain that any
accumulation point of the sequence {(Ai,Bi)}i∈N, say (Â, B̂), is a first-order stationary point of
φ∗(.) and, thus, satisfies

∂φ∗(Â, B̂)

∂a
= ∇φ∗

a(Â, B̂) = 0k.p and
∂φ∗(Â, B̂)

∂b
= ∇φ∗

b(Â, B̂) = 0k.n ,

where the partial functions φ∗
a(.) and φ∗

b(.) are defined by

φ∗
a : Rp.k −→ R : c 7→ φ∗(matk×p(c)T ,B) =

1

2
∥
√
W ⊙ (X−CB)∥2F ,

φ∗
b : Rk.n −→ R : d 7→ φ∗(A,matk×n(d)) =

1

2
∥
√
W ⊙ (X−AD)∥2F ,

see Theorem 4.3 below for details. Note that this condition is however not sufficient to ensure that
Ŷ = ÂB̂ ∈ Rp×n≤k is a Frechet first-order stationary point of φ(.) according to Theorem 3.7 if

Ŷ ∈ Rp×n<k . However, from Theorem 4.3 below, we also get that the (partial) Hessian matrices of
the vectorized form of φ∗(.) are equal to

∂2φ∗(A,B)

∂2a
= ∇2φ∗

a(A,B) = G(b)TG(b) ,

∂2φ∗(A,B)

∂2b
= ∇2φ∗

b(A,B) = F(a)TF(a) ,

and are, thus, positive semi-definite for all A ∈ Rp×k and B ∈ Rk×n, which implies that φ∗(.) is
bi-convex in its whole domain. In addition, if the block matrices F(â) and G(b̂) are of full column-
rank, which will be the rule rather than the exception if there are at least k ”observed” values in

each column and row of the incomplete data matrix X, the (partial) Hessian matrices ∂2φ∗(Â,B̂)
∂2a

and
∂2φ∗(Â,B̂)

∂2b
will be further positive definite and this implies that

Â = Arg min
A∈Rp×k

φ∗(A, B̂) , B̂ = Arg min
B∈Rk×n

φ∗(Â,B) ,

are strict local minima for the partial functions φ∗(., B̂) and φ∗(Â, .), respectively, and

φ∗(Â, B̂) = min
A∈Rp×k

φ∗(A, B̂) = min
B∈Rk×n

φ∗(Â,B) ,

76

which is a necessary, though not sufficient condition, for the pair (Â, B̂)’s being a minimum point of
φ∗(.). Finally, the resulting algorithm is globally convergent with a sublinear or linear convergence
rate at best [166][15][21]. However, little can be said in general about the convergence behaviour of
the sequence {(Ai,Bi)}i∈N without additional assumptions or modifications (e.g., regularizations)
of the cost function of the WLRA problem as we will discuss now in some details.

If we use vectorized matrix variables, e.g., a = vec(AT) and b = vec(B), then the iterations in the
block ALS algorithm (e.g., NIPALS) take the following form

ai+1 = G(bi)+z = ω(bi) ,

bi+1 = F(ai+1)+x = υ(ai+1) ,

for i = 0, 1, 2, . . ., where υ(.) and ω(.) are two real-vector functions from Rp.k to Rk.n and from
Rk.n to Rp.k, respectively, defined by

υ(a) =

{
Argminb∈Rk.n

1
2∥x− F(a)b∥22 = φ∗(A,B)

s.t. Argminb∈Rk.n ∥b∥2

ω(b) =

{
Argmina∈Rp.k

1
2∥z−G(b)a∥22 = φ∗(A,B)

s.t. Argmina∈Rp.k ∥a∥2

That is, either subproblem has an unique minimum 2-norm minimizer (see Subsection 2.1) and the
functions υ(.) and ω(.) are thus well-defined. In these conditions, the composition map χ(.) =
ω(.) ◦ υ(.) is also a well-defined function from Rp.k to Rp.k and the ALS algorithm takes the form
of a standard fixed point iteration [148]

ai+1 = χ(ai) = χi(a0) for i = 0, 1, 2, . . .

Clearly, if υ(.) and ω(.) are continuous, χ(.) is also continuous and if, in addition,

lim
i→∞

ai = â ,

then â solves the system a = χ(a), (e.g., â is a fixed point of χ(.)) and

lim
i→∞

(
ai, υ(ai)

)
= lim

i→∞

(
ai,bi

)
= (â, b̂) with b̂ = υ(â) and â = ω(b̂) .

Then, under these hypotheses, the ALS iterations converge to (â, b̂) and we have

â = Arg min
a∈Rp.k

1

2
∥z−G(b̂)a∥22 and b̂ = Arg min

b∈Rk.n

1

2
∥x− F(â)b∥22 ,

which implies

∇φ∗
a(Â, B̂) =

∂φ∗(Â, B̂)

∂a
= 0k.p , ∇φ∗

b(Â, B̂) =
∂φ∗(Â, B̂)

∂b
= 0k.n ,

and (Â, B̂) is a first-order stationary point of φ∗(.). Thus, in these conditions, we have a one-to-
one correspondence between the fixed points of χ(.) and the first-order stationary points of φ∗(.).
However, the hypotheses that υ(.) and ω(.) are continuous cannot be proved here as the general-
ized inverse functions F(.)+ and G(.)+ are clearly not continuous on all points of Rp.k and Rk.n,
respectively, according to Theorems 3.10, 3.11 and 3.12. Consequently, this approach cannot be
used to establish the general convergence of the whole sequence {(Ai,Bi)}i∈N. Similarly, χ(.)
is not a contraction in any open ball Bp.k(a0, r) of radius r around the starting point a0 as oth-
erwise the Contraction Mapping Theorem [148] will imply that the equation a = χ(a) has an
unique solution â in the closed ball B̄p.k(a0, r), which is false according to Remark 3.4 and the

77

over-parameterization of the formulation (P1) of the WLRA problem. In other words, the conver-
gence of the whole sequence {(Ai,Bi)}i∈N cannot be proved either with the help of the Contraction
Mapping Theorem.

First, we observe that more precise and stronger results can be derived when all the weights are
strictly positive, e.g., when W ∈ Rp×n+∗ , because the cost function φ(.) is λ-smooth in that case,
which means that the gradient mapping ∇φ(.) from Rp×n to Rp×n is Lipschitz continuous with a
Lipschitz constant λ > 0, e.g.,

∥∇φ(Y)−∇φ(Z)∥F ≤ λ∥Y − Z∥F , ∀Y,Z ∈ Rp×n .

Using equation (3.3) in Subsection 3.2, we get immediately

∥∇φ(Y)−∇φ(Z)∥F = ∥W ⊙ (Y − Z)∥F ≤ λ∥Y − Z∥F , ∀Y,Z ∈ Rp×n ,

with λ = max(i,j)∈[p]×[n]Wij , implying that φ(.) is effectively λ-smooth when W ∈ Rp×n+∗ . As
φ(.) is also bounded from below, e.g., ∀Y ∈ Rp×n, φ(Y) ≥ 0, we have the following result, which
is a direct application of Corollary 3.9 in Olikier et al. [146].

Theorem 4.2. Let Yi = AiBi ∈ Rp×n≤k , ∀i ∈ N, where the sequence {(Ai,Bi)}i∈N is the iterates
of the block ALS algorithm defined by equations (4.1) and (4.2).

Then, the generated sequence {φ(Yi)}i∈N = {φ∗(Ai,Bi)}i∈N of cost function values is monoton-
ically decreasing and converges to some value φ∗ ≥ c̄φ∗ = c̄φ, where c̄φ∗ = c̄φ is the infimum
of φ(.) on Rp×n≤k , which is equal to the infimum of φ∗(.) on Rp×k × Rk×n (see Theorem 3.1 for
details). Moreover, the Riemannian gradient of φ(.) at Yi tends to zero, e.g.,

lim
i→∞

∇Rφ(Y
i) = PTYiRp×n

rank(Yi)

(
∇φ(Yi)

)
= 0p×n

and every point of accumulation Ŷ of the sequence {Yi}i∈N satisfies φ(Ŷ) = φ∗ and ∇Rφ(Ŷ) =
0p×n, which means that Ŷ is a Riemannian first-order stationarity point of φ(.) on the smooth
manifold Rp×n

k′
where k

′
= rank(Ŷ) ≤ k. In particular, if rank(Ŷ) = k then Ŷ is also a Frechet

first-order stationarity point of φ(.) on Rp×n≤k in the sense of Theorem 3.5 and the pair (Â, B̂) is a
first-order critical point of φ∗(.) on Rp×k × Rk×n according to Theorem 3.7.

Furthermore, ∀j ∈ N, it holds that

min
0≤i≤j

∥∇Rφ(Y
i)∥F ≤

(
2.λ.

φ(Y0)− φ∗
2.j + 1

) 1
2
.

In particular, given ε > 0, the algorithm returns a matrix satisfying ∥∇Rφ(Y
i)∥F ≤ ε after at most⌈

λ.φ(Y
0)−φ∗
ε2

− 1
2

⌉
iterations.

Proof. Omitted. See Corollary 3.9 of Olikier et al. [146] for details.

Interestingly, this theorem also illustrated the impact of a ”good” initialization of the block ALS
algorithm on the required number iterations for the convergence of the sequence in terms of the
norm of the Riemannian gradient of φ(.). However, even in the case where W ∈ Rp×n+∗ , we cannot
ensure that Yi+1 −Yi −→ 0p×n and this result requires additional modifications of the algorithm
or hypotheses.

In fact, many of the past works study when the ALS minimization algorithm converges to its in-
fimum for the matrix completion problem in polynomial time under the additional assumptions
that (i) there is a solution X̂ = ÂB̂, which is incoherent (e.g., the squared row norms of Â and
squared column norms of B̂ are not small) and (ii) the non-missing entries of X are selected uni-
formly at random or have pseudorandom properties [94][76]. More precisely, these two studies

78

have shown that with an appropriate SVD-based initialization, the ALS algorithm (with a few mod-
ifications) recovers the ground-truth in the case of random binary weights and under a resampling
scheme. Convergence results with a relaxation of the random sampling hypothesis can be found
in [16][114][170]. However, all these past studies concern mainly the matrix completion problem
with a binary weight matrix [76][94][16][170] or assume that there are no zero weights and that W
is spectrally closed to the all one matrix in the case of a nonuniform weight matrix [114]. Finally,
there is some ongoing debate as to whether these different assumptions are valid for real-world
datasets [174]. Interestingly, the incoherency hypothesis of the solution pair (Â, B̂) stated above
means that Â is far away from any of the barrier sets Bj , defined in the previous subsection (see
Definition 3.2), illustrating how the variable projection framework shed also some lights on the
solvability of the WLRA problem by other methods such as the block ALS algorithm described
above.

The block ALS method can also be adapted to solve the MMMF formulation of the WLRA prob-
lem equipped with a regularization parameter λ ∈ R+∗ already discussed in Subsection 3.3 (see
equation (MMMF)), since

min
A∈Rp×k , B∈Rk×n

φ∗
λ(A,B) =

1

2
∥
√
W ⊙ (X−AB)∥2F +

λ

2
(∥A∥2F + ∥B∥2F)

=
1

2

∥∥ [z−G(b)a
] ∥∥2

2
+
λ

2
∥a∥22 +

λ

2
∥b∥22

=
1

2

∥∥ [x− F(a)b
] ∥∥2

2
+
λ

2
∥a∥22 +

λ

2
∥b∥22 ,

where a = vec(AT), b = vec(B), x, z , F(a) and G(b) are defined as above.

In this case, the block ALS algorithm computes alternatively the solutions of the two regularized
least-squares problems

Arg min
a∈Rp.k

1

2

∥∥z−G(b)a
∥∥2
2
+
λ

2

∥∥a∥∥2
2
=

1

2

∥∥∥ [z−G(b)a√
λ.a

] ∥∥∥2
2
=

1

2

∥∥∥ [z
0k.p

]
−
[
G(b)√
λ.Ip.k

]
a
∥∥∥2
2
,

and

Arg min
b∈Rk.n

1

2

∥∥x− F(a)b
∥∥2
2
+
λ

2

∥∥b∥∥2
2
=

1

2

∥∥∥ [x− F(a)b√
λ.b

] ∥∥∥2
2
=

1

2

∥∥∥ [x
0k.n

]
−
[

F(a)√
λ.Ik.n

]
b
∥∥∥2
2
.

In other words, the MMMF ALS algorithm updates a and b at the i + 1 iteration according to the
rules

ai+1 =
(
G(bi)TG(bi) + λ.Ip.k

)−1
G(bi)T z

and
bi+1 =

(
F(ai+1)TF(ai+1) + λ.Ik.n

)−1
F(ai+1)Tx .

Furthermore, Theorem 4.1 can now be applied directly to this regularized ALS algorithm in order to
show that any accumulation point of the sequence {(Ai,Bi)}i∈N, say (Â, B̂), is a stationary point
of φ∗

λ(.) as we are now sure that all the regression subproblems for computing Ai and Bi can be
solved uniquely because of the presence of the regularization terms in φ∗

λ(.).

Next, from Theorem 4.3 and its corollary (see below), we deduce that the partial Hessian matrices
∂2φ∗

λ(A,B)

∂2a
= ∇2(φ∗

λ)a(A,B) and ∂2φ∗
λ(A,B)

∂2b
= ∇2(φ∗

λ)b(A,B) are positive definite for all A ∈
Rp×k and B ∈ Rk×n as soon as λ > 0, which implies that φ∗

λ(.) is now strongly bi-convex in its
whole domain instead of only bi-convex asφ∗(.). Using the facts thatφ∗

λ(.) is also a coercive (thanks
to the inclusion of the regularization term λ

2∥a∥
2
2+

λ
2∥b∥

2
2) and real-analytic (as it is a polynomial in

(p×k)+(k×n) variables) function, it can be demonstrated that this strongly bi-convex cost function
also verifies the so-called Kurdyka-Lojasiewicz inequality, the sequence (Ai,Bi) is bounded and
that the whole sequence (Ai,Bi) generated by the MMMF ALS algorithm converges to a first-order

79

stationary point of φ∗
λ(.), say (Â, B̂) [194], which is a much stronger result than the one delivered

by Theorem 4.1 and its corollary.

Finally, Li et al. [118], using results from [4][194], were able to demonstrate recently that the se-
quence (Ai,Bi) generated by the following proximal version of the MMMF ALS algorithm

ai+1 = Arg min
a∈Rp.k

1

2

∥∥z−G(bi)a
∥∥2
2
+
λ

2

∥∥a∥∥2
2
+
β

2

∥∥ai − a
∥∥2
2

= Arg min
a∈Rp.k

1

2

∥∥∥
z−G(bi)a√

λ.a√
β(ai − a)

∥∥∥2
2

= Arg min
a∈Rp.k

1

2

∥∥∥
 z

0p.k√
β.ai

−

 G(bi)√
λ.Ip.k√
β.Ip.k

a
∥∥∥2
2

=
(
G(bi)TG(bi) + (λ+ β)Ip.k

)−1 (
G(bi)T z+ β.ai

)
and

bi+1 = Arg min
b∈Rk.n

1

2

∥∥x− F(ai+1)b
∥∥2
2
+
λ

2

∥∥b∥∥2
2
+
β

2

∥∥bi − b
∥∥2
2

= Arg min
b∈Rk.n

1

2

∥∥∥
x− F(ai+1)b√

λ.b√
β(bi − b)

∥∥∥2
2

= Arg min
b∈Rk.n

1

2

∥∥∥
 x

0k.n√
β.bi

−

F(ai+1)√
λ.Ik.n√
β.Ik.n

b
∥∥∥2
2

=
(
F(ai+1)TF(ai+1) + (λ+ β)Ik.n

)−1 (
F(ai+1)Tx+ β.bi

)
,

where
β > 8.∥W∥2Sφ∗

λ(A
0,B0)/λ+ 4.∥W∥S

√
φ∗
λ(A

0,B0) + λ,

converges not only to a first-order stationary point, but in fact to a second-order stationary point
of φ∗

λ(.) (see Proposition 4 and example 3 in Section 4.3 of [118]), e.g., to a point (Â, B̂) which
verifies

∇φ∗
λ(Â, B̂) = (0p×k,0k×n) and

(
∇2φ∗

λ(Â, B̂)
)(
(C,D), (C,D)

)
≥ 0,

∀(C,D) ∈ Rp×k × Rk×n, e.g., ∇2φ∗
λ(Â, B̂) is a positive semi-definite (symmetric) matrix. Im-

portantly, if φ∗
λ(.) is well-conditioned (e.g., depending on the form of the weight matrix W), these

second-order stationary points may correspond to a local or even global optimal solution, see [200]
and Theorem 3.10 of [146] for more information.

Remark 4.1. An interesting and open question is to determine if these strong first- and second-
order convergence properties of the ALS method for solving the MMMF formulation of the WLRA
problem may also extend to the cost function gλ(.) proposed by Boumal and Absil [13][14] and
discussed in Subsection 3.3 (see equation (3.18)). ■

The block ALS algorithm and its MMMF variant have also been incorporated as a building block in
various Expectation-Maximization or other first-order methods to increase their efficiency for large
datasets by avoiding costly SVD computations in high dimensions [93][86][181].

Interestingly, we note that Szlam et al. [178] have recently demonstrated that only a few iterations
of such ALS are sufficient to produce nearly optimal spectral- and Frobenius-norm accuracies of
low-rank approximations to a matrix when all the weights Wij are equal to one, provided that A0

is one of the random matrices used by [85] (for example, the entries of A0 can be independent

80

and identically distributed standard normal variates) and that iterating until convergence is unneces-
sary. Extending their demonstration to the case when the weights Wij are unequal (and eventually
with some equal to zero) is an interesting issue already discussed in [167][23], but is outside the
scope of this paper. However, we highlight again that proper initialization of the ALS or variable
projection methods described here is obviously an important topic, which also needs a careful at-
tention [72][94][76][170][171]. As an illustration, [94][76][170][167] showed that given a good
enough initialization, many simple local search algorithms, like ALS, succeed, a result which is
consistent with Theorem 4.2 above.

Now, let us consider how to compute efficiently the first- and second-order derivatives of the vec-
torized form of φ∗(.) (and φ∗

λ(.)) in order to obtain meaningful tests of convergence of these ALS
methods to a (local) minimizer of this cost function. We already know from Subsection 3.1 that the
objective function φ∗(.) used in the (P1) formulation of the WLRA problem,

φ∗ : Rp×k × Rk×n −→ R : (A,B) 7→ φ∗(A,B) =
1

2
∥
√
W ⊙ (X−AB)∥2F ,

is C∞ differentiable over its domain of definition. Furthermore, we have also already derived the
first- and second-order derivatives of φ∗(.) in equations (3.12) and (3.15), respectively. As the
vectorized form of φ∗(.) is defined by the composition of φ∗(.) with the linear mapping

Rp.k × Rk.n −→ Rp×k × Rk×n : (a,b) 7→
(
matk×p(a)T ,matk×n(b)

)
= (A,B) ,

it is also C∞ differentiable over its domain of definition, Rp.k × Rk.n, and we have the following
results concerning the vectorized forms of the first- and second-order derivatives of φ∗(.), which
offer more convenient expressions for checking the first- and second-KKT conditions of φ∗(.) at a
given pair of Rp×k × Rk×n then equations (3.12) and (3.15).

Theorem 4.3. For X ∈ Rp×n,
√
W ∈ Rp×n+ and any fixed integer k ≤ rank(X) ≤ min(p, n), the

vectorized partial first-derivatives of φ∗(.) with respect to a = vec(AT) and b = vec(B) are equal,
respectively, to

∂φ∗(A,B)

∂a
= ∇φ∗

a(A,B) = G(b)TG(b)a−G(b)T z (4.3)

and
∂φ∗(A,B)

∂b
= ∇φ∗

b(A,B) = F(a)TF(a)b− F(a)Tx , (4.4)

where

F(a) =
n⊕
j=1

Fj(a) =
n⊕
j=1

diag(
√
W.j)

(
matk×p(a)

)T
,

G(b) =

p⊕
i=1

Gi(b) =

p⊕
i=1

diag(
√
Wi.)

(
matk×n(b)

)T
,

x = vec(
√
W ⊙X) and z = vec

(
(
√
W ⊙X)T

)
.

Moreover, we have

∇φ∗
a(A,B) = vec

(
∇φ∗

A(A,B)
)
,

∇φ∗
b(A,B) = vec

(
∇φ∗

B(A,B)
)
, (4.5)

where ∇φ∗
A(A,B) and ∇φ∗

B(A,B) are defined in equation (3.11).

The vectorized second-derivative (symmetric) matrix form of φ∗(.) is given by[
∇2φ∗(A,B)

]
=

[
∂2φ∗(A,B)

∂2a
∂2φ∗(A,B)
∂a∂b

∂2φ∗(A,B)
∂b∂a

∂2φ∗(A,B)
∂2b

]

=

[
∇2φ∗

a(A,B) ∇2φ∗
a,b(A,B)

∇2φ∗
b,a(A,B) ∇2φ∗

b(A,B)

]
, (4.6)

81

where

∇2φ∗
a(A,B) =

∂2φ∗(A,B)

∂2a
= G(b)TG(b) ,

∇2φ∗
b(A,B) =

∂2φ∗(A,B)

∂2b
= F(a)TF(a) ,

∇2φ∗
b,a(A,B) =

∂2φ∗(A,B)

∂a∂b
=
((

W ⊙ (AB−X)
)T ⊗ Ik

)
+ F(a)TK(n,p)G(b) ,

∇2φ∗
a,b(A,B) =

[
∇2φ∗

b,a(A,B)
]T
.

Finally, we have the following equalities, which precise the relationships between the quadratic
forms

(
∇2φ∗(A,B)

)
and

(
∇2φ(AB)

)
in complement of equations (3.14) and (3.15)

cT∇2φ∗
a(A,B)c =

(
∇2φ∗

A(A,B)
)
(C,C) =

(
∇2φ(AB)

)
(CB,CB) ,

dT∇2φ∗
b(A,B)d =

(
∇2φ∗

B(A,B)
)
(D,D) =

(
∇2φ(AB)

)
(AD,AD) ,

dT∇2φ∗
b,a(A,B)c =

〈
∇φ(AB),CD

〉
F
+
(
∇2φ(AB)

)
(AD,CB) ,

∀C ∈ Rp×k with c = vec(CT) and ∀D ∈ Rk×n with d = vec(D).

Proof. First, we observe that the matrix of first-derivatives of the vectorized residual function
e(a,b) = e(A,B) = x − F(a)b with respect to b (e(A,B) is first defined in equation (3.19)) is
simply

∂e(A,B)

∂b
= −F(a)

and is very sparse with only k non-zero elements in each row as F(a) is a block diagonal matrix
(see equation (3.20)). Since

φ∗(A,B) =
1

2
e(A,B)Te(A,B) =

1

2
∥e(a,b)∥22 ,

the derivative of φ∗(A,B) with respect to b is then easy to compute, using a standard differential
rule for a mapping of the form Rk.n −→ R : d 7→ 1

2∥g(d)∥
2
2, where g(.) is a differentiable mapping

from Rk.n to Rp.n [26],

∂φ∗(A,B)

∂b
= −F(a)T

(
x− F(a)b

)
= F(a)TF(a)b− F(a)Tx .

For computing the derivative of φ∗(A,B) with respect to a, we first recall that the vectorized
residual function e(a,b) may also be expressed in the alternative form

e(A,B) = x−K(n,p)G(b)a = K(n,p)

(
z−G(b)a

)
,

see the paragraph after equation (3.22) in Subsection 3.4 for details. Hence

∂e(A,B)

∂a
= −K(n,p)G(b)

and this matrix of derivatives with respect to a is also very sparse with only k non-zero elements in
each row. Now the derivative of φ∗(A,B) with respect to a, is also very simple to obtain, using the
same differentiation rule as above and properties of the commutation matrix given in Subsection 2.2,

∂φ∗(A,B)

∂a
= −

(
K(n,p)G(b)

)T
K(n,p)

(
z−G(b)a

)
= −G(b)TK(p,n)K(n,p)

(
z−G(b)a

)
= G(b)TG(b)a−G(b)T z .

82

Next, to demonstrate that ∇φ∗
b(A,B) = vec

(
∇φ∗

B(A,B)
)
, we observe that, by definition, we

have
F(a)b = diag

(
vec(

√
W)

)
(In ⊗A)vec(B) = diag

(
vec(

√
W)

)
vec(AB)

and, thus,

F(a)b− x = diag
(
vec(

√
W)

)
vec(AB)− vec(

√
W ⊙X)

= diag
(
vec(

√
W)

)(
vec(AB)− vec(X)

)
= diag

(
vec(

√
W)

)
vec(AB−X) ,

which implies that

∇φ∗
b(A,B) = F(a)T

(
F(a)b− x

)
= (In ⊗A)T diag

(
vec(W)

)
vec(AB−X)

= (In ⊗AT)diag
(
vec(W)

)
vec(AB−X)

= (In ⊗AT)vec
(
W ⊙ (AB−X)

)
= vec

(
AT
(
W ⊙ (AB−X)

))
,

and, using equation (3.11), we conclude that

∇φ∗
b(A,B) = vec

(
∇φ∗

B(A,B)
)
.

Similarly, for demonstrating that ∇φ∗
a(A,B) = vec

(
∇φ∗

A(A,B)
)
, we observe that

G(b)a = diag
(
vec(

√
W

T
)
)
(Ip ⊗BT)vec(AT) = diag

(
vec(

√
W

T
)
)
vec
(
(AB)T

)
and, thus,

G(b)a− z = diag
(
vec(

√
W

T
)
)
vec
(
(AB)T

)
− vec

(
(
√
W ⊙X)T

)
= diag

(
vec(

√
W

T
)
)(

vec
(
(AB)T

)
− vec(XT)

)
= diag

(
vec(

√
W

T
)
)
vec
(
(AB−X)T

)
,

which implies that

∇φ∗
a(A,B) = G(b)T

(
G(b)a− z

)
= (Ip ⊗B)diag

(
vec(WT)

)
vec
(
(AB−X)T

)
= (Ip ⊗B)vec

(
WT ⊙ (AB−X)T

)
= vec

(
B
(
W ⊙ (AB−X)

)T)
= vec

((
W ⊙ (AB−X))BT

)T)
,

and, using again equation (3.11), we conclude that

∇φ∗
a(A,B) = vec

(
∇φ∗

A(A,B)T
)
.

Next, we immediately get that the (partial) Hessian matrices of the vectorized form of φ∗(.) are
equal to

∇2φ∗
a(A,B) = G(b)TG(b) ,

∇2φ∗
b(A,B) = F(a)TF(a) ,

83

since the specific forms of ∂φ∗(A,B)
∂a and ∂φ∗(A,B)

∂b derived above can be both interpreted as the
sum of a linear mapping and a constant term, when they are considered as a function of a and b,
respectively.

To derive an explicit formula for ∇2φ∗
b,a(A,B), we start from the equation

∂φ∗(A,B)

∂b
= F(a)T

(
F(a)b− x

)
=
(
In ⊗AT

)
vec
(
W ⊙ (AB−X)

)
,

and apply the differential rule for a matrix product [26] to get

∇2φ∗
b,a(A,B)c = (In ⊗CT)vec

(
W ⊙ (AB−X)

)
+ (In ⊗AT)vec(W ⊙CB) ,

∀C ∈ Rp×k with c = vec(CT). On one hand, using equation (2.33), we have

(In ⊗CT)vec
(
W ⊙ (AB−X)

)
= vec

(
CT
(
W ⊙ (AB−X)

))
=
((

W ⊙ (AB−X)
)T ⊗ Ik

)
vec(CT)

=
((

W ⊙ (AB−X)
)T ⊗ Ik

)
c ,

and, on the other hand, using equations (2.33), (2.34), (2.35) and Lemma 2.2, we get

(In ⊗AT)vec(W ⊙CB) = (In ⊗AT)diag
(
vec(W)

)
vec(CB)

=
(

diag
(
vec(

√
W)

)
F(a)

)T
(BT ⊗ Ip)vec(C)

=
(

diag
(
vec(

√
W)

)
F(a)

)T
(BT ⊗ Ip)K(k,p)K(p,k)vec(C)

= F(a)T diag
(
vec(

√
W)

)
(BT ⊗ Ip)K(k,p)vec(CT)

= F(a)T diag
(
vec(

√
W)

)
K(n,p)(Ip ⊗BT)vec(CT)

= F(a)TK(n,p)diag
(
vec(

√
W

T
)
)
(Ip ⊗BT)vec(CT)

= F(a)TK(n,p)G(b)c .

Together, these equalities imply, finally, that

∇2φ∗
b,a(A,B) =

((
W ⊙ (AB−X)

)T ⊗ Ik

)
+ F(a)TK(n,p)G(b) ,

as claimed in the theorem.

Finally, the equality ∇2φ∗
a,b(A,B) =

[
∇2φ∗

b,a(A,B)
]T is a direct consequence of the fact that the

Hessian ∇2φ∗(A,B) is a (p.k + k.n)× (p.k + k.n) symmetric matrix according to the Schwarz’s
theorem [26], see Subsection 2.4 and Remark 4.3 below for details.

It remains to establish the equalities between the quadratic forms
(
∇2φ∗(A,B)

)
and

(
∇2φ(AB)

)
.

First, note that

∇2φ∗
a(A,B)c = vec

((
(W ⊙CB)BT

)T)
,

∇2φ∗
b(A,B)d = vec

(
AT (W ⊙AD)

)
,

∀C ∈ Rp×k with c = vec(CT) and ∀D ∈ Rk×n with d = vec(D).

84

Using these equalities, we deduce

cT∇2φ∗
a(A,B)c =

〈
∇2φ∗

a(A,B)c, c
〉
2

=
〈
vec
((

(W ⊙CB)BT
)T)

, vec(CT)
〉
2

=
〈
vec
(
(W ⊙CB)BT

)
, vec(C)

〉
2

=
〈
(W ⊙CB)BT ,C

〉
F

=
〈
[∇2φ∗

A(A,B)](C),C
〉
F

=
(
∇2φ∗

A(A,B)
)
(C,C)

=
(
∇2φ(AB)

)
(CB,CB) ,

and also

dT∇2φ∗
b(A,B)d =

〈
∇2φ∗

b(A,B)d,d
〉
2

=
〈
vec
(
AT (W ⊙AD)

)
, vec(D)

〉
2

=
〈
AT (W ⊙AD),D

〉
F

=
〈
[∇2φ∗

B(A,B)](D),D
〉
F

=
(
∇2φ∗

B(A,B)
)
(D,D)

=
(
∇2φ(AB)

)
(AD,AD) ,

where, in both cases, the last equality results from equation (3.14). The last equality in the theorem,

dT∇2φ∗
b,a(A,B)c =

〈
∇φ(AB),CD

〉
F
+
(
∇2φ(AB)

)
(AD,CB) ,

can be derived in a similar way, by a lengthy, but direct, computation.

Corollary 4.2. For X ∈ Rp×n,
√
W ∈ Rp×n+ , λ ∈ R+∗ and any fixed integer k ≤ rank(X) ≤

min(p, n), the objective function φ∗
λ(.) used in the (MMMF) formulation of the WLRA problem

φ∗
λ : Rp×k×Rk×n −→ R : (A,B) 7→ φ∗

λ(A,B) =
1

2
∥
√
W⊙ (X−AB)∥2F +

λ

2
(∥A∥2F +∥B∥2F)

is C∞ differentiable over its domain of definition and the partial first-order derivatives of φ∗
λ(.) with

respect to a = vec(AT) and b = vec(B) are equal, respectively, to

∂φ∗
λ(A,B)

∂a
= ∇(φ∗

λ)a(A,B) = G(b)TG(b)a−G(b)T z+ λa

and
∂φ∗

λ(A,B)

∂b
= ∇(φ∗

λ)b(A,B) = F(a)TF(a)b− F(a)Tx+ λb .

Furthermore, the partial second-order derivatives of φ∗
λ(.) with respect to a = vec(AT) and b =

vec(B) are given by

∂2φ∗
λ(A,B)

∂2a
= ∇2(φ∗

λ)a(A,B) = G(b)TG(b) + λ.Ip.k

and
∂2φ∗

λ(A,B)

∂2b
= ∇2(φ∗

λ)b(A,B) = F(a)TF(a) + λ.Ik.n .

Proof. φ∗
λ(.) is the sum of threeC∞ differentiable functions, e.g., φ∗(.) and the mappings λ2∥A∥2F =

λ
2∥a∥

2
2 and λ

2∥B∥2F = λ
2∥b∥

2
2 and is thus C∞ differentiable. The formulas for ∂φ∗

λ(A,B)
∂a and

85

∂φ∗
λ(A,B)
∂b follow immediately from Theorem 4.3, standard differentiation rules and the differential

rule for a mapping of the form Rm −→ R : x 7→ 1
2∥x∥

2
2.

The form of the partial second-order derivatives of φ∗
λ(.) given in the theorem is a direct conse-

quence of Theorem 4.3 and the fact that ∇(φ∗
λ)a(A,B) and ∇(φ∗

λ)b(A,B) are both the sum of
two linear mappings and of a constant term when they are considered as a function of a and b,
respectively.

Remark 4.2. The equations

∂e(A,B)

∂b
= −F(a) and

∂e(A,B)

∂a
= −K(n,p)G(b)

derived in the proof of Theorem 4.3 show that residual function e(.) is not a nonlinear function of
its arguments as defined in Subsection 2.4. However, despite of this, the cost function φ∗(.) is still
nonlinear as the partial derivatives of φ∗(.) with respect to a and b are functions of b and a, respec-
tively, as demonstrated in Theorem 4.3. Furthermore, as the minimization of the cost function φ∗(.)
has no closed form solution in general, we can still consider φ∗(.) as a NLLS functional as defined
in Subsection 2.4. ■

Due to the block diagonal structures of both F(a) and G(b), the evaluation of the partial derivatives
of φ∗(.) is fast, easy to implement and may be parallelized. Moreover, we already know that

∂φ∗(A,B)

∂a
= 0k.p or

∂φ∗(A,B)

∂b
= 0k.n

if the ALS algorithm is used to minimize φ∗(A,B) and the iterations are stopped after computing
A or B, respectively. Similar remarks apply to the partial derivatives of φ∗

λ(.).

The main payoff of the two-block ALS method is its simplicity since it involves solving mainly two
sequences of small (eventually regularized) linear least-squares problems. Moreover, compared to
gradient-type algorithms, it has the advantage that there is no need to tune optimization parameters
like step sizes [146]. However, practical experience with this algorithm shows that, in many cases,
the ”NIPALS” iterates do not converge to the closest fit (e.g., the infimum or minimum of φ∗(A,B)
or φ∗

λ(A,B)) and get frequently stuck in sub-optimal local minima for a small value of k or a poorly
chosen starting point [72][157]. This is especially true when some weights are equal to 0 (i.e., when
missing values are present in X), even with the initialization procedure proposed by Gabriel and
Zamir [72]. Moreover this initialization procedure is only applicable if k = 1 and if there is one
and only one missing cell (Wij = 0) for the matrix entries in the ith row and jth column of X
for all i and j (see Gabriel and Zamir [72] for more details). Furthermore, it is known that the
two-block ALS algorithm is vulnerable to flatlining [15] and inherits in many cases of the very
slow convergence of the block coordinate descent method [139]. To overcome these difficulties,
we describe in the next section, various first- and second-order separable NLLS algorithms for
minimizing ψ(.) instead of φ∗(.).

Remark 4.3. If we concatenate the vectors a and b in c =

[
a
b

]
∈ Rk.(p+n), we may define the

following residual and objective functions:

r(c) = x− F(a)b = K(n,p)

(
z−G(b)a

)
= e(A,B)

and
ϕ(c) =

1

2
r(c)T r(c) =

1

2
∥r(c)∥22 = φ∗(A,B).

According to equation (2.65), the gradient of ϕ(.) is then equal to

∇ϕ(c) = J (r(c))T r(c) ,

86

with the Jacobian matrix J (r(c)) ∈ Rp.n×k.(p+n) having the form

J (r(c)) =
[
∂r(c)
∂a

∂r(c)
∂b

]
=
[
∂e(A,B)

∂a
∂e(A,B)

∂b

]
.

Now, using Remark 4.2 and Theorem 4.3, we have:

J (r(c)) = −
[
K(n,p)G(b) F(a)

]
and

∇ϕ(c) =
[
∇φ∗

a(A,B)
∇φ∗

b(A,B)

]
=

[
G(b)TG(b)a−G(b)T z

F(a)TF(a)b− F(a)Tx

]
.

Finally, if we differentiate again ∇ϕ(c) with respect to c, an analytic formulae for the Hessian ma-
trix ∇2ϕ(c) can be obtained, which is essentially equivalent to the results given in Theorem 4.3,
see [15][82] for a derivation of this Hessian matrix. Equipped with these exact formulas for
∇ϕ(c), J (r(c)) and ∇2ϕ(c), standard first- and second-order NLLS methods such as the steep-
est gradient, Gauss-Newton, Levenberg-Marquardt and Newton algorithms [45][139][123] can also
be used (and have been used) to minimize directly ϕ(c) = φ∗(A,B) or ϕλ(c) = φ∗

λ(A,B), and to
solve the WLRA problem and its MMMF variant [15][37][81]. However, as it is arguably preferable
to keep the dimension of the search space as much low as possible and because the joint optimiza-
tion strategy of minimizing directly ϕ(.) has been found to be much less efficient and less robust
than the variable projection framework (based on the minimization of ψ(.)) detailed in the next
section [37][150][14][81][17], we don’t focus here anymore on the direct minimization of ϕ(.) or
φ∗(.) (or alternatively ϕλ(.) or φ∗

λ(.)) for solving the WLRA problem. ■

5 The variable projection framework

We now explain how to minimize the cost function ψ(.), which is used in the (VP1) formulation
of the WLRA problem. In addition to the equivalence of the (P1) and (VP1) formulations of the
WLRA problem stated in Theorem 3.9, the variable projection approach is further justified by a
theorem originally proved by Golub and Pereyra in [63], which shows, under some differentiability
conditions, that if â = vec(ÂT) is a critical point of ψ(.) and B̂ is calculated by equation (4.1), e.g.,
by solving n independent linear least-squares problems as described in the beginning of Section 4,
then (Â, B̂) is also a first-order critical point of φ∗(.). We will give a demonstration of this result
later in Theorem 5.7 (see Subsection 5.3) for completeness.

General optimization methods used to minimize a functional like ψ(.) are termed variable projec-
tion algorithms and are described in [63][166][95][96][10][65][149]. Their advantages are that they
usually solve mixed linear-nonlinear least-squares problems like φ∗(.) in less time, fewer function
evaluations and better global convergence than standard NLLS codes, and that no starting estimate
of the linear variable (e.g., B) is required [136]. In the context of the WLRA or matrix completion
problems, they offer also other advantages as shown in [147][150][37][14][81][88] and as we will
illustrate in the next sections. However, many of them have also a major drawback as they expand
considerably the dimensionality of the WLRA problem (see Subsection 3.4 for details). This limits
severely their use for medium and large datasets, which are currently found now in many applica-
tions, beyond variations of the variable projection steepest (e.g., gradient) descent method or similar
first-order methods [171][46][14][17][146]. In our WLRA context, the simplest variable projection
steepest descent method can be written as

ai+1 = ai − αi∇ψ(ai).

In words, with this basic method, we move by making a correction step that is proportional to the
negative of the gradient of ψ(.) and the positive scalar αi can be used to control the size of the
step without changing its direction [123][146]. This basic method works fine for simple models,
but is often too simplistic when there are many parameters to estimate like in our WLRA problem.

87

Furthermore, its convergence can be very slow without cleaver strategies to control αi or the use
of second-order information, especially in the final stage [139][17][146]. Near a local minimizer,
the steepest descent method converges at a linear rate depending on the condition number in a
neighborhood of this minimizer. However, this convergence rate deteriorates dramatically when the
Hessian of the cost function is ill-conditioned and we will demonstrate later, in Subsection 5.3, that
this always the case for the cost function ψ(.). As another illustration, during the iterations, the
curvature of ψ(.) is usually not the same in all directions. If there is a long and narrow valley in the
values of ψ(.), which is not unusual when the weights are not uniform [171][200], the component
of the gradient in the direction that points along the bottom of the valley can be very small while the
component perpendicular to the walls of the valley can be quite large even though we have to move
a long distance along the base and a small distance perpendicular to the walls to move in the right
direction. This is the so-called ”error valley” problem, which can be alleviated only if we use some
information about the curvature as well as the gradient of ψ(.) in the design of the method [139].
However, second-order derivatives of the cost function are very often prohibitively expensive to
compute and we need to find a good compromise between accuracy and speed when the dimensions
and the number of variables of the problem are large [123].

Thus, since the convergence of the steepest descent method or its variants, like conjugate gradi-
ent methods, can be very slow and second derivatives are expensive to evaluate, we concentrate
our attention on (pseudo) second-order or quasi-Newton methods well adapted to NLLS prob-
lems [45][139][123][87]. These methods aim to avoid the drawbacks of Newton’s methods while
maintaining the benefits of using second-order information and introduce also some suitable reg-
ularization to cup with the singularity of the Hessian. After a brief description of the Newton,
Gauss-Newton, augmented Gauss-Newton and Levenberg-Marquardt algorithms in Subsection 5.1,
we give in the next sections a detailed study of the Jacobian matrix J (r(a)), gradient vector ∇ψ(a)
and Hessian matrix ∇2ψ(a), which are pivotal in these variable projection quasi-Newton algorithms
and whose specific properties in the context of the WLRA problem have not always been well ap-
preciated in past studies, except in [158][147][150].

5.1 Second-order NLLS optimization methods

As discussed in Subsection 3.4, the minimization of ψ(.) is equivalent to the standard NLLS prob-
lem

min
a∈Rp.k

ψ(a) =
1

2
∥P⊥

F(a)x∥
2
2 =

1

2
∥r(a)∥22 =

1

2
r(a)T r(a) ,

where r(a) = P⊥
F(a)x. Numerous first- and second-order iterative methods are available for min-

imizing a sum of squares of nonlinear functions such as ψ(.) [45][139][123][87]. However, for
finding a solution of our (VP1) problem with these methods, we first note that a certain degree of
smoothness of the objective function ψ(.) is required, meaning that ψ(.) must possess one or better
two continuous derivatives and the results of Subsection 3.4 show that these smoothness conditions
are not systematically verified if W has some zero elements as the orthogonal projector P⊥

F(a) can
be a discontinuous function of a even if A = matk×p(a)T = h(a) is of full column rank (see The-
orem 3.14 and Corollary 3.4). The degree of smoothness of ψ(.) and P⊥

F(.) will be further studied
in Subsection 5.2, but we note that, despite these caveats, some standard iterative NLLS algorithms
have been used very successfully to solve the (VP1) problem even without proper regularization of
ψ(.) to insure its smoothness when missing values are present [28][150][66][81][88].

The recommended standard methods are the Gauss-Newton, Levenberg-Marquardt, trust-region
Gauss-Newton and augmented Gauss-Newton algorithms if second-order derivatives are difficult
or cumbersome to evaluate [45][139][123][87]. All these methods attempt to minimize ψ(.) by
finding a zero of ∇ψ(.), i.e., a point a = vec(AT) such that

∇ψ(a) = J
(
r(a)

)T
r(a) = 0k.p .

88

Moreover, all four methods may be interpreted as variations of Newton’s method to find a zero of
∇ψ(.) [45][139][123]. In Newton’s method, the correction vector dan for improving an approxi-
mate initial solution vector a of the equation ∇ψ(a) = 0k.p is found as the solution to the linear
system

∇2ψ(a)dan = −J
(
r(a)

)T
r(a) , (5.1)

where ∇2ψ(a) is the Hessian of ψ(.) at a given by

∇2ψ(a) = J
(
r(a)

)T
J
(
r(a)

)
+

n.p∑
l=1

rl(a)∇2rl(a) . (5.2)

In this last equation, ∇2rl(a) is the Hessian matrix of the lth component of the residual functional
r(a) (i.e., rl(a)), which is a p.k × p.k symmetric matrix. The Newton method is based on the
second-order Taylor expansion of ψ(.) in a neighborhood of the current iterate a (see equation (2.43)
in Subsection 2.4), e.g.,

ψ(a+ da) ≈ N(da) = ψ(a) + daT∇ψ(a) + 1

2
daT∇2ψ(a)da .

More precisely, the Newton method attempts to minimize ψ(.) at each iteration by finding a first-
order stationary point dan of this quadratic model N(.). Setting the gradient of N(.) to zero, e.g.,
∇N(dan) = 0k.p, we obtain the following equation

∇ψ(a) +∇2ψ(a)dan = 0k.p ,

from which we derived immediately equation (5.1) defining the Newton iteration. Moreover, if
the Hessian matrix ∇2ψ(a), which is also equal to ∇2N(dan), is positive definite then dan is a
strict global minimizer of N(.) and in a descent direction for ψ(.). In other words, the Newton
iteration is well defined as soon as ∇2ψ(a) is positive definite, but runs into troubles when it is
not, for example in regions of mixed curvature of ψ(.). It may even happen during the iterations
that ∇2ψ(a) becomes definite negative in which case dan will be a strict global maximizer of N(.)
instead of a minimizer, which is a major drawback of the basic Newton method and explains why it
lacks global convergence [123][87]. Moreover, since Newton’s method requires the computation of
second-order derivatives, which can be cumbersome for large-scale problems (see equation (5.2)), it
is rarely used in practice despite its quadratic convergence in a neighborhood of a first-order critical
point of ψ(.) [45][139][123].

Importantly, the smallest eigenvalue of the positive (semi-definite) matrix J (r(a))TJ (r(a)) can be
used to assess the relative importance of the two terms in ∇2ψ(a) [87]. More precisely, if for all
a in a neighborhood of a minimizer of ψ(.), the quantities |rl(a)|∥∇2rl(a)∥2 for l = 1, · · · , n.p
are small relative to this eigenvalue, the term J (r(a))TJ (r(a)) will dominate the Hessian ma-
trix [87]. Now, depending on the relative importance of these two terms in ∇2ψ(a), the rec-
ommended methods are the Gauss-Newton, Levenberg-Marquardt, trust-region Gauss-Newton and
augmented Gauss-Newton algorithms, which involve different approximations of the second term
in the Hessian of ψ(.).

The Gauss-Newton method approximates ∇2ψ(a) with J (r(a))TJ (r(a)), i.e., drops the second
term of the Hessian of ψ(.), which contains products of the rl(a) functions and their second-order
derivatives. This approximation is exact only if the residual function r(.) is linear in a, which is
usually valid only in a neighborhood of a minimum of ψ(.). The Gauss-Newton method is intended
for problems in which the second term of the Hessian matrix is small relative to the first term. Thus,
this Gauss-Newton approximation is based on the assumptions that the functions rl(a) have small
curvatures or that near the solution the magnitudes of the rl(a) functions are small. If these condi-
tions are satisfied the Gauss-Newton method will ultimately converge at the same rate as Newton’s
method despite full second-order derivatives are not used. In Gauss-Newton’s method, the correc-
tion vector dagn for improving an approximate solution is then found as the solution to the linear
system of equations

J
(
r(a)

)T
J
(
r(a)

)
dagn = −J

(
r(a)

)T
r(a) . (5.3)

89

The Gauss-Newton method can be also introduced by a linearization argument. If, given a ∈ Rp.k,
we could solve the problem

min
da∈Rp.k

ψ(a+ da) =
1

2
∥r(a+ da)∥22 =

1

2
r(a+ da)T r(a+ da) ,

then a + da is a minimizer of ψ(.). Since r(.) is a nonlinear residual function, we must seek an
approximate solution that can be improved iteratively. A natural way to find an approximate solution
is to linearize the residual function r(.) around a. If we assume that r(.) is twice continuously
differentiable at a ∈ Rp.k, we have the first-order Taylor expansion

r(a+ da) = r(a) + J (r(a))da+O(∥da∥22)

and if we substitute this Taylor approximation for r(a + da) in the definition of ψ(a + da), this
leads to the quadratic function approximation

ψ(a+ da) ≈ G(da) = ψ(a) + daTJ
(
r(a)

)T
r(a) +

1

2
daTJ

(
r(a)

)T
J
(
r(a)

)
da ,

which must be minimized at each iteration. As a model for the change of the cost function ψ(.),
the quadratic function G(.) has two important advantages compared to the Newton quadratic model
N(.), first, it involves only first derivatives of the residual function r(.) and, second, the symmetric
matrix J (r(a))TJ (r(a)) is always positive semi-definite and is positive definite if J (r(a)) is of
full column rank. Of course, the drawback is a lost of accuracy as full second-order information
from the Hessian matrix is not taken into account. The gradient of this quadratic function is equal
to

∇G(da) = J
(
r(a)

)T
r(a) + J

(
r(a)

)T
J
(
r(a)

)
da ,

and setting it to zero leads to the linear system (5.3), which is also the normal equations of the linear
least-squares problem

dagn = Arg min
da∈Rp.k

1

2
∥r(a) + J

(
r(a)

)
da∥22 , (5.4)

whose unique solution is

dagn = −
(
J
(
r(a)

)T
J
(
r(a)

))−1
J
(
r(a)

)T
r(a) ,

if J (r(a)) has full column rank or, if this Jacobian matrix is rank-deficient or ill-conditioned, whose
unique minimum 2-norm solution is

dagn = −J
(
r(a)

)+
r(a) , (5.5)

where J (r(a))+ is the pseudo-inverse of the Jacobian matrix of the residual function r(.) at a. In the
rest of this monograph, we will mostly use the pseudo-inverse notation J (r(a))+ to indicate that the
normal equations shall not be used to compute dagn if J (r(a)) is ill-conditioned or singular.

The linear least-squares problem (5.4) can be solved by stable orthogonalization methods or the
SVD decomposition of the Jacobian matrix J (r(a)), see Subsection 2.1 and [71][87] for details.
Thus, the last equation becomes the iteration formula

ai+1 = ai − J
(
r(ai)

)+
r(ai) , (5.6)

which is known as the Gauss-Newton algorithm. Given an initial estimate a0, the linear least-
squares problem (5.4) associated with the Taylorized equations are solved to yield a correction to
this vector a0. This process is repeated and stops if and when the vectors ai (or the values ψ(ai))
converge or the norm of ∇ψ(ai) is sufficiently small to assume that we have reached a stationary
point of ψ(.).

90

Of course, the linearization argument used to derive the Gauss-Newton iteration is only valid in
a neighborhood of ai and it may happens that ψ(ai+1) > ψ(ai) meaning that the Gauss-Newton
algorithm may compute bad corrections by taking steps that are too long, reaching points outside the
region of validity of the affine model used to approximate r(.) around ai. Several cleaver variants
have been proposed to overcome this problem in practice.

The first one is the damped Gauss-Newton algorithm which is defined as

ai+1 = ai − αiJ
(
r(ai)

)+
r(ai) .

In this equation, αi is a damping parameter which is chosen at each iteration to make the algorithm a
descent method (i.e, such that ψ(ai+1) < ψ(ai)). The Gauss-Newton approximation of the Hessian
is always positive semi-definite and it is positive definite, if and only if, the Jacobian matrix has
full column rank, and, in this case, dagn is the unique solution of the above linear least-squares
problem and is also in a descent direction for ψ(.) if dagn ̸= 0k.p or, equivalently, if ∇ψ(a) =
J (r(a))T r(a) ̸= 0k.p since in these conditions

0 < daTgnJ
(
r(a)

)T
J
(
r(a)

)
dagn = −daTgnJ

(
r(a)

)T
r(a) = −daTgn∇ψ(a) .

This shows that, when the Jacobian matrix has full column rank, the Gauss-Newton method can
always be complemented with a line search in order to enforce the descending condition ψ(ai+1) <
ψ(ai) during the iterations [139][123][87]. Here, ai+1 = ai + α̂dagn and α̂ is found as a (approxi-
mate) solution to the problem

α̂ ≈ Argmin
α>0

ψ(ai + αdagn) .

Many strategies have been proposed to choose the damping parameter α̂ [45][139]. The Gauss-
Newton method with a line search can be shown to have guaranteed convergence, provided that the
level set

{
a ∈ Rp.k | ψ(a) ≤ ψ(a0)

}
is bounded, and the Jacobian matrix J (r(ai)) has full rank

in all iterations [45][139]. Practical experience shows that the Gauss-Newton method may fail with
or without a line search and that it usually has only linear convergence as opposed to the Newton’s
method, which exhibits quadratic convergence near a solution vector â. However, if, at a solution
â, we have r(â) = 0k.p, then we have the equality

∇2ψ(â) = J
(
r(â)

)T
J
(
r(â)

)
and we can also get quadratic convergence with the Gauss-Newton method. Similarly, if the com-
ponent residual functions rl(.) have small curvatures or if the |rl(â)| are small, we can also get
superlinear convergence. For example, this will be the case for the matrix completion problem.
This can also be observed if the values of the residual matrix X − ÂB̂ behave like white noise, as
in this case we can expect partial canceling in the sum

n.p∑
l=1

rl(â)∇2rl(â) ,

in which case, we also get
∇2ψ(â) ≈ J

(
r(â)

)T
J
(
r(â)

)
.

This situation also occurs in many applications, especially in climate science.

When the Hessian matrix ∇2ψ(a) is positive definite, the full Newton direction dan is also a de-
scent direction for ψ(.) and, in this case, the full Newton method can also be complemented by
a line search to enforce the descending condition ψ(ai+1) < ψ(ai) [45][139][123][87]. However,
contrary to the Gauss-Newton approximation of the Hessian, which is always positive semi-definite,
the full Hessian matrix can be indefinite in some regions of mixed curvature of the search space or

91

even negative definite, in which cases, further regularization of the Hessian matrix, such that inflat-
ing its diagonal elements, is required to transform it in a positive definite matrix before applying a
line search (see [139][123] and Subsection 6.3 for more details).

The second modification of the Gauss-Newton algorithm used in practice is the Levenberg-Marquardt
method. This method approximates the second term in the Hessian of ψ(.) with λ.DTD where D
is a full rank matrix and λ a strictly positive real scalar (the Marquardt damping parameter). The
standard choice for D is the identity matrix or a diagonal matrix D = diag(d) with appropriately
chosen components dj > 0, which take into account the scaling of the problem and can be kept fixed
or changed during the iterations [122][45][139][123]. In all cases, this implies that the approximate
Hessian matrix

J
(
r(a)

)T
J
(
r(a)

)
+ λ.DTD

is positive definite if λ > 0. Thus, the Levenberg-Marquardt’s method is based on the following
quadratic approximation model

ψ(a+ da) ≈ Lλ(da) = ψ(a) + daTJ
(
r(a)

)T
r(a) +

1

2
daT

(
J
(
r(a)

)T
J
(
r(a)

)
+ λ.DTD

)
da

and the correction vector dalm for improving an approximate solution a is found as the solution of
the regularized normal system(

J
(
r(a)

)T
J
(
r(a)

)
+ λ.DTD

)
dalm = −J

(
r(a)

)T
r(a) (5.7)

and is always in a descent direction for ψ(.), even when J (r(a)) is not of full column rank, if
λ > 0. Rather than dividing the steps when ψ(ai+1) > ψ(ai) as in the damped Gauss-Newton
method, the Levenberg-Marquardt algorithm deflates the steps by inflating the diagonals of the
cross-product Jacobian matrix (which is equivalent to shift positively its spectrum) before invert-
ing it to solve for the correction vector. It may be demonstrated that a sufficiently large λ al-
ways exists such that ψ(ai+1) < ψ(ai) will be satisfied unless ai is already a stationary point of
ψ(.) [45][139][123][87].

In other words, the Marquardt damping parameter λ controls the nature of the iterations and limits
the size of dalm at the same time. If we assume that D is the identity matrix and λ is very large,
then

dalm ≈ − 1

λ
.J
(
r(a)

)T
r(a) = − 1

λ
.∇ψ(a)

is a short step in a direction very close to the steepest descent direction. If, on the other hand, λ
is very small, then Lλ(a) ≈ G(a) and dalm is close to the Gauss-Newton step dagn described
above. In other words, we can think of the Levenberg-Marquardt method as a hybrid method be-
tween the steepest descent and Gauss-Newton methods with the good performance of the steepest
descent method in the initial stage and the faster convergence of the Gauss-Newton method at the
final stage of the iterative process, assuming that the value of the Marquardt damping parameter
decreases during the iterative process. Taking D as the identity matrix corresponds to the algorithm
originally proposed by Levenberg [107]. Later, Marquardt [120] improved the method by choosing
the diagonals of D to match the 2-norms of the columns of the Jacobian matrix J (r(a)). This makes
the algorithm invariant under diagonal scaling of the elements of the vector a [122][139]. This also
allows to include local curvature information, even when λ is large and we are essentially moving in
the (negative) steepest gradient direction. This is, for example, useful to alleviate the ”error valley”
problem affecting the steepest gradient method discussed at the beginning of this section since, in
that case, we are moving further in the directions in which the gradient is smaller. Later, many other
choices for D have been proposed and tested [122][49][45].

The above equations defining the Levenberg-Marquardt’s correction vector dalm are the normal
equations for the regularized linear least-squares problem

min
da∈Rp.k

1

2

∥∥ [r(a)
0p.k

]
+

[
J
(
r(a)

)
√
λ.D

]
da
∥∥2
2
=

1

2

∥∥r(a) + J
(
r(a)

)
da
∥∥2
2
+
λ

2

∥∥Dda∥∥2
2
, (5.8)

92

which can also be solved accurately by stable methods as for the Gauss-Newton correction and
there is no need to form nor to invert the symmetric matrix J (r(a))TJ (r(a)) + λ.DTD [87][139].
Moreover, this linear least-squares problem has always a unique solution if λ > 0.

The Levenberg-Marquardt algorithm is often considered superior to the (damped) Gauss-Newton
algorithm since it is well defined even when the Jacobian matrix is rank deficient. Another advan-
tage is that the Levenberg-Marquardt correction assures an optimal interpolation between a Gauss-
Newton step and the steepest descent direction (e.g., negative gradient direction) when the Gauss-
Newton step is much too long.

Similarly, we can define a Levenberg-Marquardt variant of the Newton method by computing the
correction vector dan as (

∇2ψ(a) + λ.Ik.p
)
dan = −J

(
r(a)

)T
r(a) , (5.9)

where the term λ.Ik.p is included when ∇2ψ(a) is not positive definite and hence the Newton
direction may not be a descent direction. In such conditions, it is always possible to choose λ
sufficiently large such that, first, the matrix ∇2ψ(a)+λ.Ik.p becomes positive definite and, second,
ψ(a+dan) < ψ(a) [139][123]. This strategy is based on the quadratic approximation model

ψ(a+ da) ≈ Nλ(da) = ψ(a) + daTJ
(
r(a)

)T
r(a) +

1

2
daT

(
∇2ψ(a) + λ.Ik.p

)
da .

As in the Levenberg-Marquardt algorithm, the damping parameter λ can be used to control both the
size and direction of the correction vector dan and, in this case, we can avoid the use of a line search
to control the step size in order to get reasonable convergence in the Newton method. Thus, we can
also think of this Levenberg-Marquardt variant of the Newton method as an hybrid between the
steepest descent and Newton methods with the good performance of the steepest descent method in
the initial stage, but the quadratic convergence of the Newton method at the final stage [139][123].
See the variable projection Newton algorithms (5), (6) and (7) described in Subsection 6.3, which
all integrate a damping term λ.Ik.p for some illustrations of this simple strategy in the context of the
Newton method applied to the WLRA problem.

A variation of the Levenberg-Marquardt method is the trust-region Gauss-Newton algorithm where
the correction vector dat−gn is defined as the solution of the constrained linear least-squares prob-
lem

dat−gn = Arg min
da∈Rp.k

1

2

∥∥r(a) + J
(
r(a)

)
da
∥∥2
2

subject to
∥∥Dda∥∥

2
≤ δ .

Here, the set of feasible correction vectors da is restricted to the ellipsoid {da ∈ Rp.k/∥Dda∥2 ≤
δ} which is called the trust region. δ > 0 is the trust region radius, which controls the size of
the trust region and is updated recursively during the iterative process [45][139]. In this class of
methods, the scaling matrix D generates the elliptic norm ∥da∥D = ∥Dda∥2 in which the correction
vector is measured [139]. The trust region can then be thought of as a region of trust for the linear
model

r(a+ da) ≈ r(a) + J
(
r(a)

)
da

and the idea in the trust-region Gauss-Newton method is to avoid using this linear model outside
its range of validity. Note that the Gauss-Newton step dagn solves this constrained problem if
∥Ddagn∥2 ≤ δ. Otherwise, it can be shown that the trust-region Gauss-Newton correction vector is
the unique solution da(λ) of the unconstrained regularized linear least-squares problem

da(λ) = Arg min
da∈Rp.k

1

2

∥∥r(a) + J
(
r(a)

)
da
∥∥2
2
+
λ

2

∥∥Dda , ∥∥2
2
,

where λ > 0 is determined from the scalar equation ∥Dda(λ)∥2 = δ which is nonlinear in λ.
In other words, when the correction vector da is directly controlled by the Marquardt damping
parameter λ and not by δ, we obtain the Levenberg-Marquardt algorithm, otherwise we have a trust

93

region Gauss-Newton algorithm [139]. We also observe that if D is nonsingular then a change
of variables yields an equivalent linear least-squares problem with D = I for computing both the
Levenberg-Marquardt and trust-region Gauss-Newton corrections.

Finally, the augmented Gauss-Newton method partly takes second-order derivatives into account by
approximating the second term of the Hessian of ψ(.) by either finite differencing or a quasi-Newton
update in order to improve the above NLLS methods in the large residuals case [49][45][139][123].
The variable projection quasi-Newton algorithms discussed in Subsection 6.3 belong to this class of
methods.

What has been described so far is well-known. In the following subsections, let us quantify the
smoothness of ψ(.) in more details and study the specific properties of the Jacobian matrix J (r(a)),
Hessian matrix ∇2ψ(a) and vector gradient ∇ψ(a), which need to be evaluated in the above second-
order or pseudo second-order NLLS algorithms. Implementation details of these variable projection
NLLS algorithms will be presented in Section 6 after their main properties have been derived in the
rest of this section. For small or medium sized NLLS or WLRA problems, the above methods will
be much faster than variants of the steepest gradient method. However, for larger problems, the
cost of solving a linear least-squares problem or a linear system with a huge coefficient matrix at
each iteration is a major drawback compared to the (steepest) gradient methods as the time spent
in each iteration scales as O((k.p)3) and, thus, increases considerably for large and square data
matrices and a large value of the k parameter. Taking these difficulties in consideration, we propose
also some parallel implementations of all our variable projection NLLS algorithms for the WLRA
problem in Section 6 so that they can also be used for larger sized problems also found now in many
practical applications.

5.2 Computation and properties of the Jacobian matrix

In order to use a (damped or trust-region) Gauss-Newton or Levenberg-Marquardt algorithm for
minimizing ψ(.) (and solve the WLRA problem), we must compute the Jacobian of the residual
function

r(a) = P⊥
F(a)x = (In.p −PF(a))x ,

defined in equation (3.24). This requires computing the derivative of the orthogonal projector PF(.)

with respect to a ∈ h−1(Rp×kk) as shown in Subsection 3.4. If a ∈ h−1(Rp×k<k), keep in mind that
PF(.) is not even continuous at a (see Theorems 3.11 and 3.12) and cannot be differentiable either
at this point.

A close formula for the derivative of orthogonal projectors has been derived first by Golub and
Pereyra [63] and Decell [38] under the assumption that F(.) is of local constant rank at any point
a (this means that F(.) is of constant rank in a neighborhood of a, but not necessarily of full
column-rank, see Definition 3.1 for details) in which differentiation is to be performed as stated
in the following theorem, which extends the results about the continuity of PF(.) given in Theo-
rem 3.10:

Theorem 5.1. Let Φ(.) be a matrix function : Rm −→ Rl×t, which is q times continuously differ-
entiable at a point a ∈ Rm. The following conditions are equivalent:

1) Φ(.) has a local constant rank at a ,

2) Φ(.)+ is q times continuously differentiable at a ,

3) Φ(.)Φ(.)+ = PΦ(.) is q times continuously differentiable at a ,

4) Φ(.)+Φ(.) is q times continuously differentiable at a .

In other words, the differentiability of the pseudo-inverse of a matrix function Φ(.) at a point a ∈
Rm is equivalent to the differentiability of the orthogonal projectors onto the column or row spaces
of this matrix function at a and all these conditions are equivalent to the assertion that this matrix

94

function has local constant rank at a if Φ(.) is itself differentiable at a. Furthermore, in these
conditions, we have for any point a ∈ Rm for which Φ(.) is differentiable

D(PΦ(a)) = P⊥
Φ(a)D(Φ(a))Φ(a)+ +

(
P⊥

Φ(a)D(Φ(a))Φ(a)+
)T (5.10)

and

D(Φ(a)+) =− Φ(a)+D(Φ(a))Φ(a)+ +Φ(a)+(Φ(a)+)TD(Φ(a)T)P⊥
Φ(a)

+
(
Im − Φ(a)+Φ(a)

)
D(Φ(a)T)(Φ(a)+)TΦ(a)+ . (5.11)

Finally, note that, in the above equation defining the differential of the orthogonal projector PΦ(.),
we can substitute in place of the pseudo-inverse Φ(a)+ any symmetric generalized inverse Φ(a)−

as defined in equations (2.10) or (2.19) of Subsection 2.1.

Proof. See Theorems 8.4 and 8.5 in Chapter 8 of [124] and also [63][64][38][29].

As noted already in Subsection 3.4, F(.) is a continuous linear mapping from Rp.k into Rn.p×n.k
(since the mat and transpose operators are linear mappings and the Kronecker product is a bilinear
operator) and is, thus, continuously and infinitely differentiable at any point a ∈ Rp.k [26]. Col-
lecting the results from Theorems 3.10 and 5.1, we then deduce that the proposition that PF(.) is
infinitely differentiable (e.g., of class C∞) at a point a ∈ h−1(Rp×kk) is equivalent to its continuity
at this point and to the proposition that F(.) is of constant rank in a neighborhood of a. Next, using
Theorem 3.11, we obtain the following corollary in the case where W ∈ Rp×n+∗ :

Corollary 5.1. For X ∈ Rp×n and W ∈ Rp×n+∗ , and any fixed integer k ≤ rank(X), the matrix
function PF(.) from Rp.k to Rp.n×p.n defined by

a 7→ PF(a) = F(a)F(a)+ ,

where F(a)+ is the pseudo-inverse of F(a) and F(a) is the p.n× n.k block diagonal matrix

F(a) =
n⊕
j=1

diag(
√
W.j)h(a) =

n⊕
j=1

diag(
√
W.j)A ,

is of class C∞ (e.g., infinitely differentiable) at all points a ∈ h−1(Rp×kk). Furthermore, for all
points a ∈ h−1(Rp×kk), we have

D(PF(a)) = P⊥
F(a)D

(
F(a)

)
F(a)+ +

(
P⊥

F(a)D
(
F(a)

)
F(a)+

)T
. (5.12)

Here, as in equation (5.10) of Theorem 5.1, we can substitute in place of F(a)+ any symmetric
generalized inverse F(a)− as defined in equations (2.10) or (2.19) of Subsection 2.1.

As expected from Corollary 3.4, the situation is much less favourable when W has some zero ele-
ments, as the condition that a ∈ h−1(Rp×kk) is not sufficient to ensure that F(.) is of constant rank
in a neighborhood of a and, thus, that P⊥

F(.) is differentiable at a in such situation:

Corollary 5.2. For X ∈ Rp×n and W ∈ Rp×n+ , and any fixed integer k ≤ rank(X), the matrix
function PF(.) from Rp.k into Rp.n×p.n defined by

a 7→ PF(a) = F(a)F(a)+

is not differentiable at all points a ∈
⋃n
j=1 Bj , where Bj is the jth barrier set associated with the

jth atomic and matrix functions, ψj(.) and Fj(.), as defined, respectively, in equation (3.25) and
Definition 3.2.

95

Despite the caveats stated in Corollary 5.2 when some elements of W are equal to zero, it is
important to keep in mind that the general differential formula (5.12) is still valid in that case
as soon as F(.) has a local constant rank at a ∈ h−1(Rp×kk). Furthermore, previous compara-
tive studies have also demonstrated that first- and second-order variable projection methods used
for minimizing ψ(.) generally outperform other concurrent methods even for a large number of
missing values in the case of binary weights and without any form of regularization to ensure the
smoothness of ψ(.) despite the non differentiability of PF(.) in some regions of the search space
h−1(Rp×kk) [28][150][81][88].

Here, D(F(a)) and D(PF(a)) are, for a ∈ h−1(Rp×kk), elements of £(Rp.k,£(Rn.k,Rn.p)) and
£(Rp.k,£(Rn.p,Rn.p)), respectively, and could be interpreted as tridimensional tensors (see equa-
tion (2.38) in Subsection 2.4). Now, since P⊥

F(a) = In.p −PF(a), we then have

D(P⊥
F(a)) = D(In.p −PF(a)) = −D(PF(a))

and we deduce by the product differentiation rule [26] that

J (r(a)) = J (P⊥
F(a)x) = D(P⊥

F(a))x+P⊥
F(a)J (x) = −D(PF(a))x . (5.13)

Substituting now for D(PF(a)) yields

J (r(a)) = −
(
P⊥

F(a)D(F(a))F(a)+x+ (F(a)+)TD(F(a))T (P⊥
F(a))

Tx
)

= −
(
P⊥

F(a)D(F(a))b̂ + (F(a)+)TD(F(a))T r(a)
)
,

where we have used the fact that P⊥
F(a) is a symmetric matrix (see Subsection 2.1). In these equa-

tions, b̂ = F(a)+x and r(a) = P⊥
F(a)x are, respectively, the minimum Euclidean norm solution

and residual vector of the following linear least-squares problem already encountered when describ-
ing the block ALS method in Section 4

min
b∈Rn.k

1

2
∥x− F(a)b∥22 = φ∗(A,B) ,

where B = mat(b). Note that we can also use b̂ = F(a)−x, which is cheaper to evaluate, in
the above equations. Moreover, we recall that the linear mappings D(F(a))b̂ and D(F(a))T r(a)
are elements of £(Rp.k,Rn.p) and £(Rp.k,Rn.k), respectively, since transposition in the tensor
D(F(a)) is performed on each slab ∂F(a)/∂ai. See equation (2.38) in Subsection 2.4 for details.
Thus, these two factors correspond to n.p× p.k and n.k × p.k matrices, respectively.

We now derive an explicit formulation for the n.p × p.k matrix J (r(a)), which is independent of
the differentiability of the residual function r(.) and the existence of the ”true” Jacobian matrix of
this residual function. We first consider the first term in J (r(a)), i.e.,

M(a) = P⊥
F(a)D

(
F(a)

)
b̂ ,

which is also a n.p × p.k matrix. As derived in equation (3.20) of Subsection 3.4, F(a) may be
expressed in the form

F(a) = diag
(
vec(

√
W)

)
(In ⊗A) = diag

(
vec(

√
W)

)(
In ⊗ matk×p(a)T

)
and it is clear that F(.) is a continuous linear mapping from Rp.k into Rn.p×n.k since the mat
and transpose operators are linear mappings and the Kronecker and matrix products are bilinear
operators. Hence, ∀ a,△a ∈ Rp.k and △A = h(△a) = matk×p(△a)T , we have

D
(
F(a)

)
(△a) = F(△a) = diag

(
vec(

√
W)

)
(In ⊗△A) .

Noting that (see equation (2.33) in Subsection 2.2)

F(△a)b̂ = diag
(
vec(

√
W)

)
(In ⊗△A)vec(B̂) = diag

(
vec(

√
W)

)
(B̂T ⊗ Ip)vec(△A) ,

96

where B̂ = matk×n(b̂) and using the p.k × p.k commutation matrix K(k,p) (see equation (2.34) in
Subsection 2.2), we deduce that

(D
(
F(a)

)
(△a))b̂ = diag

(
vec(

√
W)

)
(B̂T ⊗ Ip)K(k,p)△a , (5.14)

since
vec(△A) = K(k,p)vec(△AT) = K(k,p)△a ,

following our conventions for the vectorized form of the A matrix defined in equation (3.21) of
Subsection 3.4. In view of this, we finally obtain the following explicit formulation for the n.p×p.k
matrix M(a)

M(a) = P⊥
F(a)diag

(
vec(

√
W)

)
(B̂T ⊗ Ip)K(k,p) . (5.15)

An alternative useful formulation of the M(a) matrix may be derived by noting that (see equa-
tion (2.36) and Lemma 2.2 in Subsection 2.2)

diag
(
vec(

√
W)

)
(B̂T ⊗ Ip)K(k,p) = diag

(
vec(

√
W)

)
K(n,p)(Ip ⊗ B̂T)

= K(n,p)diag
(
vec(

√
W

T
)
)
(Ip ⊗ B̂T)

= K(n,p)G(b̂) ,

where G(b̂) is defined in equation (3.22) of Subsection 3.4. Thus,

M(a) = P⊥
F(a)K(n,p)G(b̂) , (5.16)

which will be used later, in particular in Theorem 5.3 and for computing ∇ψ(a) in Subsection 5.3
(see Theorem 5.7). As (see the demonstration of Theorem 4.3 for details)

e(A, B̂) = x− F(a)b̂ = K(n,p)

(
z−G(b̂)a

)
,

where z = vec
(
(
√
W ⊙X)T

)
, we can also write

M(a) = −P⊥
F(a)

∂e(A, B̂)

∂a
. (5.17)

In order to evaluate the second term in J (r(a)), i.e.,

L(a) =
(
F(a)+

)T
D
(
F(a)

)T
r(a) ,

which corresponds also to a n.p × p.k matrix, we first remark that, ∀ a,△a ∈ Rp.k and △A =
h(△a) = matk×p(△a)T , we have(

D
(
F(a)

)
(△a)

)T
= F(△a)T

=
(

diag
(
vec(

√
W)

)
(In ⊗△A)

)T
= (In ⊗△AT)diag

(
vec(

√
W)

)
,

since F(.) is a linear mapping and the transpose operator distributes over the Kronecker product.
Now, ∀ Z ∈ Rp×n and ∀ a,△a ∈ Rp.k, using equation (2.33), we have(

D(F(a))(△a)
)T vec(Z) = (In ⊗△AT)diag

(
vec(

√
W)

)
vec(Z)

= (In ⊗△AT)vec(
√
W ⊙ Z)

= vec
(
△AT (

√
W ⊙ Z)

)
=
(
(
√
W ⊙ Z)T ⊗ Ik

)
vec(△AT)

=
(
(
√
W ⊙ Z)T ⊗ Ik

)
△a ,

97

and, thus, the n.k × p.k matrix representing the linear mapping D(F(a)(.))T vec(Z) is

(
√
W ⊙ Z)T ⊗ Ik .

Now, using the projection operator PΩ(.) associated with the p × n weight matrix W defined in
equation (3.17), we have

[
PΩ(X−AB̂)

]
ij
=

Xij −

k∑
l=1

AilB̂lj if Wij ̸= 0

0 if Wij = 0

,

and the variable projection residual vector of x at A can be written as

r(a) = vec
(√

W ⊙ PΩ(X−AB̂)
)

and it follows that, ∀ a,△a ∈ Rp.k,(
(D
(
F(a)

)
(△a)

)T
r(a) =

((√
W ⊙

√
W ⊙ PΩ(X−AB̂)

)T ⊗ Ik

)
△a , (5.18)

hence
L(a) =

(
F(a)+

)T ((
W ⊙ PΩ(X−AB̂)

)T ⊗ Ik

)
. (5.19)

At this point, we will introduce two new intermediate quantities to simplify the notation going
forward, especially in the computation of the Hessian matrix in the next section:

U(a) = diag
(
vec(

√
W)

)
(B̂T ⊗ Ip)K(k,p) = K(n,p)G(b̂) (5.20)

and
V(a) =

(
W ⊙ PΩ(X−AB̂)

)T ⊗ Ik . (5.21)

With these definitions, we have finally,

J
(
r(a)

)
= −

(
M(a) + L(a)

)
= −

(
P⊥

F(a)U(a) +
(
F(a)+

)T
V(a)

)
. (5.22)

We now demonstrate several important results concerning the ranges and null spaces associated with
the M(a), L(a) and J (r(a)) matrices, which result directly from the use of the variable projection
method.

First, we have M(a) = P⊥
F(a)U(a) and this leads to ran(M(a)) ⊂ ran(P⊥

F(a)) = ran(F(a))⊥.
Using the properties of the Moore-Penrose inverse (see equation (2.9) or more generally of any
symmetric generalized inverse of the form (2.19) defined in Subsection 2.1), we also have

(F(a)+)T =
(
F(a)+F(a)F(a)+

)T
=
(
F(a)F(a)+

)T (
F(a)+

)T
= PF(a)

(
F(a)+

)T
and we deduce that

L(a) = PF(a)

(
F(a)+

)T
V(a) (5.23)

and ran(L(a)) ⊂ ran(PF(a)) = ran(F(a)). Hence the subspaces ran(M(a)) and ran(L(a)) of
Rp.n are orthogonal and ran(M(a)) ∩ ran(L(a)) = {0p.n}. Now, since J (r(a)) = −(M(a) +
L(a)), any element of ran(J (r(a))) may be written uniquely as a sum of an element of ran(M(a))
and an element of ran(L(a)) and it follows that

ran
(
J
(
r(a)

))
⊂ ran

(
M(a)

)
⊕ ran

(
L(a)

)
where ⊕ stands for the direct sum. From these results, it is then easy to show that

null
(
J
(
r(a)

))
= null

(
M(a)

)
∩ null

(
L(a)

)
.

98

Since J (r(a)) = −(M(a) + L(a)), we have, by definition,

null(M) ∩ null(L) ⊂ null
(
J
(
r(a)

))
,

and, reciprocally,

c ∈ null
(
J
(
r(a)

))
⇒ M(a)c+ L(a)c = 0p.n

⇒ M(a)c = −L(a)c

⇒ M(a)c ∈ ran(M(a)) ∩ ran(L(a))

⇒ M(a)c = L(a)c = 0p.n

⇒ c ∈ null
(
M(a)

)
∩ null

(
L(a)

)
.

Now, we demonstrate that the matrices M(a), L(a) and J (r(a)) are rank deficient ∀ a ∈ Rp.k.
This result for M(a) was first noted by Ruhe [158] for the case k = 1 and Wij ∈ {0, 1}. It was
proved later for general k, again only for M(a) and Wij ∈ {0, 1}, by Okatani and Deguchi [147],
but under the restrictive hypotheses that A, B, F(a) and G(b) are of full rank. See also Okatani
et al. [150], where these results are further developed. The next theorem and corollary extend this
result for general k and any nonnegative real matrix W and to M(a), L(a) and J (r(a)) matrices
without any restrictive assumptions.

Theorem 5.2. Let kA = rank(A) . If,

M(a) = P⊥
F(a)U(a) = P⊥

F(a)diag
(

vec
(√

W
))

(B̂T ⊗ Ip)K(k,p) ,

L(a) =
(
F(a)+

)T
V(a) =

(
F(a)+

)T (
(W ⊙ PΩ(X−AB̂))T ⊗ Ik

)
,

J (r(a)) = −
(
M(a) + L(a)

)
,

where all the matrices and vectors have the same definitions as above, then the following relation-
ships hold

dim
(
null
(
M(a)

))
⩾ kA.k ,

dim
(
null
(
L(a)

))
⩾ kA.k ,

dim
(
null
(
J (r(a))

))
⩾ kA.k .

Proof. Consider first the matrix N defined by

N = K(p,k)(Ik ⊗A) .

Since A is of rank kA, Ik ⊗ A is of rank k.kA (see equation (2.30)) and N is also of rank k.kA
because K(p,k) is a permutation matrix and the rank of a matrix is unaltered by multiplication with
a nonsingular square matrix.

Now, we first demonstrate that the space spanned by the columns of N, which is of dimension k.kA,
is included in null(M(a)) and so dim(null(M(a))) ⩾ kA.k.

Let t ∈ ran(N), then ∃Z ∈ Rk×k such that

t = Nvec(Z) = K(p,k)(Ik ⊗A)vec(Z) = K(p,k)vec(AZ) .

From this equality, we deduce that

M(a)t = P⊥
F(a)diag(vec(

√
W))(B̂T ⊗ Ip)K(k,p)K(p,k)vec(AZ)

= P⊥
F(a)diag(vec(

√
W))(B̂T ⊗ Ip)vec(AZ)

= P⊥
F(a)diag(vec(

√
W))vec(AZB̂)

= P⊥
F(a)diag(vec(

√
W))(In ⊗A)vec(ZB̂)

= P⊥
F(a)F(a)vec(ZB̂)

= 0p.n ,

99

since P⊥
F(a) is the orthogonal projector onto ran(F(a))⊥ and, finally, t ∈ null(M(a)). In other

words, ran(N) ⊂ null(M(a)) and, hence, dim(null(M(a))) ⩾ dim(ran(N)) = kA.k .

We now demonstrate that the relation ran(N) ⊂ null(L(a)) also holds. If t ∈ ran(N) and Z ∈
Rk×k with t = Nvec(Z), using equation (2.33) and Lemma 2.2, we have

L(a)t = (F(a)+)T ((W ⊙ PΩ(X−AB̂))T ⊗ Ik)K(p,k)vec(AZ)

= (F(a)+)T ((W ⊙ PΩ(X−AB̂))T ⊗ Ik)vec(ZTAT)

= (F(a)+)T vec(ZTAT (W ⊙ PΩ(X−AB̂)))

= (F(a)+)T (In ⊗ ZT)vec(AT (W ⊙ PΩ(X−AB̂)))

= (F(a)+)T (In ⊗ ZT)(In ⊗AT)vec(W ⊙ PΩ(X−AB̂))

= (F(a)+)T (In ⊗ ZT)(In ⊗AT)diag(vec(
√
W))vec(

√
W ⊙ PΩ(X−AB̂))

= (F(a)+)T (In ⊗ ZT)F(a)T r(a)

= 0p.n ,

since F(a)T r(a) = 0k.n. Thus, ran(N) ⊂ null(L(a)) and, hence,

dim
(
null
(
L(a)

))
⩾ dim

(
ran(N)

)
= kA.k .

Finally, we have ran(N) ⊂ null(M(a)) ∩ null(L(a)) = null(J (r(a))) and, so,

dim
(
null
(
J (r(a))

))
⩾ kA.k .

Corollary 5.3. With the same notations as in Theorem 5.2, we have

rank
(
M(a)

)
⩽ (p− kA).k

rank
(
L(a)

)
⩽ (p− kA).k

rank
(
J (r(a))

)
⩽ (p− kA).k .

Proof. These inequalities follow directly from Theorem 5.2 and the rank-nullity theorem (see equa-
tion (2.1) in Subsection 2.1):

rank
(
M(a)

)
= k.p− dim

(
null
(
M(a)

))
rank

(
L(a)

)
= k.p− dim

(
null
(
L(a)

))
rank

(
J (r(a))

)
= k.p− dim

(
null
(
J (r(a))

))
.

Remark 5.1. Theorem 5.2 and Corollary 5.3 are obviously connected to the fact that the matrix
factorization Y = AB used in the (P1) formulation of the WLRA problem is overparameterized,
that the minimization of ψ(.) is an optimization problem on Gr(p, k), the set of linear subspaces of
fixed dimension k of the Euclidean space Rp, and that Gr(p, k) is a smooth manifold of dimension
p.k − k.k (see Remarks 3.4 and 3.7 for details). Assuming that A ∈ Rp×kk , the minimization of
the cost function ψ(.) is at first sight a k.p dimensional problem. However, ψ(a) depends only on
the column space of A and not on its individual elements [51][125][28][14]. As an illustration,
if A ∈ Rp×kk and dA ∈ Rp×k is a perturbation matrix, for certain matrices dA, we will have
ran(A+ dA) = ran(A), which will imply that ψ(A+ dA) = ψ(A). This demonstrates that it is

100

not useful to consider all k.p search directions for minimizing ψ(.) from a previous matrix estimate
A. As demonstrated in [51][125][28][14], this symmetry can be exploited to reduce the dimension
of the problem to k.(p − k) parameters instead of k.p in both the (VP1) and (VP2) formulations
of the WLRA problem. Thus, in that sense, the column space of A has only p.k − k.k degrees of
freedom, which is consistent to the facts that the rank of J (r(a)) is at most p.k−k.k if rank(A) = k
and that the the dimension of Gr(p, k) is also p.k − k.k. ■

Theorem 5.2 demonstrates that the Jacobian matrix J (r(a)) is always rank-deficient. This implies
that the linear least-squares problem

min
da∈Rp.k

1

2
∥r(a) + J (r(a))da∥22 ,

which must be solved at each iteration of a Gauss-Newton type algorithm (see Subsection 5.1 for de-
tails) has an infinite set of solutions [71][87][8] and we must remove this ambiguity in any practical
implementation of the Gauss-Newton algorithm in a such way that the direction vector dagn can be
determined uniquely at each iteration. The general solution dâ ∈ Rk.p of the above rank-deficient
linear least-squares problem can be written as

dâ = −J (r(a))+r(a) + c = damin + c ,

where, as before, J (r(a))+ is the pseudo-inverse of J (r(a)), damin is the (unique) minimum 2-
norm solution of the above linear least-squares problem (see Subsection 2.1 and [71][87][8]), and c
is an arbitrary k.p dimensional vector belonging to null(J (r(a))).

First, the pseudo-inverse solution damin is characterized uniquely by the two conditions

J (r(a))TJ (r(a))damin = −J (r(a))T r(a) and damin ∈ null(J (r(a)))⊥ .

The first condition states simply that damin is a solution of the normal equations of the linear-least-
squares problem. Note, further, that

damin = −J (r(a))+r(a) = −J (r(a))+J (r(a))J (r(a))+r(a) = PJ (r(a))T damin ,

where PJ (r(a))T is the orthogonal projector onto the row space of J (r(a)) (e.g., ran(J (r(a))T), see
Subsection 2.1 for details. Since ran(J (r(a))T) = null(J (r(a)))⊥, we deduce immediately that
damin ∈ null(J (r(a)))⊥ as stated in the second condition.

Now, if dâ = damin + c, we have

J (r(a))dâ = J (r(a))(damin + c) = J (r(a))damin ,

and, thus, ∥r(a) + J (r(a))dâ∥2 = ∥r(a) + J (r(a))damin∥2, which implies that dâ is also a
solution of the above linear least-squares problem. Reciprocally, if dâ is an arbitrary solution, we
have ∥r(a) + J (r(a))dâ∥2 = ∥r(a) + J (r(a))damin∥2, which implies that

J (r(a))dâ = −PJ (r(a))r(a) = J (r(a))damin ,

as −PJ (r(a))r(a) is the unique closest point to r(a) in ran(J (r(a))), see equation (2.14) of Sub-
section 2.1 for details. Thus, J (r(a))(dâ− damin) = 0p.n and we can write dâ as

dâ = damin + (dâ− damin) = damin + c ,

with c = dâ− damin ∈ null(J (r(a))).

In other words, all solution vectors dâ can be written uniquely as the sum of damin ∈ null(J (r(a)))⊥

and a vector c ∈ null(J (r(a))) and finding all the solutions of the above rank-deficient linear least-
squares problem requires computing both a generalized inverse and a basis of the null space of
J (r(a)). Obviously, this also implies to determine accurately the rank of J (r(a)) or, equivalently,

101

the rank of its null space. More generally, proceeding in a similar manner, it is also easy to establish
an one to one mapping between the elements of null(J (r(a)))⊥ and those of ran(J (r(a))).

Now, the most natural choice is to select dagn = damin as the solution of our linear least-squares
problem since, with such minimum Euclidean norm solution, the first order Taylor’s expansion

r(a+ dagn) = r(a) + J (r(a))dagn +O(∥dagn∥22) ,

which is at the base of the Gauss-Newton algorithm is the most accurate. Selecting dagn = damin
has also a strong theoretical justification as, with this choice, a variable projection Gauss-Newton
algorithm used to minimize ψ(.) is equivalent to a Riemannian optimization method operating di-
rectly on the Grassmann manifold Gr(p, k) [3][11] as we will explain later in this subsection.

These considerations related to the uniform rank degeneracy of the Jacobian matrix J (r(a)) apply
also to the computation of the correction vector dalm in the Levenberg-Marquardt method as soon
as the Marquardt damping parameter λ approaches zero, as it is expected after some iterations
of the Levenberg-Marquardt algorithm. Moreover, if the Marquardt parameter λ is controlled so
that it does not approach to zero in order to remove the uniform singularity of the Jacobian matrix
J (r(a)), this may severely deteriorate the global convergence as well as the local convergence of the
method in a neighborhood of a critical point. In other words, adding the additional constraint that
∥dalm∥2 is minimum when λ approaches zero, is also important for the robustness and efficiency
of the Levenberg-Marquardt or similar regularized methods described in Subsection 5.1 when they
are used to solve NNLS problems with an uniformly deficient Jacobian matrix, like the WLRA
problem.

We now give sufficient conditions for the equalities:

dim
(

null
(
M(a)

))
= kA.k

dim
(

null
(
J (r(a))

))
= kA.k ,

which will be helpful to remove these ambiguities in determining uniquely and efficiently the cor-
rection vectors dagn and dalm in many practical applications.

Let us first introduce some definitions and notations. For any nonnegative real p× n matrix W, we
define the finite subset of N

Θ(W) =
{
j ∈ {1, 2, · · · , n} /W.j ∈ Rp+∗

}
.

Θ(W) is the set of the column-vector indices of W such that 0 is not an element of such column-
vector of W. Furthermore, let card(Θ(W)) be the number of elements of Θ(W) and, for any s×n
matrix C, define the s× card(Θ(W)) real submatrix C

′
obtained from C by deleting the columns

of C whose indices do not belong to Θ(W). We then have the following result, which is new as far
as we know.

Theorem 5.3. With these definitions and the same notations as in Theorem 5.2, if card(Θ(W)) =
n

′
⩾ k and rank(B̂

′
) = k then the following equalities hold:

null
(
J (r(a))

)
= null

(
M(a)

)
,

dim
(
null(J (r(a)))

)
= kA.k .

Proof. First, consider the second formulation of the M(a) matrix (see equation (5.16)), e.g.,

M(a) = P⊥
F(a)K(n,p)G(b̂) ,

102

where b̂ = vec(B̂) and G(b̂) = diag(vec(
√
W

T
))(Ip⊗B̂T). Using the two hypotheses card(Θ(W)) =

n
′
⩾ k and rank(B̂

′
) = k, we first deduce that

rank
(

diag
(
vec(

√
W′T)

)
(Ip ⊗ B̂

′T)
)
= rank

(
Ip ⊗ B̂

′T
)
,

= rank(Ip).rank(B̂
′T)

= p.k ,

since diag(vec(
√
W′T)) is a nonsingular diagonal matrix. Now, using this equality, we have also

rank
(
K(n,p)G(b̂)

)
= rank(G(b̂)) = k.p ,

as K(n,p) is a (nonsingular) permutation matrix and diag(vec(
√
W′T))(Ip⊗ B̂

′T) is a submatrix of
G(b̂) formed simply by eliminating some rows of G(b̂).

Now, for any matrix C with s columns, we have the basic rank-nullity relation (see equation (2.1))

s = rank(C) + dim
(
null(C)

)
.

Furthermore, for any matrix D with s rows, we also assume the equality

rank(D) = rank(CD) + dim
(
null(C) ∩ ran(D)

)
,

see Marsaglia and Styan [126] for a proof.

Using these two relations, we deduce

rank
(
M(a)

)
+ dim

(
null(M(a))

)
= k.p

and
k.p = rank

(
M(a)

)
+ dim

(
null(P⊥

F(a)) ∩ ran(K(n,p)G(b̂))
)
,

and so

dim
(
null(M(a))

)
= dim

(
null(P⊥

F(a)

)
∩ ran

(
K(n,p)G(b̂))

)
= dim

(
ran(F(a)

)
∩ ran

(
K(n,p)G(b̂))

)
.

Next, we consider the matrix H defined by

H = diag(vec(
√
W))(B̂T ⊗A) .

We have
rank(H) ⩽ rank(B̂T ⊗A) = rank(B̂).rank(A) = k.kA ,

since the hypothesis rank(B̂
′
) = k implies rank(B̂) = k. We now demonstrate the inclusion

ran(F(a)) ∩ ran(K(n,p)G(b̂)) ⊂ ran(H) .

Let c ∈ ran(F(a)) ∩ ran(K(n,p)G(b̂)), then ∃ S ∈ Rk×n and Z ∈ Rp×k such that

c = F(a)vec(S) = K(n,p)G(b̂)vec(ZT)

and we want to show that ∃T ∈ Rk×k such that c = Hvec(T). But, ∀T ∈ Rk×k, we have

Hvec(T) = diag(vec(
√
W))(B̂T ⊗A)vec(T)

= diag(vec(
√
W))(B̂T ⊗ Ip)(Ik ⊗A)vec(T)

= diag(vec(
√
W))(B̂T ⊗ Ip)K(k,p)K(p,k)vec(AT)

= K(n,p)G(b̂)K(p,k)vec(AT) ,

103

and so, using the facts that K(n,p) is a (nonsingular) permutation matrix and G(b̂) has full column
rank demonstrated above, we have the equivalences

c = Hvec(T) ⇔ K(n,p)G(b̂)vec(ZT) = K(n,p)G(b̂)K(p,k)vec(AT)

⇔ G(b̂)vec(ZT) = G(b̂)K(p,k)vec(AT)

⇔ vec(ZT) = K(p,k)vec(AT)

⇔ K(k,p)vec(ZT) = vec(AT)

⇔ vec(Z) = vec(AT)

⇔ Z = AT .

Thus, to demonstrate that ∃T ∈ Rk×k such that c = Hvec(T), it suffices to show that ∃T ∈ Rk×k
such that Z = AT. But,

c = F(a)vec(S)

= diag(vec(
√
W))(In ⊗A)vec(S)

= diag(vec(
√
W))vec(AS)

and also

c = K(n,p)G(b̂)vec(ZT)

= K(n,p)diag(vec(
√
W

T
))(Ip ⊗ B̂T)vec(ZT)

= diag(vec(
√
W))(In ⊗ Z)vec(B̂)

= diag(vec(
√
W))vec(ZB̂) .

From these equalities, we then deduce that

diag(vec(
√
W′))vec(AS

′
) = diag(vec(

√
W′))vec(ZB̂

′
) ,

and since diag(vec(
√
W′)) is a nonsingular diagonal matrix, we obtain

vec(AS
′
) = vec(ZB̂

′
) and, finally, AS

′
= ZB̂

′
.

Now, B̂
′

has full row-rank by hypothesis and, consequently, admits a right inverse R such that
B̂

′
R = Ik (see [126] for details) and so AS

′
R = Z and we can take T = S

′
R . Consequently, we

have proved
ran(F(a)) ∩ ran(K(n,p)G(b̂)) ⊂ ran(H) ,

which implies

dim(null(M(a))) = dim(ran(F(a)) ∩ ran(K(n,p)G(b̂))) ⩽ rank(H) ⩽ kA.k .

But, from Theorem 5.2, we already know that

kA.k ⩽ dim(null(M(a)))

and we obtain dim(null(M(a))) = kA.k.

Again, from Theorem 5.2, we also know that

kA.k ⩽ dim(null(J (r(a)))) = dim(null(M(a)) ∩ null(L(a)))

and since
dim(null(M(a)) ∩ null(L(a))) ⩽ dim(null(M(a))) = kA.k ,

we also conclude that dim(null(J (r(a)))) = kA.k.

Finally, from the propositions,

dim(null(J (r(a)))) = dim(null(M(a))) and null(J (r(a))) ⊂ null(M(a)) ,

we deduce that null(J (r(a))) = null(M(a)) as claimed in the theorem.

104

Before stating some consequences of Theorem 5.3, it is important to highlight that the two hypothe-
ses of this theorem are not very stringent and are easily checked in practice. Moreover, in most
practical cases, these two conditions will be meet as long as W has k column-vectors without zero
elements and each other column-vector of W has at least k nonzero elements in it. The following
corollary is then obvious and is stated without proof:

Corollary 5.4. With the same notations and hypotheses as in Theorem 5.3, we also have the rela-
tions

rank
(
M(a)

)
= (p− kA).k ,

rank
(
J (r(a))

)
= (p− kA).k .

□

Furthermore, the next corollary shows that the sufficient conditions stated in Theorem 5.3 and used
in Corollary 5.4 can be simplified when W is a strictly positive p× n real matrix. A similar result
has been obtained by Chen [27] for M(a) only, but with a different proof and the additional hypoth-
esis that A is of full column-rank.

Corollary 5.5. With the same notations as in Theorem 5.2, if W ∈ Rp×n+∗ and rank(B̂) = k then
the following equalities hold:

dim
(
null(M(a))

)
= kA.k ,

dim
(
null(J (r(a)))

)
= kA.k ,

and also

rank
(
M(a)

)
= (p− kA).k ,

rank
(
J (r(a))

)
= (p− kA).k .

Proof. It suffices to note that W ∈ Rp×n+∗ and rank(B̂) = k lead to

card(Θ(W)) = n ⩾ k and B̂
′
= B̂

and the results follow immediately from Theorem 5.3 and Corollary 5.4.

Remark 5.2. More generally, if W ∈ Rp×n+∗ and rank(B̂) = k
B̂
< k it is possible to demonstrate

dim
(
null(M(a))

)
= p.(k − k

B̂
) + kA.kB̂ ,

rank
(
M(a)

)
= k

B̂
.(p− kA) ,

and also

kA.k ⩽ dim
(
null(J (r(a)))

)
⩽ p.(k − k

B̂
) + kA.kB̂ ,

k
B̂
.(p− kA) ⩽ rank

(
J (r(a))

)
⩽ k.(p− kA) ,

but we omit the details since these results are not very useful in practical applications in which
rank(A) = rank(B̂) = k is the rule. ■

105

If the hypotheses of Theorem 5.3 and Corollaries 5.4 and 5.5 are satisfied, we know precisely the
dimensions of null(J (r(a))) = null(M(a)) and of its orthogonal complement in Rk.p, e.g.,

dim
(
null(J (r(a)))

)
= kA.k and dim

(
null(J (r(a)))⊥

)
= (p− kA).k .

Furthermore, while Theorem 5.3, Corollaries 5.4 and 5.5 are valid for any A ∈ Rp×k, we recall
that the condition rank(A) = k is required for ψ(.) to be differentiable, which implies that for all
practical WLRA applications, we will have

dim
(
null(J (r(a)))

)
= k.k and dim

(
null(J (r(a)))⊥

)
= (p− k).k .

Then, if (orthonormal or not) bases of null(J (r(a))) = null(M(a)) and of its orthogonal comple-
ment are available, it is easy to obtain the minimal 2-norm solution and also all solutions of the
linear least-squares problem

min
da∈Rp.k

1

2
∥r(a) + J

(
r(a)

)
da∥22 .

More, precisely, if the columns of N ∈ Rk.p×kA.k and N⊥ ∈ Rk.p×(p−kA).k form, respectively,
(orthonormal) bases of null(J (r(a))) and null(J (r(a)))⊥, then dagn = damin can be computed in
a two-step procedure. In the first step, we need to solve the following reduced (and nonsingular)
linear least-squares problem

min
da∈R(p−kA).k

1

2
∥r(a) + J

(
r(a)

)
N⊥da∥22 ,

which has an unique solution as demonstrated above, say dāgn ∈ R(p−kA).k. Next, in a second step,
we obtain dagn = damin as the matrix-vector product

dagn = N⊥dāgn .

Then, the general solution dâ of the full linear least-squares problem can be also computed in a
third step as

dâ = damin +Nc = N⊥dāgn +Nc ,

with c ∈ RkA.k is a vector of kA.k arbitrary constants. Note that if we use the matrix −M(a)
as an approximate Jacobian instead, we can also find all the solutions of the linear least-squares
problem

min
da∈Rp.k

1

2
∥r(a)−M(a)da∥22

in three steps using again the bases N and N⊥, but in the first step, we need to solve the reduced
and nonsingular linear least-squares problem

min
da∈R(p−kA).k

1

2
∥r(a)−M(a)N⊥da∥22 ,

instead of the previous one involving the rank-deficient matrix J (r(a)).

Alternatively, it is also possible to obtain dagn and all solutions of the above Gauss-Newton linear
least-squares problems involving the Jacobian matrix J (r(a)) or its approximation −M(a) using
only a basis N of null(J (r(a))) = null(M(a)) as first noted by Okatani et al. [150]. Using the
fact, demonstrated above, that dagn = damin is the unique solution of these linear least-squares
problems, which belongs to null(J (r(a)))⊥, it is not difficult to see that dagn is also the unique
solution among the infinite set of solutions dâ of these linear least-squares problems, which verifies
the equality

NTdâ = 0kA.k ,

106

if the columns of N form a basis of null(J (r(a))) = null(M(a)).

In addition, using results in the demonstration of Theorem 5.2 and assuming for simplicity that
kA = k, e.g., A is of full column-rank, we observe that the matrix defined by

N = K(p,k)(Ik ⊗A)

is also of full column-rank (e.g., rank(N) = k.k), and that

null
(
J
(
r(a)

))
= null

(
M(a)

)
= ran(N) ,

if the hypotheses of Theorem 5.3 are satisfied. In other words, it is very easy to compute a basis N
of null

(
J (r(a))

)
= null(M(a)) in practical applications or even an orthonormal basis of this linear

subspace of Rp.k with the help of Corollary 5.6 demonstrated below.

Furthermore, it is also very easy to introduce the linear constraint NTda = 0kA.k in the linear least-
squares problems, which must be solved for computing the correction vector dagn at each iteration
of the Gauss-Newton algorithm, as follows

dagn = Arg min
da∈Rp.k

1

2
∥r(a) + J (r(a))da∥22 +

1

2
∥NTda∥22 ,

or
dagn = Arg min

da∈Rp.k

1

2
∥r(a)−M(a)da∥22 +

1

2
∥NTda∥22 ,

if we use the approximate Jacobian matrix −M(a). These two ”constrained” linear least-squares
problems are also, respectively, equivalent to the following standard linear least-squares prob-
lems

dagn = Arg min
da∈Rp.k

1

2

∥∥ [r(a)
0kA.k

]
+

[
J (r(a)) ,

NT

]
da
∥∥2
2

and

dagn = Arg min
da∈Rp.k

1

2

∥∥ [r(a)
0kA.k

]
−
[
M(a)
NT

]
da
∥∥2
2
,

which are both easily solved and have an unique solution as the associated coefficient matrices are
nonsingular if the columns of N form a basis of null(J (r(a))) = null(M(a)).

To demonstrate this result, it suffices to show that the null space of these matrices is reduced to the
zero vector. To this end, we first observe that

null
([J (r(a))

NT

])
= null

(
J (r(a))

)
∩ null(NT) = null

([M(a)
NT

])
,

if the hypotheses of Theorem 5.3 are satisfied. Moreover, the following relationships hold (see
equation (2.1) in Subsection 2.1)

null(NT)⊥ = ran(N) = null
(
J (r(a))

)
= null(M(a)) ,

and this implies, finally, that

null(
[
J (r(a))
NT

]
) = null(

[
M(a)
NT

]
) = null(NT)⊥ ∩ null(NT) = {0p.k} , (5.24)

which demonstrates that the corresponding matrices are effectively nonsingular if the columns of N
form a basis of null(J (r(a))) = null(M(a)).

The above results can also be used to improve the Levenberg-Marquardt algorithm. For example,
using an exact Jacobian matrix, J (r(a)), an accurate Levenberg-Marquardt’s correction vector dalm

107

can also be obtained in two steps. First, by solving the following reduced and regularized linear
least-squares problem

min
da∈R(p−kA).k

1

2

∥∥ [r(a)

0(p−kA).k

]
+

[
J (r(a))N⊥

√
λD

]
da
∥∥2
2
=

1

2

∥∥r(a) + J (r(a))N⊥da
∥∥2
2
+
λ

2

∥∥Dda∥∥2
2
,

where λ is the damping Marquardt parameter and D is a diagonal scaling matrix of dimension
(p − kA).k. This damped linear least-squares problem has always an unique solution, dālm, even
when λ tends to zero if the hypotheses of Theorem 5.3 are satisfied. Once dālm has been found,
dalm can be computed by the matrix-vector product

dalm = N⊥dālm ,

as for the correction vector dagn in the Gauss-Newton algorithm.

Alternatively, the linear constraint
NTda = 0kA.k

can also be introduced in the linear least-squares problem, which must be solved for computing the
correction vector at each iteration of the Levenberg-Marquardt algorithm. As an illustration, if we
use an exact Jacobian matrix, a correction vector can be computed as

da
′
lm = Arg min

da∈Rp.k

1

2
∥r(a) + J (r(a))da∥22 +

1

2
∥NTda∥22 +

λ

2

∥∥Dda∥∥2
2
,

where λ is the damping Marquardt parameter and D is now a diagonal scaling matrix of dimension
k.p. This problem is also equivalent to the standard linear least-squares problem

da
′
lm = Arg min

da∈Rp.k

1

2

∥∥ r(a)
0kA.k

0k.p

+

J (r(a))NT
√
λD

 da∥∥2
2
.

However, contrary to the case of the Gauss-Newton method, the correction vectors, dalm and da
′
lm,

obtained by these two alternative formulations of the Levenberg-Marquardt algorithm will differ
in general. More precisely, if λ ̸= 0, we cannot assume that it always exists c ∈ R(p−kA).k such
that

da
′
lm = N⊥c ,

as we only have NTda
′
lm ≈ 0kA.k, but not exactly NTda

′
lm = 0kA.k as for dalm. Thus, in these

conditions, da
′
lm /∈ null(J (r(a)))⊥, while dalm ∈ null(J (r(a)))⊥, and these two correction vec-

tors will not be equal in general. Moreover, the fact that dalm ∈ null(J (r(a)))⊥ implies that the ver-
sion of the Levenberg-Marquardt algorithm using this correction vector can also be considered as a
Riemannian optimization algorithm operating directly on the Grassmann manifold Gr(p, k) [3][11]
in the same way as the Gauss-Newton algorithm discussed above (see below for details), while the
version using da

′
lm as a correction step does not enjoy this theoretical property.

At first sight, the approach using only a basis N of null
(
J (r(a))

)
= null(M(a)) and a linear

constraint for computing the Gauss-Newton and Levenberg-Marquardt directions at each iteration,
seems to be much cheaper than the first approach, which needs to compute a nonsingular matrix
N⊥ ∈ Rk.p×(p−kA).k whose columns form a basis of null(J (r(a)))⊥, to multiply the huge Jacobian
matrix J (r(a) (or its approximation) by this matrix N⊥ and, finally, to compute the matrix-vector
products dagn = N⊥dāgn or dalm = N⊥dālm in the case of the Levenberg-Marquardt algo-
rithm [150].

However, the next corollary shows that the overhead cost incurred by the first approach can be
drastically reduced since it is easy to obtain orthonormal bases of null

(
J (r(a))

)
and its orthogonal

complement in Rk.p if the conditions of Theorem 5.3 are fulfilled. Furthermore, thanks to the par-
ticular form of these orthonormal bases, the above matrix product between the Jacobian matrix (or

108

its approximation) and a basis of null
(
J (r(a))

)⊥ can be computed very efficiently with almost the
same cost as evaluating the Jacobian matrix or its approximation itself as also demonstrated in this
corollary.

Corollary 5.6. With the same notations and hypotheses as in Theorem 5.3, let O ∈ Op×kA be an
orthonormal basis of ran(A) and O⊥ ∈ Op×(p−kA) be an orthonormal basis of ran(A)⊥, then

Ō = K(p,k)(Ik ⊗O) is an orthonormal basis of null
(
J (r(a))

)
= null(M(a)) ,

Ō⊥ = K(p,k)(Ik ⊗O⊥) is an orthonormal basis of null
(
J (r(a))

)⊥
= null(M(a))⊥ .

Furthermore, we have

M(a)Ō⊥ = P⊥
F(a)U(a)Ō⊥ = P⊥

F(a)diag
(
vec(

√
W)

)(
B̂T ⊗O⊥) ,

L(a)Ō⊥ =
(
F(a)+

)T
V(a)Ō⊥ =

(
F(a)+

)T((
W ⊙ PΩ(X−AB̂)

)T
O⊥ ⊗ Ik

)
K(p−k,p) .

Proof. Using the results of Theorem 5.2, we first observe that

null
(
J (r(a))

)
= null

(
M(a)

)
= ran(N) ,

where N = K(p,k)(Ik ⊗A).

Now, since O is an orthonormal basis of the column space of A, then ∃C ∈ RkA×k such that A =
OC, rank(C) = kA and C is uniquely determined (see Theorem 1 of Marsaglia and Styan [126]).
Moreover, since C has full row-rank, C admits a right-inverse R such that CR = IkA . From this
equality, we deduce that

AR = OCR = O .

Using these properties and equation (2.33), we have, ∀Z ∈ Rk×k,

(Ik ⊗A)vec(Z) = (Ik ⊗OC)vec(Z)

= vec(OCZ)

= (Ik ⊗O)vec(CZ) ,

and, ∀T ∈ RkA×kA ,

(Ik ⊗O)vec(T) = (Ik ⊗AR)vec(T)

= vec(ART)

= (Ik ⊗A)vec(RT) .

From these equalities, it can be easily proved that

ran(N) = ran
(
K(p,k)(Ik ⊗O)

)
= ran(Ō) .

Moreover, Ō = K(p,k)(Ik ⊗O) is a matrix with orthonormal columns since:(
K(p,k)(Ik ⊗O)

)T
K(p,k)(Ik ⊗O) = (Ik ⊗OT)(Ik ⊗O)

= (Ik ⊗OTO)

= Ik ⊗ IkA
= Ik.kA .

A similar argument applies to Ō⊥ = K(p,k)(Ik ⊗O⊥). Finally, we have(
K(p,k)(Ik ⊗O)

)T
K(p,k)(Ik ⊗O⊥) = (Ik ⊗OT)(Ik ⊗O⊥)

= (Ik ⊗OTO⊥)

= Ik ⊗ 0kA×(p−kA)

= 0k.kA×k.(p−kA) ,

109

and it follows that Ō is an orthonormal basis of null
(
J (r(a))

)
and Ō⊥ is an orthonormal basis of

null
(
J (r(a))

)⊥ as stated in the corollary. Furthermore, the columns of the matrix
[
Ō Ō⊥] form

an orthonormal basis of Rk.p.

Finally, to demonstrate the second part of the corollary, let us evaluate compactly the matrix prod-
ucts UŌ⊥ and VŌ⊥ using the properties of the Kronecker product, commutation matrix and vec
operator stated in Subsection 2.2. We have

UŌ⊥ = diag
(
vec(

√
W)

)
(B̂T ⊗ Ip)K(k,p)K(p,k)(Ik ⊗O⊥)

= diag
(
vec(

√
W)

)
(B̂T ⊗ Ip)(Ik ⊗O⊥)

= diag
(
vec(

√
W)

)
(B̂T ⊗O⊥) ,

and also

VŌ⊥ =
(
(W ⊙ PΩ(X−AB̂))T ⊗ Ik

)
K(p,k)(Ik ⊗O⊥)

=
(
(W ⊙ PΩ(X−AB̂))T ⊗ Ik

)
(O⊥ ⊗ Ik)K(p−k,k)

=
(
(W ⊙ PΩ(X−AB̂)

)T
O⊥ ⊗ Ik

)
K(p−k,p) ,

which concludes the demonstration of the corollary.

Using Corollary 5.6 and the preceding results, we can write the correction vectors dagn and dalm
of the Gauss-Newton and Levenberg-Marquardt algorithms as the matrix-vector products

dagn = Ō⊥dāgn and dalm = Ō⊥dālm ,

where dāgn and dālm are, respectively, the solutions of the problems

dāgn = Arg min
da∈R(p−kA).k

1

2

∥∥r(a) + J
(
r(a)

)
Ō⊥da

∥∥2
2

and
dālm = Arg min

da∈R(p−kA).k

1

2

∥∥r(a) + J
(
r(a)

)
Ō⊥da

∥∥2
2
+
λ

2

∥∥Dda∥∥2
2
,

or of similar linear least-squares problems involving the approximate Jacobian matrix −M(a) in-
stead of J (r(a)). Defining dAgn ∈ Rp×k and dĀgn ∈ R(p−kA)×k such that dagn = vec(dAT

gn)
and dāgn = vec(dĀgn), we have (using equation (2.33) and Lemma 2.2 in Subsection 2.2)

vec(dAT
gn) = K(p,k)(Ik ⊗O⊥)vec(dĀgn) = K(p,k)vec(O⊥dĀgn) = vec

(
(O⊥dĀgn)

T
)
,

which implies that dAgn = O⊥dĀgn. Obviously, the equality dAlm = O⊥dĀlm can be derived
in a similar fashion.

Thus, the columns of the perturbation matrices dAgn and dAlm belong to ran(O⊥) = ran(A)⊥.
In other words, these variations of the variable projection Gauss-Newton and Levenberg-Marquardt
methods described above to deal with the singularity of the Jacobian matrix J (r(a)), or of its
approximation −M(a), consider only search directions of the form dA = O⊥C where C ∈
R(p−kA)×k. This is consistent with Remark 5.1 and the fact that we have only k.(p− k) degrees of
freedom to update A if rank(A) = k at each iteration of the Gauss-Newton or Levenberg-Marquardt
algorithms.

In addition, if W ∈ Rp×n+∗ , the unvectorized form of the cost function ψ(.) (e.g., ψ ◦ h−1(.) where
h−1(A) = vec(AT) = a, ∀A ∈ Rp×k, with h(.) and h−1(.) defined in equation (3.29) of Sub-
section 3.4), which is used in the (VP1) formulation of the WLRA problem, is smooth (e.g., of
class C∞) over the subdomains Rp×kk or Op×k according to Corollaries 3.3 and 5.1. Note that this

110

(unvectorized) cost function ψ(.) can be an instance of the (VP1) formulation of the cost function
gλ(.) introduced by Boumal and Absil [13][14], defined in equation (3.18), and already discussed
in Subsection 3.3 since its associated weight matrix Wλ ∈ Rp×n+∗ if λ > 0. In the same conditions,
if A ∈ Rp×kk or A ∈ Op×k, we have rank(M(a)) = rank(J (r(a))) = k.(p − k) according to
Corollary 5.5. Using these different results, we can recast the variable projection formulation of the
WLRA problem as an optimization problem on the Grassmann manifold Gr(p, k) [14][11] and the
above variable projection Gauss-Newton and Levenberg-Marquardt methods to solve the WLRA
problem as Riemannian optimization algorithms operating on this Grassmann manifold [3][11] as
their numerical behavior only depends on Å = ran(A) ∈ Gr(p, k), for A ∈ Rp×kk or A ∈ Op×k,
and not on the arbitrarily chosen matrix A to represent ran(A) according to Corollaries 3.1, 3.2 and
Remark 3.7.

More precisely, the smooth function ψ◦h−1(.) defined on the smooth submanifold Rp×kk embedded
in Rp×k is invariant on the equivalence classes of the equivalence relation ∼ defined on Rp×kk by,
∀A,C ∈ Rp×kk ,

A ∼ C if and only if it exists D ∈ Rk×kk such that A = CD ,

according to Corollary 3.2. In this setting, we can say that Gr(p, k) is the quotient of Rp×kk by the
action of the group Rk×kk following the terminology introduced in Subsection 2.4. Alternatively, if
we prefer to work with orthogonal matrices (e.g., with the Stiefel manifold Op×k), we can consider
the restriction of ψ ◦ h−1(.) to Op×k and the equivalence relation ∼ defined on Op×k by, ∀A,C ∈
Op×k,

A ∼ C if and only if it exists D ∈ Ok×k such that A = CD ,

and, similarly, ψ ◦h−1(.) is invariant on the equivalence classes of this equivalence relation accord-
ing to Corollary 3.2 and Gr(p, k) is defined now as the quotient of the Stiefel manifold Op×k by the
action of the orthogonal group Ok×k.

Moreover, as a quotient manifold (see Subsection 2.4 and Chapter 9 of [11]), the Grassmannian
admits a tangent space at Å = ran(A) ∈ Gr(p, k), ∀A ∈ Rp×kk or ∀A ∈ Op×k, designed by
TÅGr(p, k) (in the terminology of Subsection 2.4), which can be identified uniquely with the linear
subspace of Rp×k of dimension k.(p− k) defined by

TAGr(p, k) =
{
D ∈ Rp×k /ATD = 0k×k

}
.

With this identification, TÅGr(p, k) is nothing else than the horizontal space, HARp×kk , of Rp×kk

at A ∈ Rp×kk or, alternatively, the horizontal space, HAOp×k, of Op×k at A ∈ Op×k; see Sub-
section 2.4 for details. Furthermore, the orthogonal projector onto TAGr(p, k) with respect to the
Frobenius inner product in Rp×k is given by

PTAGr(p,k) : Rp×k −→ TAGr(p, k),D 7→ PHARp×k
k

(D) = (Ip −AA+)D ,

or, equivalently, if we prefer to work with the Stiefel submanifold, by

PTAGr(p,k)(D) = PHAOp×k(D) = (Ip −OOT)D = O⊥(O⊥)TD ,

where the columns of O and O⊥ form, respectively, orthogonal bases of ran(A) and ran(A)⊥,
and PHARp×k

k
and PHAOp×k design, respectively, the orthogonal projectors onto the horizontal

subspaces of the tangent spaces TARp×kk and TAOp×k. See Subsection 2.4 and [3][11] for more
details on the geometry of smooth manifolds, including the (quotient) Grassmann manifold.

Thus, in this Grassmann manifold framework, we have dAgn, dAlm ∈ TAGr(p, k), since dAgn =
O⊥dĀgn and dAlm = O⊥dĀlm, and this implies that the above Gauss-Newton and Levenberg-
Marquardt algorithms can be interpreted exactly as Riemannian optimization methods operating on

111

the Grassmann manifold Gr(p, k): at the (i+1)th iteration, these algorithms move on the Grassmann
manifold from Ai ∈ Rp×kk along some direction prescribed by the tangent vectors dAi

gn or dAi
lm

to
Ai+1 = Ai + dAi

gn or Ai+1 = Ai + dAi
lm .

As at each iteration, dAi
gn and dAi

lm belong to TAiGr(p, k), we have

(Ai)TdAi
gn = 0k×k and (Ai)TdAi

lm = 0k×k ,

and, in these conditions, Ai+1 is always of full column-rank and so Ai+1 ∈ Rp×kk , e.g., Åi+1 =
ran(Ai+1) belongs to the Grassmann manifold Gr(p, k), validating our claim about the nature of
these Gauss-Newton and Levenberg-Marquardt algorithms.

Alternatively, if we require that each element of Gr(p, k) must be represented by an element of the
Stiefel manifold St(p, k) = Op×k as in [13][14], it is necessary to perform an additional retrac-
tion step to the correct (Stiefel) manifold at each iteration of the above variable projection Gauss-
Newton and Levenberg-Marquardt algorithms in order to consider these algorithms as Riemannian
optimization methods operating on the Grassmann manifold Gr(p, k) [3][14][11]. In general terms,
a retraction on a manifold can be interpreted as a tool that transforms a tangent update vector at a
point of this manifold into a new iterate on this manifold. In other words, at the (i+1)th iteration, in
order to move from Oi ∈ St(p, k) = Op×k along the tangent vectors dOi

gn or dOi
lm ∈ TOiGr(p, k)

while remaining on the Stiefel manifold, after computing

Ai+1 = Oi + dOi
gn or Ai+1 = Oi + dOi

lm ,

we need to perform the retraction

RetractionOi(dOi
gn) = Ortho(Oi+dOi

gn) or RetractionOi(dOi
lm) = Ortho(Oi+dOi

lm) , (5.25)

where Ortho(H) ∈ St(p, k) = Op×k designates the p× k orthonormal factor of a thin QR or polar
decomposition of H ∈ Rp×k; see [3][13][1][14][11] for more details on the concept of retraction
on manifolds and how these retractions can be computed and used as cheap ways of moving on a
specific manifold in Riemannian optimization algorithms.

Interestingly, these results are also very similar to those concerning the algorithms derived in Edel-
man et al. [51] and Manton et al. [125] for minimizing the cost function ψ∗∗(.) on the Grassmann
manifold Gr(p, p− k), defined in equation (3.27) and discussed in Remark 3.7.

More generally, for W ∈ Rp×n+ , A ∈ Rp×kk and any iterative NLLS algorithms use to solve
the (VP1) or (VP2) problems, it is possible to demonstrate that there is almost no loss of gen-
erality to restrict the search directions during the iterations to the subspace ran(A)⊥ = ran(O⊥)
when minimizing the cost function ψ(.), or to ran(A) = ran(O) when minimizing the cost function
ψ∗∗(.) as noted, respectively, in [28] and [51][125]. As an illustration, consider the minimization
of ψ(.) in the (VP1) problem and take an arbitrary matrix A ∈ Rp×kk and an arbitrary perturbation
matrix dA ∈ Rp×k. With the orthonormal basis

[
O O⊥] of Rp derived from A in Corollary 5.6,

where O ∈ Op×k and O⊥ ∈ Op×(p−k), the perturbation matrix dA can be decomposed uniquely
as

dA = OK+O⊥K⊥ ,

where K ∈ Rk×k and K⊥ ∈ R(p−k)×k, and we have the equalities

A+ dA = (A+OK) +O⊥K⊥ = AZ+O⊥K⊥ ,

since A + OK ∈ ran(A) = ran(O) implies that it exists Z ∈ Rk×k such that A + OK = AZ.
Assuming further that Z is non-singular, which will be the rule in most practical applications, we
have the equalities

ψ(A+ dA) = ψ(AZ+O⊥K⊥) = ψ
(
(AZ+O⊥K⊥)Z−1

)
= ψ

(
A+O⊥K⊥Z−1

)
,

112

where the second equality results from Corollary 3.2. In other words, as noted by Chen [28], for
most perturbation matrices dA around A, there exists a perturbation matrix dA

′
= O⊥K⊥Z−1

whose range is included in ran(A)⊥ and which has exactly the same effect as dA since ψ(A +
dA) = ψ(A+ dA

′
). Thus, for any iterative NLLS algorithm used to minimize ψ(.), at each itera-

tion, it suffices generally to search for a perturbation matrix dA
′
such that ran(dA

′
) ⊂ ran(A)⊥.

Since, in these conditions, ∃T ∈ R(p−k)×k such that dA
′
= O⊥T, this reduces the number of

degrees of freedom, or equivalently the number of parameters, to estimate from k.p to k.(p − k).
Moreover, as ATdA

′
= 0k×k, we are also sure that A + dA

′
is always of full column-rank (e.g.,

rank(A + dA
′
) = k) across the iterations, which is required for the validity of the algorithms

as otherwise the associated orthogonal projector P⊥
F(.) is not differentiable at a. This is also a

useful benefit of restricting the domain of the perturbation matrices dA
′

to ran(A)⊥ (e.g., such that
ran(dA

′
) ⊂ ran(A)⊥).

These different properties further justify all the variations of the Gauss-Newton and Levenberg-
Marquardt algorithms already described in this subsection, which restrict the search directions to
the subspace ran(A)⊥. Proceeding with similar arguments, Edelman et al. [51] and Manton et
al. [125] have also demonstrated that it suffices to consider perturbation matrices whose range is
included in ran(O) at each iteration of any NLLS algorithm used to minimize the cost function
ψ∗∗(.) in the (VP2) problem. More precisely, in our notations, these algorithms try to minimize
the functional ψ∗∗(O⊥) for O⊥ ∈ Op×(p−k) and at each iteration of these algorithms, the search
directions for updating O⊥ are restricted to perturbation matrices of the form dO⊥ = OT where
O ∈ Op×k with OTO⊥ = 0k×(p−k) and T ∈ Rk×(p−k). Obviously, as for the minimization of
ψ(.) in the (VP1) problem, this reduces the dimension of the problem from p.(p − k) to k.(p − k)
since T ∈ Rk×(p−k). This confirms that the (VP1) and (VP2) formulations of the WLRA problem
are dual of each other and should have a similar performance, but not necessarily the same cost
depending on the values of p, n and k.

In the previous linear algebra theorems and corollaries, the matrix A is never assumed to have full
column-rank; in other words, the rank of A, kA, is a free parameter and, consequently, it can be
less than k. However, we also recall that the case kA < k is an anomaly in the framework of the
WLRA problem because the condition rank(A) = k is a necessary condition for the continuity
and differentiability of the orthogonal projector PF(.) as demonstrated in Theorems 3.11, 3.12 and
Corollaries 5.1, 5.2 at the beginning of this subsection. Thus, for the following theorem we will
make the natural assumption that A has full column-rank in order to derive stronger results. This
theorem demonstrates that it is easy to localize the k.k linearly dependent columns in M(a), L(a)
and J (r(a)) in almost all practical cases if kA = k. This result is also new as far we know.

Theorem 5.4. With the same notations as in Theorem 5.2, if A, M(a), L(a) and J (r(a)) are
partitioned, respectively, as

A =

[
A1

A2

]
with A1 ∈ R(p−k)×k and A2 ∈ Rk×k ,

M(a) =
[
M(a)1 M(a)2

]
with M(a)1 ∈ Rn.p×k.(p−k) and M(a)2 ∈ Rn.p×k.k ,

L(a) =
[
L(a)1 L(a)2

]
with L(a)1 ∈ Rn.p×k.(p−k) and L(a)2 ∈ Rn.p×k.k ,

J (r(a)) =
[
J (r(a))1 J (r(a))2

]
with J (r(a))1 ∈ Rn.p×k.(p−k) and J (r(a))2 ∈ Rn.p×k.k ,

and if rank(A2) = k, then ∃Z ∈ Rk.(p−k)×k.k such that

M(a)2 = M(a)1Z , L(a)2 = L(a)1Z and J (r(a))2 = J (r(a))1Z .

In other words, if rank(A2) = k, the last k.k columns of M(a), L(a) and J (r(a)) are linearly
dependent upon the first k.(p− k) columns of M(a), L(a) and J (r(a)), respectively.

113

Proof. We will first demonstrate that M(a)2 = M(a)1Z for some Z ∈ Rk.(p−k)×k.k. To this end,
let us derive an explicit expression for the M(a)1 and M(a)2 submatrices using the formulation of
the M(a) matrix given by equation (5.15), e.g.,

M(a) = P⊥
F(a)diag(vec(

√
W))(B̂T ⊗ Ip)K(k,p) .

Using equation (2.36), we have

(B̂T ⊗ Ip)K(k,p) = K(n,p)(Ip ⊗ B̂T) = K(n,p)

[
Ip−k ⊗ B̂T 0n.(p−k)×k.k

0k.n×n.(p−k) Ik ⊗ B̂T

]
,

hence

M(a) = P⊥
F(a)diag(vec(

√
W))K(n,p)

[
Ip−k ⊗ B̂T 0n.(p−k)×k.k

0k.n×n.(p−k) Ik ⊗ B̂T

]
,

and so

M(a)1 = P⊥
F(a)diag(vec(

√
W))K(n,p)

[
Ip−k ⊗ B̂T

0k.n×n.(p−k)

]
,

M(a)2 = P⊥
F(a)diag(vec(

√
W))K(n,p)

[
0n.(p−k)×k.k

Ik ⊗ B̂T

]
.

Now, we want to show that, ∀j ∈ {1, 2, · · · , k.k}, there is zj ∈ Rk.(p−k) such that M(a)2ej =
M(a)1zj , where ej is the jth column unit vector of order k.k and zj is the jth column of the matrix
Z we are looking for. Using the preceding expressions of the M(a)1 and M(a)2 submatrices,
∀j ∈ {1, 2, · · · , k.k}, we have the equivalences

M(a)2ej = M(a)1zj

⇔ P⊥
F(a)diag(vec(

√
W))K(n,p)

([
0n.(p−k)×k.k

Ik ⊗ B̂T

]
ej −

[
Ip−k ⊗ B̂T

0k.n×n.(p−k)

]
zj

)
= 0p.n

⇔ P⊥
F(a)diag(vec(

√
W))K(n,p)

[
−(Ip−k ⊗ B̂T)zj
(Ik ⊗ B̂T)ej

]
= 0p.n

⇔ diag(vec(
√
W))K(n,p)

[
−(Ip−k ⊗ B̂T)zj
(Ik ⊗ B̂T)ej

]
∈ ran(F(a))

⇔ ∃tj ∈ Rn.k / diag(vec(
√
W))K(n,p)

[
−(Ip−k ⊗ B̂T)zj
(Ik ⊗ B̂T)ej

]
= F(a)tj .

For all j ∈ {1, 2, · · · , k.k}, we will look for a vector tj such that tj = vec(CjB̂) where Cj ∈
Rk×k. But, using equations (2.33), (2.36) and (2.34), ∀C ∈ Rk×k, we have

F(a)vec(CB̂) = diag(vec(
√
W))(In ⊗A)vec(CB̂)

= diag(vec(
√
W))vec(ACB̂)

= diag(vec(
√
W))(B̂T ⊗ Ip)vec(AC)

= diag(vec(
√
W))K(n,p)(Ip ⊗ B̂T)K(p,k)vec(AC)

= diag(vec(
√
W))K(n,p)(Ip ⊗ B̂T)vec(CTAT)

= diag(vec(
√
W))K(n,p)

[
Ip−k ⊗ B̂T 0n(p−k)×k.k

0k.n×n(p−k) Ik ⊗ B̂T

]
vec(CTAT)

= diag(vec(
√
W))K(n,p)

[
(Ip−k ⊗ B̂T)vec(CTAT

1)

(Ik ⊗ B̂T)vec(CTAT
2)

]
,

114

and it is therefore sufficient to demonstrate that, ∀j ∈ {1, 2, · · · , k.k}, there are zj ∈ Rk.(p−k) and
Cj ∈ Rk×k such that [

−(Ip−k ⊗ B̂T)zj
(Ik ⊗ B̂T)ej

]
=

[
(Ip−k ⊗ B̂T)vec(CT

j A
T
1)

(Ik ⊗ B̂T)vec(CT
j A

T
2)

]

in order to have M(a)2ej = M(a)1zj . Furthermore, if zj is set to −vec(CT
j A

T
1) in the above

equation, then it suffices to show that there is Cj ∈ Rk×k such that

ej = vec(CT
j A

T
2)

in order to obtain the desired result. But, ∀j ∈ {1, 2, · · · , k.k}, it is easily verified that there are
two integers t(j) and u(j) such that

ej = vec(it(j)i
T
u(j)) ,

where it is the tth column unit vector of order k, and

ej = vec(CT
j A

T
2) ⇔ iu(j)i

T
t(j) = A2Cj

⇔ Cj = A−1
2 iu(j)i

T
t(j) ,

since A2 is nonsingular by hypothesis. Consequently, ∀j ∈ {1, 2, · · · , k.k}, we have M(a)2ej =
M(a)1zj with

zj = −vec(CT
j A

T
1) = −vec(it(j)i

T
u(j)

(
A−1

2)TAT
1

)
,

which is the desired result.

We now demonstrate that, ∀j ∈ {1, 2, · · · , k.k}, we also have L(a)2ej = L(a)1zj with zj defined
as above. To this end, we first observe that if W and PΩ(X−AB̂) are partitioned as

W =

[
W1

W2

]
and PΩ(X−AB̂) =

[
P1

P2

]
, with

W1,P1 ∈ R(p−k)×n and W2,P2 ∈ Rk×n ,

then, using equation (5.19) in this subsection and equation (2.31) in Subsection 2.2,

L(a) = (F(a)+)T
(
(W ⊙ PΩ(X−AB̂))T ⊗ Ik

)
= (F(a)+)T

[
(W1 ⊙P1)

T ⊗ Ik, (W2 ⊙P2)
T ⊗ Ik

]
;

hence L(a)1 and L(a)2 are given by

L(a)1 = (F(a)+)T
(
(W1 ⊙P1)

T ⊗ Ik
)

and L(a)2 = (F(a)+)T
(
(W2 ⊙P2)

T ⊗ Ik
)
,

∀j ∈ {1, 2, · · · , k.k}, we then have the implication(
(W2 ⊙P2)

T ⊗ Ik
)
ej =

(
(W1 ⊙P1)

T ⊗ Ik
)
zj ⇒ L(a)2ej = L(a)1zj ,

and it suffices to show that(
(W2 ⊙P2)

T ⊗ Ik
)
ej −

(
(W1 ⊙P1)

T ⊗ Ik
)
zj = 0p.k

in order to obtain L(a)2ej = L(a)1zj . Defining, as above,

Cj = A−1
2 iu(j)i

T
t(j)

and remembering that
zj = −vec(CT

j A
T
1) and ej = vec(CT

j A
T
2) ,

115

we have (using equation (2.33) in Subsection 2.2)(
(W1 ⊙P1)

T ⊗ Ik
)
zj = −

(
(W1 ⊙P1)

T ⊗ Ik
)
vec(CT

j A
T
1)

= −vec
(
CT
j A

T
1 (W1 ⊙P1)

)
= −

((
(W1 ⊙P1)

TA1

)
⊗ Ik

)
vec(CT

j) ,

and also (
(W2 ⊙P2)

T ⊗ Ik
)
ej =

(
(W2 ⊙P2)

T ⊗ Ik
)
vec(CT

j A
T
2)

= vec
(
CT
j A

T
2 (W2 ⊙P2)

)
=
((

(W2 ⊙P2)
TA2

)
⊗ Ik

)
vec(CT

j) .

From these equalities, using equations (2.31), (2.32) and (2.33) in Subsection 2.2, we deduce that(
(W2 ⊙P2)

T ⊗ Ik
)
ej −

(
(W1 ⊙P1)

T ⊗ Ik
)
zj

=
((

(W2 ⊙P2)
TA2

)
⊗ Ik +

(
(W1 ⊙P1)

TA1

)
⊗ Ik

)
vec(CT

j)

=
((

(W2 ⊙P2)
TA2 + (W1 ⊙P1)

TA1

)
⊗ Ik

)
vec(CT

j)

=
((

(W ⊙ PΩ(X−AB̂))TA
)
⊗ Ik

)
vec(CT

j)

= vec
(
CT
j A

T (W ⊙ PΩ(X−AB̂))
)

= (In ⊗CT
j)(In ⊗AT)vec(W ⊙ PΩ(X−AB̂))

= (In ⊗CT
j)(In ⊗AT)diag(vec(

√
W))vec(

√
W ⊙ PΩ(X−AB̂))

= (In ⊗CT
j)F(a)

T r(a)

= 0p.k ,

since F(a)T r(a) = 0n.k. This implies that, ∀j ∈ {1, 2, · · · , k.k}, we also have L(a)2ej = L(a)1zj
as claimed in the theorem.

Finally, since J (r(a)) = −(M(a)+L(a)), the preceding results also imply that, ∀j ∈ {1, 2, · · · , k.k},
we have

J
(
r(a)

)
2
ej = J

(
r(a)

)
1
zj .

Theorems 5.4 shows that it is possible to compute dagn efficiently, and without using the linear
constraint NTda = 0k.k or an orthonormal basis O⊥ of ran(A)⊥, by using a simplified stable COD
of J (r(a)) (see equation (2.20) in Subsection 2.1 for details). When rank(J (r(a))) = k.(p−k), the
first k.(p− k) columns of J (r(a)) are linearly independent and the last k.k columns of this matrix
are linearly dependent upon these first k.(p− k) columns as soon as rank(A2) = k. This property
is also verified for the matrix −M(a), which can be used as an approximation of J (r(a)) in the
optimization algorithms as we will discuss in Section 6. In these conditions, a simplified COD of
J (r(a)) (or alternatively of −M(a)) is given by

J (r(a)) = QTZT = Q
[
T11 0k(p−k)×k.k

]
ZT ,

where Q ∈ On.p×k.(p−k), Z ∈ Ok.p×k.p, T ∈ Rk.(p−k)×k.p and T11 ∈ Rk.(p−k)×k.(p−k) is a full
rank upper triangular matrix. The advantage of this COD formulation for rank deficient matrices,
such as J (r(a)) or −M(a), is the ability to compute directly the unique minimum 2-norm solution
of the problem

min
da∈Rp.k

1

2
∥r(a) + J (r(a))da∥22

116

as follows

dagn = −Z

[
T−1

11 Q
T r(a)

0k.k×k(p−k)

]
,

without computing the SVD or the pseudo-inverse of J (r(a)), but only this simplified COD of
J (r(a)), which is based on a simple QR factorization without column pivoting of the first k.(p−k)
columns of J (r(a)) as a first step. Furthermore, as J (r(a)) is a tall and skinny matrix, this QR
factorization can be parallelized very efficiently to reduce the computational time and the memory
requirements as we will illustrate in Section 6, see also [48] for details. We also note that this COD
can also be used to derive another variation of the Levenberg-Marquardt algorithm, which will also
take care of the singularity of the Jacobian matrix or its approximation without using the linear
constraint NTda = 0k.k or an orthonormal basis, O⊥, of ran(A)⊥ as in the formulations derived
above; see again Section 6 for details.

Theorems 5.2 and 5.4 are valid for an arbitrary weight matrix W. However, the ranks of M(a), L(a)
and J (r(a)) may also be altered by the choice of a particular weight matrix, as already illustrated by
Theorem 5.3. The two following theorems further illustrate the strong dependency of the ranks of
M(a), L(a) and J (r(a)) to the number and distribution of zero elements in W, respectively.

Let us again give some definitions before stating the two theorems. First, we introduce the p × n
incidence matrix, δ, associated with the matrix W, defined by

δij =

{
1 if Wij ̸= 0

0 if Wij = 0
. (5.26)

The number of ”nonmissing” elements in X (or equivalently the number of non-zero elements in
W) is then equal to

∑
ij

δij = nobs. Since

F(a) =

n⊕
j=1

(
diag(vec(

√
W.j))A

)
=

n⊕
j=1

Fj(a) ,

we first observe that

rank
(
F(a)

)
=

n∑
j=1

rj where rj = rank(Fj(a)), for j = 1, · · · , n .

Furthermore, using equation (2.2) in Subsection 2.1, we have

rj ⩽ min

(
p∑
i=1

δij , k

)
, for j = 1, · · · , n, and rank

(
F(a)

)
⩽ min (nobs, k.n) .

We now state the following simple bounds for the ranks of M(a), L(a) and J (r(a)):

Theorem 5.5. With these definitions and the same notations as in Theorem 5.2, then the following
inequalities hold:

rank(M(a)) ⩽ min
(
nobs− rank

(
F(a)

)
, k.(p− kA)

)
rank(L(a)) ⩽ min (nobs, k.min(n, p− kA))

rank(J (r(a))) ⩽ min (nobs, k.(p− kA)) .

Proof. Omitted.

117

Let us further define for any integer i ∈ {1, 2, · · · , p} and any p × k matrix A, the finite subset of
N

ξ(i,A) =
{
j ∈ {1, 2, · · · , n} / δij ̸= 0 and

p∑
l=1

δlj > rj

}
,

where rj = rank(Fj(a)) for j = 1, · · · , n as above. If now, we define the finite subset of N

Ω(A) =
{
i ∈ {1, 2, · · · , p} / ξ(i,A) = ∅

}
,

the following theorem is valid.

Theorem 5.6. With these definitions, let card
(
Ω(A)

)
be the number of elements of Ω(A). If Ω(A)

is not empty then the matrices M(a), L(a) and J (r(a)) have k.card
(
Ω(A)

)
columns equal to zero,

moreover the indices of these columns in these matrices correspond.

Proof. We first consider the matrix M(a) and recall that this matrix has the following form

M(a) = P⊥
F(a)diag(vec(

√
W))(B̂T ⊗ Ip)K(k,p) .

Then, we also recall that P⊥
F(a) is a block-diagonal matrix of the form

P⊥
F(a) =

P⊥
F1(a)

0 . . . 0 0

0
. . . 0 . . . 0

... 0 P⊥
Fj(a)

0
...

0 . . . 0
. . . 0

0 0 . . . 0 P⊥
Fn(a)

=

n⊕
j=1

P⊥
Fj(a)

,

with

P⊥
Fj(a)

= Ip − Fj(a)Fj(a)
+ = Ip −

(
diag(vec(

√
W.j))A

)(
diag(vec(

√
W.j))A

)+
,

for j ∈ {1, 2, · · · , n}. Hence,

P⊥
F(a)diag(vec(

√
W)) =

n⊕
j=1

(
P⊥

Fj(a)
diag(vec(

√
W.j))

)
.

Consider now the following uniform blocking of the np × pk matrix (B̂T ⊗ Ip)K(k,p) into n.p
submatrices Oji ∈ Rp×k, for j ∈ {1, 2, · · · , n} and i ∈ {1, 2, · · · , p},

(B̂T ⊗ Ip)K(k,p) =

O11 O12 . . . O1p

O21 O22 . . . O2p
...

...
. . .

...
On1 On2 . . . Onp

 ,Oji ∈ Rp×k .

Since (B̂T ⊗ Ip)K(k,p) = K(n,p)(Ip ⊗ B̂T), (B̂T ⊗ Ip)K(k,p) is the matrix having as rows, every
nth row of the matrix Ip⊗ B̂T of order n.p× p.k, starting with the first, then every nth row starting
with the second, and so on. Thus, keeping in mind that Ip⊗ B̂T is a block-diagonal matrix, it is not
hard to see that the Oji submatrices are very sparse with the following simple structure

Oji =

 0(i−1)×k

[B̂T]j.
0(p−i)×k

 }(i− 1) rows
}1 row , for j = 1, . . . , n and i = 1, . . . , p
}(p− i) rows

.

118

Now, let i ∈ Ω(A) and consider the submatrix Mi defined by the columns (i − 1).k + 1 to i.k of
M(a). Mi is equal to

Mi =
n⊕
j=1

(
P⊥

Fj(a)
diag(

√
W.j)

) O1i
...

Oni

 =

P⊥

F1(a)
diag(

√
W.1)O1i

...
P⊥

Fn(a)
diag(

√
W.n)Oni

 .

Now, for j = 1, . . . , n, we have Wij = 0 or Wij ̸= 0:

- If Wij = 0, then diag(
√
W.j)Oji = 0p×k and the rows (j − 1).p + 1 to j.p of Mi are equal to

zero.

- If Wij ̸= 0, we have δij = 1 and
p∑
l=1

δlj = rj since i ∈ Ω(A), and it follows that

P⊥
Fj(a)

= Ip − diag(δ.j)

and

P⊥
Fj(a)

diag(
√
W.j) =

(
Ip − diag(δ.j)

)
diag(

√
W.j)

= diag(
√
W.j)− diag(

√
W.j)

= 0p,

and the rows (j − 1).p+ 1 to j.p of Mi are also equal to zero if Wij ̸= 0.

Hence, we finally obtain Mi = 0p.n×k if i ∈ Ω(A) and we conclude that M(a) has k.card
(
Ω(A)

)
columns equal to zero, as claimed in the theorem.

Turning now our attention to L(a), which is equal to

L(a) = (F(a)+)T
(
(W ⊙ PΩ(X−AB̂))T ⊗ Ik

)
,

we observe that it is sufficient to show that the ith row of W ⊙ PΩ(X − AB̂) is equal to zero to
establish that the columns (i− 1).k + 1 to i.k of L(a) are equal to zero if i ∈ Ω(A).

Now, for j = 1, . . . , n, we have Wij = 0 or Wij ̸= 0:

- If Wij = 0, then
[
W ⊙ PΩ(X−AB̂)

]
ij
= 0 for any p× n matrix PΩ(X−AB̂).

- If Wij ̸= 0, as above, we have δij = 1 and
p∑
l=1

δlj = rj since i ∈ Ω(A), implying that

P⊥
Fj(a)

= Ip − diag(δ.j)

and it follows that[
W ⊙ PΩ(X−AB̂)

]
.j
=

√
W.j ⊙

(√
W.j ⊙ PΩ(X−AB̂).j

)
=

√
W.j ⊙P⊥

Fj(a)
(
√
W.j ⊙X.j)

=
√
W.j ⊙

(
Ip − diag(δ.j)

)
(
√
W.j ⊙X.j)

=
√
W.j ⊙

(√
W.j ⊙X.j −

√
W.j ⊙X.j

)
= 0p ,

and
[
W ⊙ PΩ(X−AB̂)

]
ij
= 0 also in the case Wij ̸= 0.

119

Hence, we conclude that the columns (i− 1).k+1 to i.k of L(a) are equal to zero if i ∈ Ω(A) and
L(a) has also k.card

(
Ω(A)

)
columns equal to zero, as claimed in the theorem. Finally, the same

result holds for J (r(a)) since J (r(a)) = −(M(a) + L(a)).

Clearly, any variable projection Gauss-Newton or Levenberg-Marquardt algorithm using the Jaco-
bian matrix J (r(a)), or approximating this Jacobian matrix with −M(a), will be incorrect if Ω(A)
is not empty as demonstrated in Theorem 5.6. The fact that Ω(A) is not empty, is symptomatic of
the situation where we try to fit the matrix X by a model with too many components with respect to
the number of missing elements in this matrix. However, if we restrict the set of WLRA problems

by imposing the condition
p∑
l=1

δlj > k for all j = 1, · · · , n, we are sure that Ω(A) will be empty

and the events described in Theorem 5.6 will not occurred.

Finally, if card
(
Ω(A)

)
is not equal to zero, a much better alternative to find a solution of this partic-

ular WLRA problem, is to minimize the regularized cost function gλ(.) defined in equation (3.18)
of Subsection 3.3 with a variable projection algorithm, as this regularized minimization problem is
always well-posed (see Subsection 3.3 for details).

5.3 Computations and properties of the gradient vector and Hessian matrix

Using the properties of the Jacobian matrix J (r(a)) demonstrated in Subsection 5.2, we now de-
rive a simple expression for the gradient of ψ(.) and we give a detailed study of the Hessian ma-
trix ∇2ψ(a). These results may be used to formulate steepest descent or Newton algorithms for
minimizing the variable projection functional ψ(.) [171][28][169][46][13][14][17]. We also again
illustrate the tight relationships between these Euclidean gradient and Hessian operators and the
corresponding Riemannian gradient and Hessian operators when we consider the cost function ψ(.)
as operating on the Grassmann manifold Gr(p, k) [3][14][11] extending the investigations of [82]
on this topic.

Since J (r(a)) is rank-deficient everywhere according to Theorem 5.2, the smallest eigenvalue of
J (r(a))TJ (r(a)) is always equal to zero and, in these conditions, we cannot expect that the Gauss-
Newton term J (r(a))TJ (r(a)) will dominate the second term in the expression of ∇2ψ(a) (see
Subsection 5.1). This suggests that a full-Newton approach can perform much better than the Gauss-
Newton or Levenberg-Marquardt methods for solving the (VP1) problem. However, the Gauss-
Newton or Levenberg-Marquardt algorithms perform surprisingly better than different versions of
the full Newton algorithm for solving the (VP1) problem in the comparative studies of Okatani et
al. [150] or Hong et al. [81].These conclusions are thus very counterintuitive taking into account the
excellent properties (e.g., fast convergence for NLLS problems with large residuals and quadratic
local convergence in a neighborhood of a stationary point) of the full Newton approach compared
to the Gauss-Newton or Levenberg-Marquardt methods for general or variable projection NLLS
problems [45][123][10][87].

The results of this Subsection will try to elucidate these contradictions and also will reveal the power
of the variable projection framework in understanding the intrinsic difficulties associated with the
WLRA problem. As an illustration, we will demonstrate below, that the Hessian matrix ∇2ψ(â) is
deficient at all first-order stationary points â of ψ(.) (see Theorem 5.9 below) and, consequently,
this Hessian matrix is expected to be nearly singular and ill-conditioned in a ”small” neighborhood
of a first-order stationary point â of ψ(.). This result is consistent with the fact that (local) min-
imizers of φ∗(.) and ψ(.) are never isolated, as already discussed in Subsection 3.1, and that any
neighborhood of a (local) minimizer of these cost functions contains also an infinite number of other
minimizers, which attain the same minimum of ψ(.), implying that the Hessian matrix ∇2ψ(â) at
a local minimizer â is at best positive semi-definite, but never positive definite. When the weight
matrix W ∈ Rp×n∗+ and we consider the cost function ψ(.) as defined on the (quotient) Grassmann

120

manifold Gr(n, k), because ψ(.) is invariant on the equivalence classes of this quotient, the fact that
the Hessian cannot possibly be positive definite at first-order stationary points is already a known
result, see Chapter 9 and Lemma 9.41 in [11]. Our Theorem 5.9 thus provides an extension of this
result as it also applies to the case where W ∈ Rp×n+ . These results also imply that the Hessian ma-
trices at points arbitrarily closed to minima have vanishingly small, possibly negative eigenvalues,
leading to ill-conditioned and indefinite linear systems with a severe loss of accuracy in Newton and
trust-regions methods when the iterates reach a neighborhood of a minimum [162].

In these conditions, many of the excellent properties of full-Newton and trust-regions approaches
are lost, which may explain the degraded performance of these methods for minimizing ψ(.) in the
comparative studies of Okatani et al. [150] and Hong et al. [81]. This poor performance concerns es-
pecially the second-order Riemannian trust-region method (RTRMC2) operating on the Grassmann
manifold developed initially in Boumal and Absil [13] and already discussed in Subsection 3.3.
In their Riemannian Newton approach, Boumal and Absil [13][14] have derived a compact direc-
tional derivative formulae for the Riemannian Hessian of the cost function of a regularized form of
the WLRA problem (see the regularized cost function gλ(.) defined in equation (3.18) of Subsec-
tion 3.3), which is then used in an inexact subproblem solver based on a truncated conjugate gradient
method to compute an approximate (Riemannian) Newton step at each iteration of their RTRMC2
method. However, in order to ensure convergence to (local) minima, the truncated conjugate gra-
dient theory assumes a positive definite system at these minima of the cost function, an hypothesis
which is not verified here near first-order critical points, where the RTRMC2 method may be applied
to ill-conditioned, indefinite systems, leading to an erratic behaviour for some WLRA problems as
the truncated conjugate gradient subproblem solver may be highly sensitive to negative eigenvalues,
even of small magnitude. This challenging question of the convergence of trust-regions methods
for non-isolated minima of smooth functions defined on a (arbitrary) manifold has been revisited
recently in [162] in which the authors were still able to derive convergence results for an inexact
solver based on a truncated conjugate gradient method under some additional hypotheses and with
a carefully designed inexact subproblem solver with had hoc stopping criteria for the truncated
conjugate gradient iterations so that the subproblem solver is not affected by the small negative
eigenvalues of the Hessian matrix.

These convergence problems of trust-region methods near (local) minima may explain why Boumal
and Absil [14] have subsequently introduced a pre-conditioner for the Hessian matrix in their
RTRMC2 method originally proposed in [13]. However, we are not aware of any new compar-
ison studies, which evaluate the performance of the updated and preconditioned RTRMC2 al-
gorithm proposed in [14] with the Gauss-Newton or Levenberg-Marquardt approaches described
in [147][150][81][88] to verify if this preconditioned version of RTRMC2 performs now better than
the variable projection Gauss-Newton or Levenberg-Marquardt methods for solving WLRA prob-
lems. Furthermore, almost all these previous studies deal only of WLRA problems with binary
weights (e.g., the missing value problem) excepted of the work of Boumal and Absil [14]. This
clearly shows the need of new extensive comparison studies to clarify the respective performance of
the most recent various first- or second-order methods proposed in the literature for solving the gen-
eral WLRA problem, but such ambitious task is outside of the scope of this paper, which is mainly
devoted to a better understanding of the theoretical properties of variable projections methods for
solving the WLRA problem.

To start with, we give convenient different expressions for the Euclidean gradient of the variable
projection functional ψ(.). This proposition is mainly a reformulation of Theorem 2.1 in Golub and
Pereyra [63]; however, we give a direct proof using only linear algebra in order to be self-contained
and because this formula is not well-known in the literature related to the WLRA problem.

Theorem 5.7. Let φ∗(A, B̂) and ψ(a) be defined, respectively, as in equations (P1) and (3.23) of
Section 3 with A ∈ Rp×kk , a = vec(AT) ∈ Rp.k, B̂ ∈ Rk×n is such that b̂ = vec(B̂) = F(a)+x ∈
Rk.n and x = vec(

√
W ⊙X) ∈ Rp.n, where X ∈ Rp×n and W ∈ Rp×n+ are, respectively, the data

121

and weight matrices of the WLRA problems (P0) or (P1).

We further assume that a belongs to an open set Ω ⊂ Rp.k in which F(.) has a constant rank, so
that the Jacobian matrix J (r(a)) derived in Subsection 5.2 and the Euclidean gradient ∇ψ(a) are
both well-defined. Then,

∇ψ(a) = −M(a)T r(a) = −M(a)T
(
x− F(a)b̂

)
=
∂φ∗(A, B̂)

∂a

and
∥∇ψ(a)∥2 =

∥∥∇φ∗
a(A, B̂)

∥∥
2
=
∥∥∇φ∗

A(A, B̂)
∥∥
F
,

where ∂φ∗(A,B̂)
∂a , ∇φ∗

a(A, B̂) and ∇φ∗
A(A, B̂) are defined, respectively, by equations (4.3) and (4.5)

in Theorem 4.3 and equation (3.11) of Subsection 3.2.

In addition, the theorem remains valid if b̂ = F(a)−x where F(a)− is a symmetric generalized
inverse of F(a) as defined in equations (2.10) or (2.19) of Subsection 2.1.

Proof. Using the notations and results in Subsection 5.2, we have

∇ψ(a) = J
(
r(a)

)T
r(a)

= −
(
M(a) + L(a)

)T
r(a)

= −M(a)T r(a)− L(a)T r(a)

= −M(a)T r(a) ,

since r(a) ∈ ran(F(a))⊥ (see equation (3.24)), ran(F(a))⊥ ⊂ ran(L(a))⊥ (see equation (5.23))
and ran(L(a))⊥ = null(L(a)T). The last equality resulting from equation (2.4) in Subsection 2.1.

Hence, L(a), the second term of J (r(a)), does not contribute to the gradient ∇ψ(a). Now, using
the second formulation of M(a) given in equation (5.16) of Subsection 5.2, we deduce

∇ψ(a) = −
(
P⊥

F(a)K(n,p)G(b̂)
)T

r(a)

= −G(b̂)TK(p,n)P
⊥
F(a)r(a)

= −G(b̂)TK(p,n)r(a) ,

since r(a) ∈ ran(F(a))⊥ = ran(P⊥
F(a)). Noting that

r(a) = x− F(a)b̂ = K(n,p)

(
z−G(b̂)a

)
,

where z = vec
(
(
√
W ⊙X)T

)
(see equation (3.24) in Section 3 for details), we finally obtain

∇ψ(a) = −G(b̂)TK(p,n)K(n,p)

(
z−G(b̂)a

)
= −G(b̂)T

(
z−G(b̂)a

)
= G(b̂)TG(b̂)a−G(b̂)T z

=
∂φ∗(A, B̂)

∂a
,

where the last equality results from equation (4.3) in Theorem 4.3. Finally, using the fact that

B̂ = Arg min
B∈Rk×n

φ∗(A,B) =
1

2
∥x− F(a)b∥22 ,

we have
∂φ∗(A, B̂)

∂b
= 0k.n ,

122

and so the vectorized form of the Euclidean gradient of φ∗(.) at (a, b̂) is given by

∇φ∗(A, B̂) =
[
∂φ∗(A,B̂)

∂a 0k.n
]
,

which implies that
∥∇ψ(a)∥2 =

∥∥∇φ∗
a(A, B̂)

∥∥
2
.

Next, the equality
∥∇ψ(a)∥2 =

∥∥∇φ∗
A(A, B̂)

∥∥
F

is a direct consequence of equation (4.5) in Theorem 4.3.

Finally, the above demonstration remains valid if b̂ = F(a)−x because the differential formula (5.12)
for an orthogonal projector is unchanged if a symmetric generalized inverse is used in place of the
pseudo-inverse and the residual vector r(a) is also identical since r(a) = P⊥

F(a)x. This concludes
the proof of Theorem 5.7.

Remembering that G(b̂) is a block-diagonal matrix, we see that the computation of ∇ψ(a) is easy,
fast and may be efficiently parallelized using Theorem 5.7, since G(b̂)TG(b̂) is also a block-
diagonal matrix. We further highlight that this formulation of ∇ψ(a) is much more efficient than
the formulae given in Chen [28] (see its equations 24 and 27), which does not exploit the fact that
the residual vector r(a) is linear in both a and b, and involved multiplication of matrices with many
zeros.

With the help of Theorem 5.7, it is also easy to demonstrate that the Gauss-Newton directions
defined in Subsection 5.2 are in a descent direction for ψ(.) despite the systematic rank deficiency
of the Jacobian matrix J (r(a)) or of its approximation −M(a) proved in Theorem 5.2.

Corollary 5.7. Let A ∈ Rp×kk and a = vec(AT) ∈ Rk.p.

If ∇ψ(a) ̸= 0p.k, e.g., if a is not a first-order stationary point of ψ(.), the Gauss-Newton directions
defined by

dagn = −J
(
r(a)

)+
r(a) =

(
M(a) + L(a)

)+
r(a) ,

dagn = M(a)+r(a)

are in a descent direction for ψ(.).

Proof. To prove the assertion if the Gauss-Newton direction dagn is defined from the pseudo-inverse
of the full Jacobian matrix J (r(a)), note that

daTgn∇ψ(a) = −r(a)TJ
(
r(a)

)+T
J
(
r(a)

)T
r(a)

= −r(a)TJ
(
r(a)

)
J
(
r(a)

)+
r(a)

= −r(a)TPJ (r(a))r(a)

= −r(a)TPT
J (r(a))PJ (r(a))r(a)

= −∥PJ (r(a))r(a)∥22 ,

since the projector PJ (r(a)) is a symmetric and idempotent matrix. Further, ∇ψ(a) ̸= 0p.k by
hypothesis, then J (r(a))T r(a) ̸= 0p.k and r(a) is not in the null space of J (r(a))T and is not the
zero-vector. Since

null
(
J
(
r(a)

)T)
= ran

(
J
(
r(a)

))⊥
= null(PJ (r(a))),

123

it follows that PJ (r(a))r(a) ̸= 0p.n and daTgn∇ψ(a) = −∥PJ (r(a))r(a)∥22 < 0. This proves the first
assertion. The second assertion if the Gauss-Newton direction dagn is defined from the pseudo-
inverse of the approximate Jacobian matrix −M(a) is verified by the same way since

∇ψ(a) = −M(a)T r(a),

as proved in Theorem 5.7.

These results show that it is appropriate to use a line search algorithm in the Gauss-Newton methods
described in Subsection 5.2 in order to obtain global convergence even though the Jacobian matrix or
its approximation are always singular. Moreover, similar results hold for the Levenberg-Marquardt
directions defined in Subsection 5.2 as demonstrated in the following corollary.

Corollary 5.8. Let A ∈ Rp×kk , a = vec(AT) ∈ Rp.k, λ ∈ R+∗ be the Marquardt damping
parameter and D be a diagonal scaling matrix of order p.k with diagonal elements Dii > 0.

If ∇ψ(a) ̸= 0k.p, e.g., if a is not a first-order stationary point of ψ(.), the Levenberg-Marquardt
directions

dalm = −
(
J
(
r(a)

)T
J
(
r(a)

)
+ λDTD

)−1
J
(
r(a)

)T
r(a) ,

dalm =
(
M(a)TM(a) + λDTD

)−1
M(a)T r(a) ,

dalm =
(
M(a)TM(a) +NNT + λDTD

)−1
M(a)T r(a) ,

dalm = −
(
J
(
r(a)

)T
J
(
r(a)

)
+NNT + λDTD

)−1
J
(
r(a)

)T
r(a) ,

where N = K(p,k)(Ik ⊗A), are well defined and are also in a descent direction for ψ(.).

In addition, if λ = 0 and rank(J (r(a))) = rank(M(a)) = (p − k).k, these two last Levenberg-
Marquardt directions are also well-defined, again in a descent direction for ψ(.) and equal to the
corresponding Gauss-Newton directions defined in Corollary 5.7.

Proof. To prove the first part of the Corollary, we note that λ ̸= 0 and all the elements of the
diagonal matrix D are strictly positive by hypothesis. In these conditions, the matrices(

J
(
r(a)

)T
J
(
r(a)

)
+ λDTD

)
,
(
M(a)TM(a) + λDTD

)
,(

J
(
r(a)

)T
J
(
r(a)

)
+ λDTD+NNT

)
,
(
M(a)TM(a) + λDTD+NNT

)
,

are all positive definite and the associated the Levenberg-Marquardt directions are thus well-defined.
Furthermore, in these conditions, if C represents any of these positive definite matrices, we have
immediately

daTlm∇ψ(a) = daTlmJ
(
r(a)

)T
r(a) = −daTlmCdalm < 0 ,

since the hypothesis ∇ψ(a) ̸= 0p.k implies that dalm ̸= 0p.k and C is positive definite. In other
words, all the associated Levenberg-Marquardt directions are in a descent direction forψ(.) if λ ̸= 0,
which proves the first part of the Corollary.

On the other hand, if λ = 0 and rank(J (r(a))) = rank(M(a)) = (p− k).k, we have

dalm = −
(
J
(
r(a)

)T
J
(
r(a)

)
+NNT

)−1
J
(
r(a)

)T
r(a)

or

dalm =
(
M(a)TM(a) +NNT

)−1
M(a)T r(a) .

124

Further, noting that the matrices [
J
(
r(a)

)
NT

]
and

[
M(a)
NT

]
are of full column rank, as demonstrated in equation (5.24) of Subsection 5.2, we deduce that the
matrices (

J
(
r(a)

)T
J
(
r(a)

)
+NNT

)
and

(
M(a)TM(a) +NNT

)
are both positive definite. This implies that the corresponding Levenberg-Marquardt directions are
again well defined and still in a descent direction for ψ(.) by similar arguments as used in the first
part of the demonstration.

Finally, the linear systems(
J
(
r(a)

)T
J
(
r(a)

)
+NNT

)
dalm = −J

(
r(a)

)T
r(a)

and(
M(a)TM(a) +NNT

)
dalm = M(a)T r(a)

are, respectively, the normal equations of the linear least-squares problems

min
da∈Rp.k

1

2

∥∥ [r(a)
0kA.k

]
+

[
J
(
r(a)

)
NT

]
da
∥∥2
2

and min
da∈Rp.k

1

2

∥∥ [r(a)
0kA.k

]
−
[
M(a)
NT

]
da
∥∥2
2
,

which both have an unique solution, as the associated coefficient matrices are of full column rank,
and these solutions are, respectively, the minimum 2-norm solutions of the rank deficient linear
least-squares problems

min
da∈Rp.k

1

2

∥∥r(a) + J
(
r(a)

)
da
∥∥2
2

and min
da∈Rp.k

1

2

∥∥r(a)−M(a)da
∥∥2
2
,

as demonstrated in Subsection 5.2. In other words, we have

dalm = −J
(
r(a)

)+
r(a) = dagn or dalm = M(a)+r(a) = dagn ,

if an approximate Jacobian matrix −M(a) is used. This concludes the demonstration of the Corol-
lary.

We now explore the relationships between the Euclidean gradient ∇ψ(a) of ψ(.) at a, considered as
a real function from Rp.k into R (e.g., of the vectorized form of the A matrix, see equation (3.23)),
and the Riemannian gradient of the unvectorized form of ψ(.) (e.g., ψ ◦ h−1(.) where h−1(.) is
defined in equation (3.29) of Subsection 3.4 with h−1(A) = vec(AT) = a,∀A ∈ Rp×kk), when this
cost function is considered as defined on the Grassmann manifold Gr(p, k), as already discussed at
the end of Subsection 5.2.

To this end, we require that W ∈ Rp×n+∗ (as otherwise ψ ◦ h−1(.) is not smooth on its whole
domain Rp×kk) and that each element of Gr(p, k) is represented by an element of the compact Stiefel
manifold St(p, k) = Op×k instead of Rp×kk as it is customary for simplicity and numerical reasons
in previous works on Riemannian optimization on Gr(p, k) [47][14][11]. With these requirements,
we first observe that the restriction of the mapping ψ ◦ h−1(.) to the domain St(p, k) = Op×k

can be considered as a smooth map defined on the Stiefel manifold and, by extension, also on
the Grassmann manifold as the Grassmann manifold Gr(p, k) is a Riemannian quotient manifold
of St(p, k) by the action of the orthogonal group Ok×k, see Subsections 2.4 and 5.2, and [3][11]
for more details. In these conditions, the Riemannian gradient of this smooth map defined on the
Grassmann manifold Gr(p, k) at O ∈ St(p, k), considered as the matrix representation of O̊ =

125

ran(O) ∈ Gr(p, k), is an element of the tangent space of Gr(p, k) at O̊, TO̊Gr(p, k), which is a
linear subspace of dimension dim

(
Gr(p, k)

)
= k.(p − k). Moreover, any element of TO̊Gr(p, k)

can be represented uniquely by a matrix D ∈ Rp×k verifying OTD = 0k×k, as already noted in
Subsection 5.2. This subset of Rp×k is noted TOGr(p, k) and is nothing else than the horizontal
space HOOp×k of St(p, k) = Op×k at O ∈ St(p, k).

Thus, the Riemannian gradient of ψ ◦ h−1(.) at O̊ ∈ Gr(p, k), noted ∇Rψ ◦ h−1(O̊), can be repre-
sented uniquely by one element of TOGr(p, k) and, according to equation (2.51) in Subsection 2.4,
this Riemannian gradient is given, with a slight abuse of notation, by

∇Rψ ◦ h−1(O̊) = PHOOp×k∇Fψ ◦ h−1(O)

= (Ip −OOT)∇Fψ ◦ h−1(O) , (5.27)

where O ∈ St(p, k) = Op×k, O̊ ∈ Gr(p, k), PHOOp×k = Ip − OOT is the orthogonal projector
onto the orthogonal of the range of O in Rp (e.g., ran(O)⊥) and also the orthogonal projector on the
horizontal space of St(p, k) = Op×k at O (in the linear spcace Rp×k) and, finally, ∇Fψ ◦ h−1(O)
is the usual Frobenius gradient of ψ ◦ h−1(.) at O when ψ ◦ h−1(.) is considered as a real function
defined on the linear space Rp×k. See [3][14][11] for a derivation of this standard result on the
geometry of the Stiefel and Grassmann manifolds.

Next, we first observe that

∇ψ(o) = vec
((

∇Fψ ◦ h−1(O)
)T) ∈ Rp.k ,

since following the conventions used throughout the monograph, we have defined a = vec(AT),
∀A ∈ Rp×k, instead of a = vec(A) as it is commonly used in past works on the WLRA problem.
In words, ∇ψ(o) is the vectorized form of the transpose of the Frobenius gradient of ψ ◦ h−1(.) at
O. Using a similar and consistent convention, we now define

∇Rψ(o) = vec
((

∇Rψ ◦ h−1(O̊)
)T) ∈ Rp.k ,

e.g., ∇Rψ(o) is the vectorized form of the transpose of the Riemannian gradient of ψ ◦ h−1(.) at
O̊ ∈ Gr(p, k). In these conditions, the equality (5.27) defining the Riemannian gradient ofψ◦h−1(.)
at O̊ is equivalent to the matrix equality(

∇Rψ ◦ h−1(O̊)
)T

=
(
∇Fψ ◦ h−1(O)

)T (
Ip −OOT

)
,

as an orthogonal projector is a symmetric matrix (see equation (2.13)), and also to the vector equal-
ity

vec
((

∇Rψ ◦ h−1(O̊)
)T)

= vec
((

∇Fψ ◦ h−1(O)
)T

(Ip −OOT)
)

=
(
(Ip −OOT)⊗ Ik

)
vec
((

∇Fψ ◦ h−1(O)
)T)

,

where we have used again the symmetry of the orthogonal projector and equation (2.33). In other
words, the vectorized form of the Riemannnian gradient of ψ ◦ h−1(.) at O̊ is given by

∇Rψ(o) =
(
(Ip −OOT)⊗ Ik

)
∇ψ(o) .

Before proceeding further, we now precise the nature of the p.k × p.k symmetric matrix (Ip −
OOT) ⊗ Ik. More precisely, we show that this symmetric matrix is the orthogonal projector onto
null(J (r(o)))⊥ = null(M(o))⊥ when W ∈ Rp×n+∗ and O ∈ St(p, k) = Op×k. To this end,
we first recall that, in these conditions and according to Corollary 5.6, the columns of the matrix
Ō = K(p,k)(Ik ⊗ O) form an orthonormal basis of null

(
J (r(o))

)
= null(M(o)) and that the

columns of Ō⊥ = K(p,k)(Ik ⊗O⊥) are an orthonormal basis of null
(
J (r(o))

)⊥
= null(M(o))⊥

126

as soon as the columns of O and O⊥ are orthonormal bases of ran(O) and ran(O)⊥, respectively.
Next, using equation (2.29) in Subsection 2.2, we have

(Ip −OOT)⊗ Ik = Ip.k − (OOT ⊗ Ik) .

Furthermore, using the identities (2.32) and (2.36) again in Subsection 2.2, we deduce that

OOT ⊗ Ik = (O⊗ Ik)(O
T ⊗ Ik)

= (O⊗ Ik)K(k,k)K(k,k)(O
T ⊗ Ik)

=
(
K(p,k)(Ik ⊗O)

)(
K(p,k)(Ik ⊗O)

)T
= ŌŌT .

Thus, OOT ⊗Ik = ŌŌT is the orthogonal projector onto null
(
J (r(o))

)
= null(M(o)) and

Ip.k − (OOT ⊗ Ik) = Ip.k − ŌŌT = Ō⊥(Ō⊥)T

is the orthogonal projector onto null
(
J (r(o))

)⊥
= null(M(o))⊥ as stated above. Using these

results, Theorem 5.7, and remembering that Ō is an orthogonal basis of null(M(o)) and, thus, that
M(o)Ō = 0p.n×k.k , we deduce that

∇Rψ(o) = (Ip.k − ŌŌT)∇ψ(o)
= ∇ψ(o)− ŌŌT∇ψ(o)
= ∇ψ(o) + ŌŌTM(o)T r(o)

= ∇ψ(o) + Ō
(
M(o)Ō

)T
r(o)

= ∇ψ(o) .

From the vectorized equality ∇Rψ(o) = ∇ψ(o), by identification and unicity of the Frobenius (or
Riemaniann) gradient, we deduce finally that

∇Rψ ◦ h−1(O̊) = ∇Fψ ◦ h−1(O) .

In other words, the Riemannian gradient of ψ ◦h−1(.) at O̊ is simply equal to its Frobenius gradient
at O, which again illustrates the tight relationships between the variable projection method used here
and the Riemannian optimization framework on the Grassmann manifold developed in Boumal and
Absil [13][14] despite the derivations are completely different.

To conclude this paragraph on the comparison of the Euclidean and Riemannian gradients of the
cost function ψ(.), we now derive an explicit matrix form of ∇Fψ ◦h−1(A) for A ∈ Rp×kk starting
from the vectorized equality

∇ψ(a) = vec
((

∇Fψ ◦ h−1(A)
)T)

.

Using Theorems 4.3 and 5.7, we first recall that

∇ψ(a) = G(b̂)T
(
G(b̂)a− z

)
,

where, as usual,

a = vec(AT) ,

b̂ = F(a)+x =
(

diag
(
vec(

√
W)

)(
In ⊗A

))+
x ,

z = vec
(
(
√
W ⊙X)T

)
= diag

(
vec(

√
W

T
)
)
vec(XT) ,

G(b̂) = diag
(
vec(

√
W

T
)
)
(Ip ⊗ B̂T) .

127

Using these results and equation (2.33) in Subsection 2.2, we deduce that

∇ψ(a) = (Ip ⊗ B̂)diag
(
vec(WT)

)(
(Ip ⊗ B̂T)vec(AT)− vec(XT)

)
= (Ip ⊗ B̂)diag

(
vec(WT)

)(
vec(B̂TAT)− vec(XT)

)
= (Ip ⊗ B̂)diag

(
vec(WT)

)
vec(B̂TAT −XT)

= (Ip ⊗ B̂)vec
(
WT ⊙ (AB̂−X)T

)
= (Ip ⊗ B̂)vec

((
W ⊙ (AB̂−X)

)T)
= vec

(
B̂
(
W ⊙ (AB̂−X)

)T)
.

By identification and the unicity of the (Frobenius) gradient and equation (3.11) of Subsection 3.2,
we obtain, finally, the following unvectorized form of ∇ψ(a) as:

∇Fψ ◦ h−1(A) =
(
W ⊙ (AB̂−X)

)
B̂T = ∇φ∗

A(A, B̂) ,

which is entirely consistent with the results in Theorem 5.7.

Consistent with the fact that ∇Rψ◦h−1(O) = ∇Fψ◦h−1(O) derived above, when O ∈ St(p, k) =
Op×k and W ∈ Rp×n+∗ , it can be further verified that this formulae for ∇Fψ ◦ h−1(A) is equal to
the Riemannian gradient gradf(A) (which corresponds to ∇Rψ ◦h−1(Å) in our notations) derived
in equations 23 and 25 of Boumal and Absil [14], if we assumed that A is an orthonormal matrix,
W = Wλ ∈ Rp×n+∗ and X = XΩ as defined, respectively, in equations (3.16) and (3.17) of
Subsection 3.3, e.g., when a regularization parameter λ > 0 is used in the Riemannian optimization
method on the Grassmann manifold developed by Boumal and Absil [14] to minimize their cost
function f(.), which is nothing else than a variable projection form of the cost function gλ(.) defined
in equation (3.18) already discussed in Subsection 3.3.

We summarize these different results about the unvectorized forms of the Frobenius and Riemannian
gradients of ψ(.) in the following Theorem:

Theorem 5.8. Let ψ(.) and h−1(.) be defined, respectively, as in equations (3.23) and (3.29) of
Subsection 3.4, A ∈ Rp×kk and a = h−1(A) = vec(AT) ∈ Rp.k, and further assume that a belongs
to an open set Ω ⊂ Rp.k in which the matrix function F(a), defined in equation (3.20), has a
constant rank, so that the Jacobian matrix J (r(a)) derived in Subsection 5.2, the Euclidean gradient
∇ψ(a) derived in Theorem 5.7 and the Frobenius gradient ∇Fψ ◦ h−1(A) are all well-defined.
Then

∇Fψ ◦ h−1(A) =
(
W ⊙ (AB̂−X)

)
B̂T = ∇φ∗

A(A, B̂) ,

where X ∈ Rp×n and W ∈ Rp×n+ are, respectively, the data and weight matrices of the WLRA
problem (P1) and B̂ ∈ Rk×n is such that vec(B̂) = F(a)+x, with x = vec(

√
W ⊙X).

Furthermore, if we assume that W ∈ Rp×n+∗ , O ∈ St(p, k) = Op×k and O̊ = ran(O) ∈ Gr(p, k),
we have

∇Rψ ◦ h−1(O̊) = ∇Fψ ◦ h−1(O) ,

where ∇Rψ ◦ h−1(O̊) is the Riemannian gradient of the smooth cost function ψ ◦ h−1(.) (defined
now on the Grassmann manifold Gr(p, k)) at O̊ ∈ Gr(p, k).

□

To conclude, we highlight that the above results about the comparison of the gradients in the vari-
able projection and Grassmann manifold optimization frameworks are a slight extension of results
derived in a different way in [82], who do not consider the case where a regularization parameter λ
is used in the Boumal and Absil algorithms [13][14].

We now derive an explicit form for the Hessian matrix H = ∇2ψ(a) where a = h−1(A) =

vec(AT) ∈ Rp.k with A ∈ Rp×kk . To this end, we follow the derivation of the Newton step pre-
sented in Borges [10] for solving a general variable projection NLLS problem. In the context of

128

the WLRA problem, this Hessian matrix has been already explicitly derived in different forms by
several authors [28][169][14], but these forms apply mainly to the case of binary weights or are not
convenient to derive important properties of ∇2ψ(a). As an illustration, Chen [28] has derived H
(see its equation 25) for the case where W is a presence-absence matrix by expressing ψ(a) as the
sum of the jth atomic functions ψj(.) defined in equation (3.25) of Subsection 3.4:

ψ(a) =
1

2

n∑
j=1

ψj(a)

=
1

2

n∑
j=1

∥∥(Ip − Fj(a)Fj(a)
+
)
xj
∥∥2
2

=
1

2

n∑
j=1

∥∥(Ip − (diag(
√
W.j)A

)(
diag(

√
W.j)A

)+)
(
√
W.j ⊙X.j)

∥∥2
2

and computing the Hessian matrices of ψj(.) at a, for j = 1, · · · , n, and summing all these Hessian
matrices. However, this formulation of ∇2ψ(a) does not give a compact form for H and is not
convenient to derive important properties of the Hessian matrix later in this subsection. The two
other formulations of H derived in [169][14] apply, respectively, only to the binary weights case or
only to the variable projection formulation of the regularized cost function gλ(.), defined in equa-
tion (3.18) of Subsection 3.3, and this one lacks also of generality as H is not obtained explicitly,
but in the form of a directional derivative [14], which is used in an inexact subproblem solver based
on a truncated conjugate gradient method to compute an approximate (Riemannian) Newton step at
each iteration [14].

To start with, we recall that the Hessian matrix is given formally by

H = J
(
r(a)

)T
J
(
r(a)

)
+

n.p∑
l=1

rl(a)∇2rl(a) , (5.28)

where ∇2rl(a) is the Hessian matrix of the functional rl(a) for l = 1, · · · , n.p and is a p.k × p.k
matrix given by

[∇2rl(a)]ij =
∂2rl(a)

∂ai∂aj
for i = 1, · · · , p.k and j = 1, · · · , p.k .

We first show that the calculation of the first term of ∇2ψ(a), involving only the Jacobian matrix
J (r(a)) and which corresponds exactly to the Gauss-Newton approximation of ∇2ψ(a), can be
simplified as for the gradient of ψ(.). Using the notations and equation (5.22) of Subsection 5.2, we
have

J (r(a)) = −
(
M(a) + L(a)

)
,

and it follows that

J
(
r(a)

)T
J
(
r(a)

)
=
(
M(a) + L(a)

)T (
M(a) + L(a)

)
= M(a)TM(a) +M(a)TL(a) + L(a)TM(a) + L(a)TL(a)

= M(a)TM(a) + L(a)TL(a) , (5.29)

since ran(M(a)) ⊂ ran(F(a))⊥ and ran(L(a)) ⊂ ran(F(a)), see Subsection 5.2 for more de-
tails.

We now derive an explicit expression for the second term of the Hessian matrix, given formally
by

S =

n.p∑
l=1

rl(a)∇2rl(a) . (5.30)

129

To this end, we first recall that the Jacobian matrix may also be expressed as

J (r(a)) = −D(PF(a))x ,

where x = vec(
√
W ⊙ X) (see equation (5.13) in Subsection 5.2) and this implies that the ith

column of J (r(a)) is given by

[J (r(a))].j = −
∂PF(a)

∂ai
x =

∂r(a)

∂ai
,

and it follows that

∂2r(a)

∂ai∂aj
= −

∂2PF(a)

∂ai∂aj
x for i = 1, · · · , k.p and j = 1, · · · , k.p .

Using this last equality and the definition of S, it is not difficult to see that the ij element of S is
given by

Sij = −r(a)T
∂2PF(a)

∂ai∂aj
x for i = 1, · · · , k.p and j = 1, · · · , k.p .

Thus, in order to evaluate S, we need an explicit expression for all the second partial derivatives of
PF(a)

∂2PF(a)

∂ai∂aj
∈ £

(
R,£(R,Rn.p×n.p)

)
for i = 1, · · · , k.p and j = 1, · · · , k.p .

From the expression of D(PF(a)) given in Corollary 5.1, it follows that

∂PF(a)

∂ai
= P⊥

F(a)

∂F(a)

∂ai
F(a)+ +

(
P⊥

F(a)

∂F(a)

∂ai
F(a)+

)T
= P⊥

F(a)

∂F(a)

∂ai
F(a)+ +

(
F(a)+

)T ∂F(a)T
∂ai

P⊥
F(a) . (5.31)

Using the product rule to take the partial derivative of ∂PF(a)/∂ai with respect to aj [26], we
obtain

∂2PF(a)

∂ai∂aj
=
∂P⊥

F(a)

∂aj

∂F(a)

∂ai
F(a)+ +P⊥

F(a)

∂2F(a)

∂ai∂aj
F(a)+ +P⊥

F(a)

∂F(a)

∂ai

∂F(a)+

∂aj

+
(∂P⊥

F(a)

∂aj

∂F(a)

∂ai
F(a)+ +P⊥

F(a)

∂2F(a)

∂ai∂aj
F(a)+ +P⊥

F(a)

∂F(a)

∂ai

∂F(a)+

∂aj

)T
.

For the sake of brevity, we define

D(i,j) =
∂P⊥

F(a)

∂aj

∂F(a)

∂ai
F(a)+ +P⊥

F(a)

∂2F(a)

∂ai∂aj
F(a)+ +P⊥

F(a)

∂F(a)

∂ai

∂F(a)+

∂aj
,

and, thus,
∂2PF(a)

∂ai∂aj
= D(i,j) +DT

(i,j) .

We will now simplify the computation of D(i,j). First, using the fact that

∂P⊥
F(a)

∂aj
= −

∂PF(a)

∂aj
,

we deduce that

D(i,j) = −
∂PF(a)

∂aj

∂F(a)

∂ai
F(a)+ +P⊥

F(a)

∂2F(a)

∂ai∂aj
F(a)+ +P⊥

F(a)

∂F(a)

∂ai

∂F(a)+

∂aj
.

130

Next, we recall that F(.) is a linear transformation from Rk.p into Rn.p×n.k (see equation (3.20)
in Subsection 3.4). This implies, in particular, that D

(
F(a)

)
= F(.), for all a ∈ Rk.p, mean-

ing that D
(
F(.)

)
is a constant function from Rk.p into £(Rk.p,Rn.p×n.k). From this, we deduce

that D2
(
F(a)

)
is the null application for every a ∈ Rk.p, which implies that all the second partial

derivatives ∂2F(a)/∂ai∂aj are identically zero.

This may be used to simplify D(i,j) again, giving

D(i,j) = −
∂PF(a)

∂aj

∂F(a)

∂ai
F(a)+ +P⊥

F(a)

∂F(a)

∂ai

∂F(a)+

∂aj
.

Now, we need to compute the derivative of F(a)+ which is given in Theorem 5.1 under the assump-
tion that F(a) is of local constant rank at any point a in which differentiation is to be performed
(see Theorem 5.1 for details):

D(F(a)+) =− F(a)+D(F(a))F(a)+ + F(a)+(F(a)+)TD(F(a)T)P⊥
F(a)

+
(
In.k − F(a)+F(a)

)
D(F(a)T)(F(a)+)TF(a)+ .

In order to simplify the derivation, we will now further assume that F(a) has full column-rank,
leaving the general case for future research. For practical applications, this hypothesis implies that
the rank of F(a) is k.n and that each column of X must have at least k ”nonmissing” elements. In
other words, using the p× n incidence matrix, δ, associated with the matrix X (see equation (5.26)
in Subsection 5.2), we must have

p∑
l=1

δlj > k , for all j = 1, · · · , n .

Note also that this hypothesis is automatically verified if W ∈ Rp×n+∗ and A is of full column rank
since

F(a) =
n⊕
j=1

Fj(a) where Fj(a) = diag(
√
W.j)A .

From this hypothesis, we deduce that

F(a)+F(a) = In.k ,

yielding a simplified formula for the derivative of F(a)+

D(F(a)+) = −F(a)+D(F(a))F(a)+ + F(a)+(F(a)+)TD(F(a)T)P⊥
F(a)

and its partial derivatives

∂F(a)+

∂aj
= −F(a)+

∂F(a)

∂aj
F(a)+ + F(a)+(F(a)+)T

∂F(a)T

∂aj
P⊥

F(a) .

Substituting this definition into D(i,j) gives

D(i,j) =−
∂PF(a)

∂aj

∂F(a)

∂ai
F(a)+

+ P⊥
F(a)

∂F(a)

∂ai

(
− F(a)+

∂F(a)

∂aj
F(a)+ + F(a)+(F(a)+)T

∂F(a)T

∂aj
P⊥

F(a)

)
=−

∂PF(a)

∂aj

∂F(a)

∂ai
F(a)+

+ P⊥
F(a)

∂F(a)

∂ai
F(a)+

(
(F(a)+)T

∂F(a)T

∂aj
P⊥

F(a) −
∂F(a)

∂aj
F(a)+

)
.

131

Using this result, we are now in the position to deduce an explicit formula for Sij

Sij = −r(a)T
(
D(i,j) +DT

(i,j)

)
x

= −r(a)TD(i,j)x− r(a)TDT
(i,j)x

= −r(a)TD(i,j)x− xTD(i,j)r(a) .

Using the facts that r(a) = P⊥
F(a)x, P⊥

F(a)r(a) = r(a) and b = F(a)+x, the first term in the right
hand side of this equation reduces to

−r(a)TD(i,j)x = r(a)T
∂PF(a)

∂aj

∂F(a)

∂ai
b

− r(a)T
∂F(a)

∂ai
F(a)+

(
(F(a)+)T

∂F(a)T

∂aj
r(a)− ∂F(a)

∂aj
b
)

= r(a)T
∂PF(a)

∂aj

∂F(a)

∂ai
b− r(a)T

∂F(a)

∂ai
F(a)+(F(a)+)T

∂F(a)T

∂aj
r(a)

+ r(a)T
∂F(a)

∂ai
F(a)+

∂F(a)

∂aj
b .

Substituting ∂PF(a)/∂aj (see equation (5.31) above) yields

−r(a)TD(i,j)x = r(a)T
(
P⊥

F(a)

∂F(a)

∂aj
F(a)+ +

(
F(a)+

)T ∂F(a)T
∂aj

P⊥
F(a)

)∂F(a)
∂ai

b

− r(a)T
∂F(a)

∂ai
F(a)+(F(a)+)T

∂F(a)T

∂aj
r(a)

+ r(a)T
∂F(a)

∂ai
F(a)+

∂F(a)

∂aj
b .

Noting that P⊥
F(a)r(a) = r(a) and F(a)+r(a) = 0k.n, this reduces to

−r(a)TD(i,j)x = r(a)T
∂F(a)

∂aj
F(a)+

∂F(a)

∂ai
b

− r(a)T
∂F(a)

∂ai
F(a)+(F(a)+)T

∂F(a)T

∂aj
r(a)

+ r(a)T
∂F(a)

∂ai
F(a)+

∂F(a)

∂aj
b .

Next, if we consider the second term in Sij , it reduces to

−xTD(i,j)r(a) = xT
∂PF(a)

∂aj

∂F(a)

∂ai
F(a)+r(a)

− xTP⊥
F(a)

∂F(a)

∂ai
F(a)+(F(a)+)T

∂F(a)T

∂aj
P⊥

F(a)r(a)

+ xTP⊥
F(a)

∂F(a)

∂ai
F(a)+

∂F(a)

∂aj
F(a)+r(a)

= − r(a)T
∂F(a)

∂ai
F(a)+(F(a)+)T

∂F(a)T

∂aj
r(a) ,

using again the facts that P⊥
F(a)r(a) = r(a), F(a)+r(a) = 0k.n and P⊥

F(a) = (P⊥
F(a))

T .

132

Collecting all these results together, we deduce that

Sij = r(a)T
∂F(a)

∂aj
F(a)+

∂F(a)

∂ai
b

+ r(a)T
∂F(a)

∂ai
F(a)+

∂F(a)

∂aj
b

− 2r(a)T
∂F(a)

∂ai
F(a)+(F(a)+)T

∂F(a)T

∂aj
r(a) .

Now from equations (5.14) and (5.18) in Subsection 5.2, ∀ a,△a ∈ Rp.k, we have(
D(F(a))(△a)

)
b = U(a)△a and

(
D(F(a))(△a)

)T
r(a) = V(a)△a ,

where U(a) and V(a) are defined in equations (5.20) and (5.21) of Subsection 5.2. In these condi-
tions, it is evident that

∂F(a)

∂ai
b = U(a).i and

∂F(a)T

∂ai
r(a) = V(a).i for all i = 1, · · · , p.k .

Thus,

Sij =
(
V(a).j

)T
F(a)+U(a).i +

(
V(a).i

)T
F(a)+U(a).j − 2.

(
V(a).i

)T
F
(
a)+

(
F(a)+

)T
V(a).j

=
(
L(a).j

)T
U(a).i +

(
L(a).i

)T
U(a).j − 2.

(
L(a).i

)T
L(a).j

=
(
U(a).i

)T
L(a).j +

(
L(a).i

)T
U(a).j − 2.

(
L(a).i

)T
L(a).j ,

where L(a) is defined in equation (5.19) of Subsection 5.2. This implies, finally, that

S = U(a)TL(a) + L(a)TU(a)− 2.L(a)TL(a) . (5.32)

Using the fact that J (r(a))TJ (r(a)) = M(a)TM(a) + L(a)TL(a) established in equation (5.29)
above, we finally obtain the following explicit and compact expression for the Hessian matrix
∇2ψ(a) as the sum of three symmetric matrix terms

H = M(a)TM(a)− L(a)TL(a) +
(
U(a)TL(a) + L(a)TU(a)

)
, (5.33)

under the hypothesis that F(.) has full column-rank in a neighborhood of a.

We first note that H is relatively cheap to evaluate as all the matrix terms involved in the above
expression of H are also needed to compute the Jacobian matrix J (r(a)) and are, thus, avail-
able in most cases. This small difference between a full Newton and a Gauss-Newton approach
in terms of computational load is due to the fact that all the second partial derivatives of F(.) are
identically zero everywhere and that, consequently, all the mixed partial derivatives matrix terms,
which are normally present in the Hessian matrix, vanish here [10]. This small overhead of a full
Newton method for solving the WLRA problem with a variable projection or Grassmann manifold
approaches has already been highlighted by Boumal and Absil [14] when solving a regularized
version of the WLRA problem when zero weights are present with a Riemannian method.

Next, we observe that the Gauss-Newton approximation of the Hessian matrix is

∇2ψ(a) ≈ M(a)TM(a) + L(a)TL(a) ,

while the first two symmetric terms in the exact formulation of ∇2ψ(a) derived above are

M(a)TM(a)− L(a)TL(a) .

This suggests that the term M(a)TM(a) can be eventually a much better estimate of the full Hes-
sian matrix ∇2ψ(a) than its Gauss-Newton estimate surprisingly. This feature is not specific of

133

the WLRA problem, but rather related to the variable projection framework, and remains true for
any separable NLLS problem [10]. This is also verified in the comparison experiments of Hong et
al. [81] in which a Levenberg-Marquardt algorithm using −M(a) as a simplified Jacobian matrix
performs equally or even better than the one using the full Jacobian matrix − (M(a) + L(a)). As
we will explain in Subsection 6.1, approximating the Jacobian matrix by the term −M(a) corre-
sponds also to the simplification of the standard variable projection Gauss-Newton and Levenberg-
Marquardt algorithms introduced by Kaufman [96] and Ruhe and Wedin [166]. These results were
also given given in Hong and Fitzgibbon [81], but their notations are different from those used
here.

Based on similar arguments, we can also develop an efficient quasi-Newton method in which we
drop the last symmetric term, e.g., U(a)TL(a) + L(a)TU(a) in the full Hessian, and use the
symmetric matrix

H̄ = M(a)TM(a)− L(a)TL(a) , (5.34)

as an approximate Hessian matrix. This approach is new and has never been proposed in the liter-
ature to the best of our knowledge. Obviously, we are not assure that this approximation is always
positive semi-definite as in any Newton-like method, but this will be generally the rule as the term
M(a) usually dominates the term L(a) in the Jacobian matrix as discussed above. However, an it-
erative algorithm based on this approximate Hessian H̄ should perform similarly or better than any
Gauss-Newton- or Levenberg-Marquardt-like methods using the full Jacobian − (M(a) + L(a)) or
its approximation −M(a) as discussed above.

The approximate Hessian matrix H̄ also inherits of the singularity of the Jacobian matrix and of its
two terms (see Theorems 5.2 and 5.3) since null(J (r(a))) = null(M(a)) ∩ null(L(a)) is always
included in the null space of H̄ and this can be considered at first sight as a disadvantage. How-
ever, we will demonstrate below that a Newton method using the full Hessian matrix H has also to
overcome similar singularity and ill-conditioning problems in a small neighborhood of a first-order
stationary point of ψ(.). Furthermore, we will finally illustrate that, in both cases, we can handle
these difficulties for many practical cases with the same techniques developed for the Gauss-Newton
or Levenberg-Marquardt algorithms in Subsection 5.2), e.g., by restricting the search directions for
the Newton correction to ran(A)⊥ at each iteration.

The results in Subsection 5.2 show that the problem of minimizing ψ(.) is an ill-posed NLLS
problem in the sense that the Jacobian matrix, J (r(a)), is exactly rank-deficient everywhere in
the solution space Rp×kk . We first derive some KKT theorems which give a characterization of a
local minimum of ψ(.) for this very special class of NLLS problems.

Theorem 5.9. Let â = vec(Â)T , with Â ∈ Rp×kk , be a first-order stationary point of ψ(.) and F(.)

has full column-rank in a neighborhood of â. Then, the Hessian matrix of ψ(.) at â, Ĥ = ∇2ψ(â), is
a matrix of rank less than or equal to (p−k).k as for the Jacobian matrix J (r(â)) (see Corollary 5.3).

Proof. First, the hypothesis that F(a) has full column-rank in a neighborhood of â implies the
existence of Ĥ as demonstrated above. Furthermore, from equation (5.33), Ĥ is given by

Ĥ = M(â)TM(â)− L(â)TL(â) +U(â)TL(â) + L(â)TU(â) .

Now, as in Theorem 5.2, we consider the matrix

N̂ = K(p,k)(Ik ⊗ Â) .

From Theorem 5.2, we have rank(N̂) = k.k and the relation

ran(N̂) ⊂ null(M(â)) ∩ null(L(â)) .

We also observe that the theorem will be proved if the relation ran(N̂) ⊂ null(Ĥ) is verified.

134

To prove this inclusion, we first note that, if y ∈ ran(N̂), we have

M(â)y = L(â)y = 0n.p .

From this, we deduce that

Ĥy = M(â)TM(â)y − L(â)TL(â)y +U(â)TL(â)y + L(â)TU(â)y

= L(â)TU(â)y .

Thus, to demonstrate that y ∈ null(Ĥ), it suffices to show that L(â)TU(â)y = 0k.p.

If y ∈ ran(N̂), then ∃Z ∈ Rk×k such that

y = N̂vec(Z) = K(p,k)(Ik ⊗ Â)vec(Z) .

Consequently, using the definition of U(â) (see Subsection 5.2), we have

U(â)y = diag
(
vec(

√
W)

)
(B̂T ⊗ Ip)K(k,p)K(p,k)(Ik ⊗ Â)vec(Z)

= diag
(
vec(

√
W)

)
(B̂T ⊗ Ip)(Ik ⊗ Â)vec(Z)

= diag
(
vec(

√
W)

)
(B̂T ⊗ Â)vec(Z)

= diag
(
vec(

√
W)

)
vec(ÂZB̂)

= diag
(
vec(

√
W)

)
(In ⊗ Â)vec(ZB̂)

= F(â)vec(ZB̂) .

Now, as in Subsection 5.2, using the projection operator, PΩ(.), associated with the p × n weight
matrix W, we have

[
PΩ(X− ÂB̂)

]
ij
=

Xij −

k∑
l=1

ÂilB̂lj if Wij ̸= 0,

0 if Wij = 0.

,

where b̂ = F(â)+x and B̂ = mat(b̂), and the variable projection residual vector of X at Â can be
written as

r(â) = vec
(√

W ⊙ PΩ(X− ÂB̂)
)
.

Thus, using the definition of L(â) (see equation (5.19) in Section 5.2) and the fact that F(â)+F(â) =
In.k, which results from the hypothesis that F(â) has full column-rank, we have

L(â)TU(â)y =
(
(W ⊙ PΩ(X− ÂB̂))⊗ Ik

)
F(â)+F(â)vec(ZB̂)

=
(
(W ⊙ PΩ(X− ÂB̂))⊗ Ik

)
vec(ZB̂) ,

135

Finally, this leads to the equalities

L̂TU(â)y = vec
(
ZB̂(W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)vec

(
B̂(W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)(Ip ⊗ B̂)vec

(
(W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)(Ip ⊗ B̂)diag

(
vec(

√
W

T
)
)
vec
(
(
√
W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)(Ip ⊗ B̂)diag

(
vec(

√
W

T
)
)
vec
(
(
√
W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)

(
diag

(
vec(

√
W

T
)
)
(Ip ⊗ B̂)T

)T
vec
(
(
√
W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)

(
diag

(
vec(

√
W

T
)
)
(Ip ⊗ B̂T)

)T
vec
(
(
√
W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)G(b̂)T vec

(
(
√
W ⊙ PΩ(X− ÂB̂))T

)
= (Ip ⊗ Z)G(b̂)TK(p,n)vec(

√
W ⊙ PΩ(X− ÂB̂))

= (Ip ⊗ Z)G(b̂)TK(p,n)r(â)

= −(Ip ⊗ Z)∇ψ(â)
= 0k.p ,

the two last equalities resulting from Theorem 5.7 and the hypothesis ∇ψ(â) = 0k.p. Thus, Ĥy =
0k.p and ran(N̂) ⊂ null(Ĥ). This implies, finally, that k.k ⩽ dim(null(Ĥ)) and rank(Ĥ) ⩽
(p− k).k as claimed in the theorem.

Furthermore, if rank(J (r(â)) = (p− k).k, for example if the hypotheses of Theorem 5.3 are satis-
fied, we have the following corollary:

Corollary 5.9. Let â = vec(Â)T , with Â ∈ Rp×kk , be a first-order stationary point of ψ(.) and
suppose that F(a) has full column-rank in a neighborhood of â and the rank of the Jacobian matrix
J (r(â)) is equal to r = (p− k).k. Then, the Hessian matrix of ψ(.) at â, Ĥ = ∇2ψ(â), is a matrix
of rank less than or equal to r with its null space containing the null space of J (r(â)).

Proof. Using the same notations as in Theorem 5.9, the hypotheses imply the relation

dim
(

null
(
J (r(â))

))
= k.k = rank(N̂) .

From the relation ran(N̂) ⊂ null(M(â)) ∩ null(L(â)) = null(J
(
r(â))

)
, we then deduce that

ran(N̂) = null(J
(
r(â))

)
and all the results are a direct consequence of Theorem 5.9.

Remark 5.3. Theorem 5.9 and Corollary 5.9 are similar to Theorem 2.2 of Eriksson et al. [54] and
its consequences, which deal with NLLS problems that are uniformly rank-deficient, i.e., with a Ja-
cobian matrix that have the same deficient rank in the neighborhood of a solution. However, it is im-
portant to highlight that the strong assumption of uniform rank deficiency of the Jacobian matrix in
the neighborhood of a solution has not been used here to derive Theorem 5.9, while this hypothesis
is central in the results of Eriksson et al. [54] through the use of the Constant-Rank Theorem [26]. ■

Remark 5.4. Theorem 5.9 and Corollary 5.9 also explain why full Newton variable projection al-
gorithms (without any specific adaptation or regularization) perform poorly in the comparison ex-
periments of Okatani et al. [150] and Hong et al. [81]. As soon as we are in a small neighborhood

136

of a first-order stationary point â of ψ(.), the Hessian matrix ∇2ψ(a) may become nearly singular
and ill-conditioned according to Theorem 5.9 and Corollary 5.9 leading to an erratic behaviour and
a dramatic lost of accuracy in the final steps of the Newton method. ■

Importantly, Theorem 5.9 and Corollary 5.9 can also be used to illustrate that the sufficient condition
for the existence of a strict local minima of ψ(.) (see Subsection 2.4 for details) are never meet, but
non strict local minima may still exist though. To see this, suppose that ψ(.) is twice continuously
differentiable at â and that â is a first-order stationary point of ψ(.), then ∇ψ(â) = 0k.p and the
second-order Taylor expansion of ψ(.) at â becomes

ψ(â+ da) = ψ(â) + daT∇2ψ(â)da+O(∥da∥32) .

However, for da ∈ null(N̂), where N̂ = K(p,k)(Ik ⊗ Â), and da sufficiently small, this Taylor
expansion reduces to

ψ(â+ da) = ψ(â) +O(∥da∥32) ,
according to Theorem 5.9. This last equation and the fact that the matrix ∇2ψ(â) is never positive
definite, are consistent with the property that, if the (VP1) problem admits a solution â, then there
exist infinitely many solutions near â (see Remark 3.5 for details). Thus, having J (r(a)) rank
deficient everywhere makes the minimization of ψ(.) an ill-posed problem since if this problem has
a solution â than this solution is never unique and, in addition, there are an infinite set of solutions
in any neighborhood of â.

To conclude this section, we now give sufficient second-order KKT conditions for ψ(.) to have a
(non strict) minimum under the exact and constant rank-deficient condition of J (r(a)) in a neigh-
borhood of a first-order stationary point in the following theorem, which is a reformulation and an
extension in our context of results demonstrated in Eriksson et al. [54].

Theorem 5.10. Let â ∈ Rk.p, with Â = (matk×p(â))T ∈ Rp×kk , be a first-order stationary point
of ψ(.), and suppose that F(a) has full column-rank and the rank of the Jacobian matrix J (r(a)) is
equal to r = (p− k).k in a neighborhood of â. Let further Q ∈ Rk.p×rr such that the columns of Q
form a basis for ran(J (r(â))T) = null(J (r(â)))⊥. Then, define the r × r symmetric matrix

T̂ = QT∇2ψ(â)Q

= QT ĤQ

= QT
(
M(â)TM(â)− L(â)TL(â) +U(â)TL(â) + L(â)TU(â)

)
Q . (5.35)

In these conditions, if ψ(.) has a local minimum at â then T̂ is positive semi-definite. Reciprocally,
if T̂ is positive definite then ψ(.) has a (non strict) local minimizer at â and we have the equalities

null
(
∇2ψ(â)

)
= null

(
J (r(â))

)
and rank

(
∇2ψ(â)

)
= r .

Proof. We first verify that the condition is necessary if â ∈ Rk.p is a local minimizer of ψ(.). To
this end, let P ∈ Rk.p×k.kk.k such that the columns of P form a basis for null(J (r(â))). We first note
that orthonormal matrices P and Q can be easily constructed from the results of Corollary 5.6 and
that, with this choice, the columns of the partitioned matrix[

P Q
]
=
[
Ō Ō⊥]

is an orthonormal basis of Rk.p since null(J (r(â))) and null(J (r(â)))⊥ are orthogonal subspaces
of Rk.p and

Rk.p = null
(
J
(
r(â)

))
⊕ null

(
J
(
r(â)

))⊥
,

where ⊕ stands for the direct sum. Thus, ∀y ∈ Rk.p, y can be decomposed as

y =
[
P Q

] [yP
yQ

]
= PyP +QyQ with yP ∈ Rk.k and yQ ∈ R(p−k).k .

137

Now, as â is a local minimizer of ψ(.), ∇2ψ(â) is a positive semi-definite matrix (see Subsec-
tion2.4), which implies that, ∀y ∈ Rk.p, we have

yT∇2ψ(â)y ≥ 0 .

On the other hand, since the null space of J (r(â)) is included in the null space of ∇2ψ(â) according
to Corollary 5.9 and taking into account the symmetry of ∇2ψ(â), we have

yT∇2ψ(â)y = (PyP +QyQ)
T ∇2ψ(â) (PyP +QyQ)

= (QyQ)
T ∇2ψ(â) (QyQ)

= yTQT̂yQ ≥ 0 ,

which demonstrates that T̂ is a positive semi-definite matrix as claimed in the theorem.

We now give a sketch of the proof for the sufficient condition and we refer the interested reader
to Eriksson et al. [52][53][54] for more details. First, the hypothesis that Â is of full column
rank implies that it exists an open neighborhood of â, say Υ, in which all its elements have also
full-column rank, as Rp×kk is open in Rp×k according to Theorem 2.3. By eventually restricting
this open neighborhood Υ, the hypotheses that F(a) has full column-rank and that the rank of the
Jacobian matrix J (r(a)) is equal to r = (p − k).k in a neighborhood of â imply that the residual
function r(.) from Rk.p to Rp.n is infinitely differentiable in an open neighborhood Υ of â. This
allows us to apply the Constant-Rank Theorem (see Theorem 2.1 in [54] or [26]) to demonstrate
that there exist two functions, e.g.,

z : Rk.p −→ Rr and h : Rr −→ Rn.p ,

which are twice continuously differentiable functions, respectively, over an open neighborhood Υ
of â and over Rr, such that r(a) = h(z(a)).

Using the chain rule for computing derivatives [26], we get, for all a ∈ Υ, the relation

J
(
r(a)

)
= J

(
h(z(a))

)
J
(
z(a)

)
. (5.36)

In these conditions, using the hypothesis that the rank of the Jacobian matrix J (r(a)) is equal to
r = (p − k).k, ∀a ∈ Υ, and equation (2.2) in Subsection 2.1, we deduce immediately that the
Jacobian matrices, J (z(a)) and J (h(z(a))), have also a constant (full) rank equals to r = (p−k).k
for all a ∈ Υ. Furthermore, since both J (h(z(a))) and J (z(a)) have full rank r, which is also
equal to the rank of J (r(a)), we have the equalities

null
(
J (r(a))

)
= null

(
J (z(a))

)
and ran

(
J (r(a))

)
= ran

(
J (h(z(a)))

)
,

and also the ”transposed” versions of these equalities

null
(
J (r(a))T

)
= null

(
J (h(z(a)))T

)
and ran

(
J (r(a))T

)
= ran

(
J (z(a))T

)
,

for all a ∈ Υ.

Now, the equality null
(
J (r(â))T

)
= null

(
J (h(z(â)))T

)
and the hypothesis that â is a first-order

stationary point of ψ(.), i.e.,

∇ψ(â) = J
(
r(â)

)T
r(â) = 0p.k ,

imply that
J
(
h(z(â))

)T
h(z(â)) = J

(
h(z(â))

)T
r(â) = 0p.k .

This demonstrates that z(â) is a first-order stationary point of the twice continuously differentiable
real function ϕ(.) defined by

ϕ : Rr −→ R : o 7→ 1

2
∥h(o)∥22 =

1

2
h(o)Th(o) .

138

In these conditions, a sufficient condition for the first-order stationary point z(â) to be a strict local
minimizer of ϕ(.) is that the Hessian matrix ∇2ϕ(z(â)) is positive definite (see Subsection 2.4) and
this will also imply that â is a non strict local minimizer of ψ(.) since

ψ(a) =
1

2
r(a)T r(a) =

1

2
h
(
z(a)

)T
h
(
z(a)

)
= ϕ

(
z(a)

)
,

for all a ∈ Υ. The Hessian matrix ∇2ϕ(z(â)) is positive definite if and only if

oT
(
∇2ϕ(z(â))

)
o > 0 for all o ∈ Rr with o ̸= 0r .

Now, the equality null (J (r(â))) = null (J (z(â))) demonstrated above implies that

null
(
J (r(â))

)⊥
= null

(
J (z(â))

)⊥
,

and this shows that the r×r matrix J (z(â))Q is of full rank r as the r columns of Q form a basis of
null (J (z(â)))⊥. In these conditions, the columns of J (z(â))Q form a basis of Rr and any o ∈ Rr
can be written as o = J (z(â))Qw for some w ∈ Rr and the proposition that ∇2ϕ(z(â)) is positive
definite, is equivalent to

wT
(
QTJ

(
z(â)

)T(∇2ϕ
(
z(â)

))
J
(
z(â)

)
Q
)
w > 0 for all w ∈ Rr with w ̸= 0r ,

e.g., that the r × r symmetric matrix
(
QTJ

(
z(â)

)T(∇2ϕ
(
z(â)

))
J
(
z(â)

)
Q
)

is definite positive.

We will now show that this symmetric matrix is nothing else than the r × r symmetric matrix T̂,
defined in equation (5.35), and which is assumed to be positive definite by hypothesis.

Using equations 2.66 and 5.36 above, we have

J
(
z(â)

)T(∇2ϕ(z(â))
)
J
(
z(â)

)
= J

(
z(â)

)T (
J (h(z(â)))TJ (h(z(â))) +

n.p∑
l=1

hl(z(â))∇2hl(z(â))

)
J
(
z(â)

)
= J

(
r(â)

)T
J
(
r(â)

)
+ J

(
z(â)

)T (n.p∑
l=1

rl(â)∇2hl(z(â))

)
J
(
z(â)

)
.

Next, using again the chain rule for computing the second derivatives of rl(.) and the fact that

J
(
h(z(â))

)T
r(â) = 0p.k ,

demonstrated above, we obtain the following expression for the second term of the Hessian matrix
Ĥ = ∇2ψ(â), defined in equations 5.30 and 5.32, in terms of the derivatives of z(.) and h(.):

Ŝ =

n.p∑
l=1

rl(â)∇2rl(â) = J
(
z(â)

)T (n.p∑
l=1

rl(â)∇2hl(z(â))

)
J
(
z(â)

)
.

This implies the equality

J
(
z(â)

)T(∇2ϕ
(
z(â)

))
J
(
z(â)

)
= J

(
r(â)

)T
J
(
r(â)

)
+ Ŝ = Ĥ ,

from which we deduce that

QTJ
(
z(â)

)T(∇2ϕ
(
z(â)

))
J
(
z(â)

)
Q = QT ĤQ = T̂ .

As the matrix T̂ is positive definite by hypothesis, this also shows that ∇2ϕ(z(â)) is definite positive
since the proposition that ∇2ϕ(z(â)) is definite positive is equivalent to the proposition that T̂ is

139

definite positive as noted above. Furthermore, this implies immediately that the first-order stationary
point z(â) is a strict local minimizer of ϕ(.) and that the first-order stationary point â is a non strict
local minimizer of ψ(.) as claimed in the theorem.

Finally, since ∇2ϕ(z(â)) is definite positive and we have the equality

Ĥ = J
(
z(â)

)T(∇2ϕ
(
z(â)

))
J
(
z(â)

)
,

it is easy to deduce that null(Ĥ) = null
(
J (z(â))

)
= null

(
J (r(â))

)
and dim

(
null(Ĥ)

)
= k.k, using

the hypothesis rank
(
J
(
r(â))

)
= r and the rank-nullity relationship 2.1. This last equality implies,

finally, that rank(Ĥ) = r again by the rank-nullity theorem 2.1, which concludes the demonstration
of the theorem.

Interestingly, under the same hypotheses as used in Theorem 5.10 and when, in addition, the r × r
symmetric matrix T̂ is definite positive and â is thus a (local) minimizer of ψ(.), the continuum
of (local) minimizers of ψ(.) which achieve the same minimum value of ψ(â), say S(â) defined
formally as follows,

S(â) =
{
a ∈ Rp.k /ψ(a) = ψ(â) and A =

(
matk×p(a)

)T ∈ Rp×kk

}
, (5.37)

is locally well-behaved around â in the sense that this continuum forms a smooth (e.g., C1) sub-
manifold of Rk.p (locally) around â of dimension k.k and the tangent linear space to S(â) at â is
exactly the kernel of ∇2ψ(â), i.e.,

null
(
∇2ψ(â)

)
= TâS(â) .

Note that, this is the best, we can hope for smooth functions like ψ(.) with singular (local) minima
(because of over-parameterization) and this expresses the fact that the restriction of ∇2ψ(â) to the
normal linear space of S(â) at â, say NâS(â) (i.e., NâS(â) =

(
TâS(â)

)⊥), is definite positive (e.g.,
∇2ψ(â) is definite positive along its normal directions) as demonstrated in Theorem 5.10.

This nice geometrical property is called the Morse-Bott property in Rebjock and Boumal [163], see
their Definition 1.1. They further show that this local Morse-Bott property is essentially equivalent
to various (local) structural assumptions like the Polyak–Lojasiewicz condition, Quadratic Growth
and Error Bound properties, which have been used in the past to explain the surprising local con-
vergence with a fast local rate of (quasi-)Newton methods in some neighborhood of non-isolated
optima; e.g., for minimizing C2 cost functions like ψ(.) for which the Hessian at (local) minima
is at best positive semi-definite, but never positive definite because local minima are never isolated
due to over-parameterization.

In order to demonstrate that ψ(.) satisfies effectively the Morse-Bott property at â, let us first give
a precise definition of a smooth (i.e., C1) submanifold around one of its points in Rn, taken from
Example 6.8 in [165].

Definition 5.1. Let C be a nonempty subset of Rn.

We say that C is a d-dimensional smooth submanifold in Rn around the point â ∈ C, if C can be
represented relative to an open neighborhood U of â as the set of solutions to g(a) = 0m where g(.)
is a C1 mapping from U to Rm with its differential at â, g

′
(â), being a surjective linear operator,

which is equivalent to say that the Jacobian matrix J (g(â)) ∈ Rm×n is of full rank m, where
m = n− d.

Thus, equivalently, C is a d-dimensional smooth submanifold in Rn around the point â ∈ C, if

C ∩ U = {a ∈ U / g(a) = 0m} and rank
(
J
(
g(â)

))
= m = n− d .

140

Such function g(.), if it exists, is called a local defining function for C at â as in the Definition 2.4
of a classical Cp embedded submanifold of Rn given in Subsection 2.4.

Obviously, if M is a smooth embedded submanifold of Rn in the sense of Definition 2.4, M is also
a C1 submanifold around each of its points in the sense of Definition 5.1, but the converse is not
true in general. Thus, a smooth submanifold around one of its points, is just the ”local” version of a
classical smooth submanifold embedded in Rn.

Next, we will use the definition of tangent vectors to an arbitrary nonempty subset of a normed
vector space, given in Definition 2.5, and a finite version of the Lyusternik Theorem [105] (given
below), which gives a complete characterization of the set of tangent vectors to a subset of a normed
vector space of the form

S = {a ∈ U / g(a) = 0m} ,

where U is an open set of Rn and g(.) is a function from U to Rm of class C1.

Theorem 5.11. Let U be an open subset of Rn and g(.) a C1 function from U to Rm. Further,
define the subset of Rn

S = {a ∈ U / g(a) = 0m} ,

and let â ∈ S.

If the differential of g(.) at â, g
′
(â), is a surjective linear operator from Rn to Rm, which is equiva-

lent to say that rank(J (g(â))) = m, then

null
(
J (g(â))

)
= TâS ,

where J (g(â)) is the Jacobian matrix of g(.) at â and TâS is the set of tangent vectors to S at â in
the sense of Definition 2.5, which is thus a linear subspace of Rn of dimension d = n−m.

Proof. Omitted. See [105] and [168] for proof.

The Lyusternik Theorem 5.11 is the angular stone behind the Definition 5.1 of an embedded C1

submanifold C around one of its points in Rn. Furthermore, it allows an easy identification of
the tangent space to such ”local” submanifolds as the kernel of the Jacobian of the local defining
function for C at this particular point and also of the dimension of such smooth submanifold around
one of its points. These ”local” results are further consistent with those concerning classical smooth
submanifolds embedded in normed vector spaces discussed in Subsection 2.4.

With these preliminaries, we are now in position to demonstrate that the continuum of (local) min-
ima of ψ(.), S(â), defined in equation (5.37), is effectively a smooth (e.g., C1) submanifold of Rk.p
(locally) around â of dimension k.k in the sense of Definition 5.1 and that

null
(
∇2ψ(â)

)
= TâS(â) ,

if we assume, as in Theorem 5.10, that:

- â ∈ Rk.p, with Â = (matk×p(â))T ∈ Rp×kk , is a first-order stationary point of ψ(.);

- F(a) has full column-rank and the rank of the Jacobian matrix J (r(a)) is equal to r = (p− k).k
in a neighborhood of â.

- and, finally, the r × r symmetric matrix T̂ defined in equation (5.35) is positive definite.

Under these hypotheses, we know from Theorem 5.10, that â is a (local) minimizer of ψ(.) and we
can assert that the set S(â) defined in equation (5.37) is nonempty and even forms a continuum of
points. Furthermore, again as a direct consequence of Theorem 5.10, we also have

null
(
∇2ψ(â)

)
= null

(
J (r(â))

)
and dim

(
null
(
∇2ψ(â)

))
= k.k .

141

We now first demonstrate that S(â) is effectively an embedded k.k-dimensional C1 submanifold in
Rk.p around the point â ∈ S(â) in the sense of Definition 5.1 and that the tangent space to S(â)
around â is nothing else than the kernel of J (r(â)) using the Lyusternik Theorem 5.11.

To verify Definition 5.1 for S(â), we need to find an open neighborhood U of â in Rk.p and a C1

mapping g(.) from U to Rr with r = k.(p− k) such that

S(â) ∩ U = {a ∈ U / g(a) = 0r} and rank
(
J (g(â))

)
= r .

However, as in the demonstration of Theorem 5.10, the above hypotheses imply that there exist an
open neighborhood Υ of â in Rk.p, a twice continuously differentiable function z(.) from Υ to Rr
and a twice continuously differentiable function h(.) from Rr to Rk.p such that r(a) = h(z(a)) and
the Jacobian matrices, J (z(a)) and J (h(z(a))), have a constant rank equals to r = (p − k).k for
all a ∈ Υ.

Furthermore, we can also define a twice continuously differentiable real function ϕ(.) from Rr to R
such that ϕ(o) = 1

2∥h(o)∥
2
2 , ∀o ∈ Rr, and, again according to the demonstration of Theorem 5.10,

the point z(â) is a strict (local) minimizer of ϕ(.). This implies the existence of an open neigh-
borhood V of z(â) in Rr such that ,∀o ∈ V , we have ϕ(o) > ϕ(z(â)). As the function z(.) is
continuous over Υ, the set U = z−1(V) is of the form U = Υ ∩W , where W is an open set of
Rk.p, and U is thus an open neighborhood of â in Rk.p. Clearly, the elements a ∈ S(â) ∩ U verify
z(a) = z(â).

In these conditions, U is an open neighborhood of â and we can define a twice continuously differ-
entiable function g(.) from U to Rr by

g : U −→ Rr : a 7→ g(a) = z(a)− z(â) ,

and we have effectively
S(â) ∩ U = {a ∈ U / g(a) = 0m} .

Furthermore, the Jacobian matrix J
(
g(a)

)
= J

(
z(a)

)
∈ Rr×k.p verifies rank

(
J
(
g(a)

))
= r, ∀a ∈

U (see the demonstration of Theorem 5.10). This implies in particular that rank
(
J
(
g(â)

))
= r

and g
′
(â) is a surjective linear mapping from Rk.p to Rr and we conclude that S(â) is effectively

an embedded C1 submanifold around the (local) minimizer â in Rk.p of dimension k.p − r =
k.k.

Moreover, a closer look at the preceding demonstration further shows that the set S(â)∩U is in fact
also an embedded k.k-dimensional C2 submanifold in Rk.p in the sense of Definition 2.4 because
the mapping g(.) from U to Rr, defined above, is of class C2 and a valid local defining function for
S(â) ∩ U at all a ∈ S(â) ∩ U .

Let us now determine the tangent space to S(â) ∩ U at a ∈ S(â) ∩ U . By applying the Lyusternik
Theorem 5.11 to the set S(â) ∩ U , we have immediately

null
(
J
(
g(a)

))
= null

(
J
(
z(a)

))
= Ta

(
S(â) ∩ U

)
, ∀a ∈ S(â) ∩ U .

Finally, using the equality

null
(
J (r(a))

)
= null

(
J (z(a))

)
, ∀a ∈ Υ ,

established in the demonstration of Theorem 5.10), we get the equality

null
(
J (r(a))

)
= Ta

(
S(â) ∩ U

)
, ∀a ∈ S(â) ∩ U .

This shows that the tangent space to S(â) ∩ U at a ∈ S(â) ∩ U is nothing else than the kernel of
the Jacobian matrix J (r(a)), ∀a ∈ S(â) ∩ U . This implies in particular that

null
(
J (r(â))

)
= Tâ

(
S(â) ∩ U

)
.

142

Finally, using the hypothesis that T̂ (defined in equation (5.35)) is positive definite and Theo-
rem 5.10, we obtain the equality

null
(
∇2ψ(â)

)
= null

(
J (r(â))

)
= Tâ

(
S(â) ∩ U

)
,

which demonstrates that the cost function ψ(.) effectively verifies the so-called Morse-Bott property
at the (local) minimizer â under the hypotheses of Theorem 5.10 and when, in addition, the r × r
symmetric matrix T̂ defined in equation (5.35) is positive definite as claimed above. Note that if â
is a (local) minimizer of ψ(.), but we don’t assume the hypothesis T̂ is positive definite, we can still
get the inclusion

Tâ
(
S(â) ∩ U

)
⊂ null

(
∇2ψ(â)

)
,

by using Theorem 5.9 and Corollary 5.9, and the fact that â is a first-order stationary point of
ψ(.).

In order to show now that Theorem 5.10 covers a large body of real applications, we note that the
matrix variable A is always requested to have full column rank to assure the differentiability of ψ(.)
and that F(a) is of full column rank in most cases as soon as every line or column of the data matrix
X has at least k non-missing entries. Furthermore, the hypothesis that the rank of the Jacobian
matrix J (r(a)) is constant and equal to r = (p − k).k in a neighborhood of â is automatically
verified if the hypotheses of Theorem 5.3 are fulfilled in a neighborhood of â. Finally, we note that
orthonormal bases given, respectively, by the columns of P and Q for the null space of J (r(â))
and its orthogonal complement, used in Theorem 5.10, can be easily computed from the results of
Corollary 5.6.

Obviously, Theorem 5.10 also justifies the extension of the regularization techniques, developed
in Subsection 5.2 to overcome the systematic singularity of the Jacobian matrix (or its approxima-
tion) in the Gauss-Newton or Levenberg-Marquardt methods, to the Newton method using the full
Hessian matrix H or its two-term approximation H̄ derived above. In other words, to avoid the
singularity or ill-conditioning of these two symmetric matrices near first-order stationary points of
ψ(.), the Newton correction vector dan ∈ Rk.p can be found in a two-step procedure at each iter-
ation, as for the Gauss-Newton algorithm described in Subsection 5.2. In a first step, we solve the
(p− k).k × (p− k).k symmetric linear system

(Ō⊥)THŌ⊥dān = −(Ō⊥)TJ
(
r(a)

)T
r(a) =

(
M(a)Ō⊥)T r(a) , (5.38)

or, if we use the two-term approximation of the Hessian, H̄ defined in equation (5.34),

(Ō⊥)T H̄Ō⊥dān =
(
M(a)Ō⊥)T r(a) , (5.39)

for dān ∈ R(p−k).k and where Ō⊥ = K(p,k)(Ik ⊗ O⊥) ∈ Ok.p×(p−k).k and O⊥ ∈ Op×(p−k) are

orthonormal matrices whose columns form, respectively, a basis of null
(
J (r(a))

)⊥ and ran(A)⊥,
see Corollary 5.6 and Theorem 5.7 for details. In a second step, to get the Newton correction vector
we need to compute the following matrix-vector product

dan = Ō⊥dān ∈ Rk.p ,

or, equivalently, in matrix format,

dAn = O⊥dĀn ∈ Rp×k .

This modification of the Newton algorithm in the context of the (VP1) problem, first suggested by
Chen [28], has a strong theoretical justification as it can be interpreted as a Riemannian Newton
operating on the (quotient) Grassmann manifold Gr(p, k) as we will show below, but it is also
computationally very expensive as Ō⊥ is huge matrix in most cases.

143

Alternatively, we can use a cheaper alternative based on the orthogonality constraint

NTdan = 0k.k ,

where N = K(p,k)(Ik ⊗A) or N = K(p,k)(Ik ⊗O), and the columns of the matrix A (O) form a
(orthonormal) basis of ran(A) and the columns of N is a (orthonormal) basis of null

(
J (r(a))

)
=

null
(
M(a)

)
, as demonstrated in Corollary 5.6 and discussed in Subsection 5.2, and proceed in one

step by solving the damped symmetric linear system(
H+NNT

)
dan = −∇ψ(a) = M(a)T r(a) (5.40)

or (
H̄+NNT

)
dan = −∇ψ(a) = M(a)T r(a) , (5.41)

if we use the two-term approximation of the Hessian matrix. Note that, in both cases, the term NNT

can be efficiently evaluated as

NNT = K(p,k)(Ik ⊗AAT)K(k,p) or NNT = K(p,k)(Ik ⊗OOT)K(k,p) . (5.42)

This last approach using a linear constraint is new in the context of Newton methods, but is sim-
ply an extension to (quasi-)Newton methods of the technique first proposed by Okatani et al. [150]
for Gauss-Newton and Levenberg-Marquardt methods. The variant of the Newton method, defined
by equation (5.41), can also be interpreted as a Riemannian quasi-Newton operating on the (quo-
tient) Grassmann manifold Gr(p, k), but not the first one defined by equation (5.40) as we will see
below.

Assuming that the dimension of the null space of H or H̄ at first-order stationary points of ψ(.)
is equal to the dimension of the null space of the Jacobian matrix and that both are equal to k.k,
these different approaches will efficiently overcome the systematic singularity of H̄ or those of H at
these first-order stationary points of ψ(.). In these conditions, the above symmetric linear systems
will have an unique solution and the (quasi-)Newton direction is thus well defined. Of course,
as always in Newton methods, one common weakness of these two second-order approaches for
solving the (VP1) problem is that H or its two-term approximation H̄ may not be positive definite at
some points in a region of mixed curvature. In such condition, the Newton direction may not be in a
descent direction and the above linear systems cannot be solved by a simple Cholesky factorization.
However, many standard techniques are available to deal with this classical problem [139][123] and
can be applied here in our specific WLRA context without any modification as we will discussed in
Subsection 6.3.

Alternatively, we can again recast the WLRA problem in its variable projection formulation as an
optimization problem on the (quotient) Grassmann manifold Gr(p, k) [3][11] and use a Riemannian
Newton method to solve it as was done for example in [13][14]. To clarify the differences and
similarities between the Riemannian Newton method operating on Gr(p, k) and the above (quasi)-
Newton algorithms operating on Rp×kk (or on St(p, k) = Op×k), we now investigate the relationships
between the Euclidean Hessian of ψ(.) at a, given in equation (5.33) (e.g., when ψ(.) is considered
as a real function from Rp.k to R, see equation (3.23)), and the Riemannian Hessian of the un-
vectorized form of ψ(.) at A ∈ Rp×kk (e.g., the real function ψ ◦ h−1(.) from Rp×kk to R, where
h−1(.) is defined in equation (3.29) of Subsection 3.4 with h−1(A) = vec(AT) = a,∀A ∈ Rp×kk),
when this cost function is considered abusively as defined on the Grassmann manifold Gr(p, k), as
already discussed at the end of Subsection 5.2 and at the beginning of this subsection. The results
we present now are a slight extension, with our notations, of those given in [82].

As in our previous discussion on the connections between the Euclidean gradient of ψ(.) and the
Riemannian gradient of ψ ◦ h−1(.), to simplify the presentation we require that W ∈ Rp×n+∗ and
that each element O̊ ∈ Gr(p, k) is represented by an element of the compact Stiefel manifold
O ∈ St(p, k), in line with previous works on Riemannian optimization on Gr(p, k) [47][14][11].

144

Recall also that any element of the tangent space of Gr(p, k) at O̊, TO̊Gr(p, k), can be represented
uniquely by an element of the following linear subspace of Rp×k of dimension (p− k).k:

TOGr(p, k) =
{
D ∈ Rp×k /OTD = 0k×k

}
,

as already noted in Subsection 5.2. TOGr(p, k) is nothing else than the horizontal space of St(p, k)
at O ∈ St(p, k), noted HOSt(p, k) or HOOp×k in Subsection 2.4. In these conditions, using
Theorem 5.8, we have

∇Rψ ◦ h−1(O̊) =
(
Ip −OOT

)
∇Fψ ◦ h−1(O) = ∇Fψ ◦ h−1(O) ,

where ∇Rψ ◦ h−1(O̊) is the Riemannian gradient of the smooth cost function ψ ◦ h−1(.) (defined
on the Grassmann manifold Gr(p, k)) at O̊ ∈ Gr(p, k) and ∇Fψ◦h−1(O) is the standard Frobenius
gradient of ψ ◦ h−1(.) at O ∈ St(p, k).

In this framework, the Riemannian Hessian of the smooth map ψ◦h−1(.) defined on the Grassmann
manifold Gr(p, k) at O̊ = ran(O) ∈ Gr(p, k), is thus a linear transformation from TOGr(p, k) to
TOGr(p, k). Furthermore, using the above equality between the Riemannian and Frobenius gra-
dients and equation (2.52) in Subsection 2.4, ∀D ∈ TOGr(p, k), the image of D by the Hessian
∇2
Rψ ◦ h−1(O̊) considered as a linear operator from TOGr(p, k) to TOGr(p, k) is given by

[∇2
Rψ ◦ h−1(O̊)](D) =

(
Ip −OOT

)
[∇2

Fψ ◦ h−1(O)](D) , (5.43)

where ∇2
Fψ ◦ h−1(O) is the standard Frobenius Hessian of ψ ◦ h−1(.) at O ∈ St(p, k) and(

Ip −OOT
)

is the orthogonal projector onto ran(O) in Rp, but also the orthogonal projector onto
TOGr(p, k) in Rp×k, when TOGr(p, k) is considered as a subspace of Rp×k of dimension (p−k).k,
which is also the horizontal space of St(p, k) at O ∈ St(p, k) as noted above.

Thus, we have D ∈ TOGr(p, k) and [∇2
Rψ ◦ h−1(O̊)](D) ∈ TOGr(p, k), and both are considered

as p × k matrices in equation (5.43). In these conditions, as noted in Subsection 5.2, equivalently,
we can vectorize both D and [∇2

Rψ ◦ h−1(O̊)](D) as

h = vec
(
DT
)
∈ Rp.k and ∇2

Rψ(̊o)d = vec
((

[∇2
Rψ ◦ h−1(O̊)](D)

)T) ∈ Rp.k ,

where now ∇2
Rψ(̊o) is a p.k × p.k (asymmetric) matrix.

Furthermore, using equations (5.43), (2.32), (2.36) and Corollary 5.6, we have, ∀d ∈ Rp.k,

∇2
Rψ(̊o)d = vec

(((
Ip −OOT

)
[∇2

Fψ ◦ h−1(O)](D)
)T)

= vec
((

[∇2
Fψ ◦ h−1(O)](D)

)T (
Ip −OOT

))
=
(
(Ip −OOT)⊗ Ik

)
vec
((

[∇2
Fψ ◦ h−1(O)](D)

)T)
=
(
Ip.k − (OOT ⊗ Ik)

)
vec
((

[∇2
Fψ ◦ h−1(O)](D)

)T)
=
(
Ip.k − ŌŌT

)
vec
((

[∇2
Fψ ◦ h−1(O)](D)

)T)
=
(
Ip.k − ŌŌT

)
∇2ψ(o)d ,

where ∇2ψ(o) is a p.k × p.k symmetric matrix and the orthogonal projector
(
Ip −OOT

)
onto

TOGr(p, k) is represented in vectorized form by the orthogonal projector onto null
(
J (r(o))

)⊥
=

null
(
M(o)

)⊥ given by
(
Ip.k − ŌŌT

)
, where the columns of Ō = K(p,k)(Ik ⊗ O) are an or-

thonormal basis of null
(
J (r(o))

)
= null

(
M(o)

)
, as demonstrated in Corollary 5.6 of Subsec-

tion 5.2.

This leads to the matrix equality

∇2
Rψ(̊o) =

(
Ip.k − ŌŌT

)
∇2ψ(o) ,

145

and, using the explicit form of ∇2ψ(o) given by equation (5.33), we obtain:

∇2
Rψ(̊o) =

(
Ip.k − ŌŌT

) (
M(o)TM(o)− L(o)TL(o) +U(o)TL(o) + L(o)TU(o)

)
= M(o)TM(o)− L(o)TL(o) +

(
Ip.k − ŌŌT

)
U(o)TL(o) + L(o)TU(o) , (5.44)

since (
Ip.k − ŌŌT

)
M(o)T = M(o)T − Ō(ŌTM(o)T)

= M(o)T − Ō(M(o)Ō)T

= M(o)T ,

as the columns of Ō form an orthonormal basis of null
(
M(o)

)
and, similarly,(

Ip.k − ŌŌT
)
L(o)T = L(o)T − Ō(ŌTL(o)T)

= L(o)T − Ō(L(o)Ō)T

= L(o)T ,

as null
(
J (r(o))

)
= null

(
M(o)

)
∩ null

(
L(o)

)
⊂ null

(
L(o)

)
and, thus, each column vector of Ō is

also an element of null
(
L(o)

)
when W ∈ Rp×n+∗ according to Corollary 5.5.

Since ∇2
Rψ ◦ h−1(O̊) is a linear operator from TOGr(p, k) to TOGr(p, k), which is of dimension

(p − k).k, the p.k × p.k matrix ∇2
Rψ(̊o) represents a linear mapping from null

(
J (r(a))

)⊥ to

null
(
J (r(a))

)⊥ (or equivalently from null
(
M(o)

)⊥ to null
(
M(o)

)⊥) and we can represent this

linear mapping in terms of the orthonormal basis of null
(
J (r(a))

)⊥ given by the columns of Ō⊥ =

K(p,k)(Ik⊗O⊥) ∈ Ok.p×(p−k).k. When we do so the Riemannian Newton direction vector, dōr−n,

in null
(
M(o)

)⊥ can be computed as the solution of the following (p− k).k× (p− k).k symmetric
linear system of equations

(Ō⊥)T∇2
Rψ(̊o)Ō

⊥dōr−n = −(Ō⊥)T∇Rψ(̊o) , (5.45)

which is exactly equivalent to the symmetric linear system given in equation 5.38 since

(Ō⊥)T∇2
Rψ(̊o) = (Ō⊥)T

(
Ip.k − ŌŌT

)
∇2ψ(o)

= (Ō⊥)T Ō⊥(Ō⊥)T∇2ψ(o)

= (Ō⊥)T∇2ψ(o) ,

and

−(Ō⊥)T∇Rψ(̊o) = −(Ō⊥)T∇ψ(o)

= −(Ō⊥)TJ
(
r(o)

)T
r(o)

=
(
M(o)Ō⊥)T r(o) .

In a final step, we can also get the Riemannian Newton direction vector, dor−n, in Rk.p as

dor−n = Ō⊥dōr−n ,

and we have both dor−n = don and dōr−n = dōn. Thus, the Newton iteration defined by
equation (5.38) can effectively be considered as a Riemannian Newton method if the next New-
ton iterate is computed with the help of a proper retraction onto the Stiefel manifold St(p, k), as
defined in equation (5.25) of Subsection 5.2. Obviously, a similar argument shows that the quasi-
Newton iteration defined by equation (5.39) can also be interpreted as a Riemannian quasi-Newton
method.

146

We now show that the Newton iteration defined by equation (5.40) does not share this nice property
in general. Since ∇2

Rψ(̊o) is asymmetric and is considered to be a linear operator from TOGr(p, k)
to TOGr(p, k) (more precisely from null

(
J (r(a))

)⊥ to null
(
J (r(a))

)⊥), it is first convenient to
define the p.k × p.k. symmetric projected Riemannian Hessian as

∇2
Rψ(̊o)

(
Ip.k − ŌŌT

)
=
(
Ip.k − ŌŌT

) (
M(o)TM(o)− L(o)TL(o) +U(o)TL(o) + L(o)TU(o)

) (
Ip.k − ŌŌT

)
= M(o)TM(o)− L(o)TL(o) +

(
Ip.k − ŌŌT

)
U(o)TL(o) + L(o)TU(o)

(
Ip.k − ŌŌT

)
=
(
Ip.k − ŌŌT

)
∇2ψ(o)

(
Ip.k − ŌŌT

)
, (5.46)

which is now a symmetric linear mapping from Rp.k to Rp.k, but this one has, however, the incon-
venient to be always rank-deficient with its null space equals to null(J (r(o))) = null(M(o)) in
regular cases, e.g., when the hypotheses of Corollary 5.5 are fulfilled and the matrix function F(.)
has full column rank in a neighborhood of o so that ∇2ψ(o) exists.

Next, adding the term NNT , defined in equation (5.42), to this symmetric projected Riemannian
Hessian matrix will remove its systematic rank degeneracy [82] and provides an alternative method
to compute the Riemannian Newton direction vector dor−n, defined above, as the unique solution
vector of the following p.k × p.k symmetric linear system in regular cases(

Ip.k − ŌŌT
)
∇2ψ(o)

(
Ip.k − ŌŌT

)
dor−n = M(o)T r(o) .

However, we observe that Riemannian Newton iteration based on this damped version of the sym-
metric projected Riemannian Hessian will differ in general from the damped Newton iteration based
on equation (5.40) despite the damping term is the same. This is obvious from equation (5.46) defin-
ing the symmetric projected Riemannian Hessian, which shows that the third symmetric term in the
symmetric projected Riemannian Hessian differs from the third symmetric term in the formulation
of the Euclidean Hessian given in equation (5.33). On the other hand, as the first two-terms of the
symmetric projected Riemannian and Euclidean Hessians are identical, we can conclude that the
damped quasi-Newton iteration based on a two-term approximation of the Euclidean Hessian H̄,
defined in equation (5.41), can still be interpreted as a Riemannian quasi-Newton method operating
on the (quotient) Grassmann manifold Gr(p, k) as claimed above.

To conclude that subsection, we now give an overview of the second-order trust-region method
(RTRMC2) proposed by Boumal and Absil [14] to minimize the cost function ψ ◦ h−1(.) = gλ(.)
on the Grassmann manifold Gr(p, k), where gλ(.) is defined in equation (3.18), in order to contrast
its advantages and drawbacks compared to the quasi-Newton methods just described above. To this
end and as above, we assume that W ∈ Rp×n+∗ , that each element O̊ ∈ Gr(p, k) is represented by an
element of the compact Stiefel manifold O ∈ St(p, k) and that ψ ◦ h−1(.) is a smooth function on
St(p, k) such that both the Riemannian gradient and Hessian of ψ ◦ h−1(.) exist ∀O ∈ St(p, k). In
this framework, the RTRMC2 method can be both interpreted as a variable projection method and
a Riemannian second-order optimization method operating on the quotient Grassmann manifold
Gr(p, k).

First, Boumal and Absil have avoided the direct computation of the vectorized forms of the Eu-
clidean or Riemannian Hessian of ψ(.) as we did in equations (5.33) and (5.44), respectively. In-
stead, they have derived only the directional derivative in the direction of D ∈ TOGr(p, k) =
HOSt(p, k) of the Riemannian gradient of ψ ◦ h−1(.) at O̊ ∈ Gr(p, k) in a compact formulae, see
equation 27 in [14], which is relatively inexpensive and efficient compared to the evaluation of the
full Hessians in equations (5.33) and (5.44). In other words and in our notations, this expression
uses unvectorized variables and is essentially equivalent to equation (5.43) given above. Further-
more, this compact expression is sufficient for implementing efficiently an (inexact) iterative inner
subsolver inside the RTRMC2 method, as we will describe now.

Besides, the RTRMC2 method generates a sequence of iterates Oi ∈ St(p, k) (more precisely of
iterates O̊i ∈ Gr(p, k)) together with a sequence of trust-region radii δi > 0. At each iteration i,

147

a subproblem solver computes a new step dOi ∈ TOGr(p, k) = HOSt(p, k) and the next iterate
Oi+1 ∈ St(p, k) is obtained by performing a retraction RetractionOi(dOi), as defined in equa-
tion (5.25), to go back to the correct manifold, e.g., St(p, k) (or more precisely Gr(p, k) [14]). The
RTRMC2 method proceeds by computing dOi via minimizing an approximate second-order Taylor
expansion of the objective function ψ ◦ h−1(.) within a ”trust-region” ∥dOi∥F ≤ δi with adap-
tively chosen radii δi [3][14][11]. Depending on the performance of the inner subsolver, the outer
RTRMC2 algorithm decides to accept or reject the proposed step dOi, and, possibly, decides to
increase or reduce the trust-region radii. More precisely, in the inner subsolver, dOi is computed
to approximately minimize the following quadratic model function mi(dO) : TOGr(p, k) 7→ R
defined by

mi(dO) = ψ ◦ h−1
(
Oi
)
+ ⟨dO,∇Rψ ◦ h−1(O̊)⟩F +

1

2
⟨dO, [∇2

Rψ ◦ h−1(O̊)](dO)⟩F ,

under the constraint ∥dO∥F ≤ δi and so that mi(0p×k) = ψ ◦ h−1
(
Oi
)

and mi(dOi) ≈ ψ ◦
h−1

(
Oi+1

)
. The selected inner subsolver is inexact and uses truncated conjugate gradient iterations

to attempt to minimize mi(.) over TOGr(p, k) [14][11] .

Despite the use of an iterative inner subsolver inside of an outer solver, the RTRMC2 method has a
medium per-iteration complexity cost of the order of O((p.k)2), while the (quasi-)Newton methods
given in equations (5.38), (5.39), (5.40), (5.41) have a much high per-iteration complexity of
order at least O((p.k)3) for inverting the damped Hessian, giving a clear advantage to the RTRMC2
method in terms of speed and efficiency. On the other hand, the RTRMC2 method has more severe
instability issues because its iterative inner solver based on (truncated) conjugate gradient iterations
is not always robust when the Hessian is singular or ill-conditioned, which is always the case at first-
order stationarity points and near the (local) non-isolated minima of ψ ◦ h−1(.) where the Hessian
has always vanishingly small, possibly negative eigenvalues [162]. This is verified experimentally
in Hong et al. [81] and is explained by the theory developed in [162]. Thus, with respect to accuracy
and robustness, the Gauss-Newton, Levenberg-Marquardt and (quasi-)Newton methods developed
in the previous and present subsections have a clear advantage as illustrated in the comparative
studies of Okatani et al. [150] or Hong et al. [81].

This suggests finally that a fruitful area of future research to get the advantages of the two worlds,
for solving efficiently and accurately difficult WLRA problems, may be to use a damped version
of the Riemannian Hessian or of its two-term approximation (e.g., with a damping term equivalent
to the one defined in equation (5.42) for ψ(.)) in the quadratic model function mi(.) minimized
by the inner solver of RTRMC2. This may eventually help to reduce its instability issues near the
non-isolated minima of ψ ◦ h−1(.), while keeping its lower per-iteration complexity.

6 Implementation of variable projection NLLS methods for solving
the WLRA problem

This section is concerned with the formulation of practical and effective second-order algorithms for
minimizing the cost function ψ(.), i.e., the description of variable projection (pseudo-)second-order
algorithms designed to solve the (VP1) formulation of the WLRA problem using the theoretical
results established in the previous sections, especially the systematic rank-deficient nature of the
Jacobian matrix J (r(a)) everywhere in the search space and the exactly rank-deficient nature of the
Hessian matrix ∇2ψ(â) if â is a stationary point of ψ(.).

Standard results for the convergence of (quasi-)Newton methods suppose that the cost function is
smooth, the target local minimum has a positive definite Hessian and that the algorithm is initialized
in a neighborhood of this minimum [45][139]. However, this hypothesis is always violated here for
the cost function ψ(.) used in the (VP1) formulation of the WLRA problem as local minima of ψ(.)
are never isolated and can even form a continuum or a smooth manifold in some circumstances
(e.g., when ψ(.) locally verified the Morse-Bott property as illustrated in the previous section). In

148

such deteriorated conditions, standard NLLS methods such as the Gauss-Newton or (quasi-)Newton
methods would have difficulties [163][199]. The Levenberg-Marquardt and trust-region Gauss-
Newton methods can be used without modifications if the Jacobian J (r(a)) is not of full rank if
the Marquardt damping parameter λ or the radius ∆ of the trust-region are controlled appropriately
to not approach zero during the iterations and, especially, in the neighborhood of a critical point â.
However, these methods may have very slow convergence if the Jacobian matrix J (r(a)) is singular
everywhere in the search space and the damping factor is controlled so as not to tend to zero during
the iterations, as in this scenario, we loose the quadratic or superlinear convergence speed of these
methods near a critical point and the attainable accuracy is also limited [199]. Moreover, most
convergence results for all these methods essentially depend on the assumption that, at a solution
point â, the Jacobian J (r(â)) is nonsingular [45][139].

However, some convergence results are also available for the exactly rank-deficient Jacobian case
in the neighborhood of a solution point â for Gauss-Newton- or Levenberg-Marquardt-like meth-
ods [5][6][55][111][9][73][195][52][53][196][56][54][34][19] or for a singular Hessian at local
minima â for (quasi-)Newton methods [5][6][159][40][67][59][161][137][36][2][42][163][199][43].
Moreover, in practice, some of these (quasi-)second-order methods preserve their favourable faster
convergence compared to first-order methods for non-isolated minima, a surprising result, which has
been explained under mild assumptions like the Polyak–Lojasiewicz, Quadratic Growth and Error
Bound conditions [199][162][163][43]. Recently, Rebjock and Boumal [163] unified these different
results by demonstrated that these three conditions are essentially equivalent to the Morse-Bott prop-
erty if the objective function is a C2 function in a neighborhood of the target local minimum like the
cost function ψ(.) used in the (VP1) formulation of the WLRA problem under some circumstances
(see the previous section for more details).

In the case of the Newton method, one of the most successful approaches in the case of a singular
Hessian is the use of bordering techniques introduced by Griewank and co-workers [59][161] and
the adaptation of the Newton method described in the previous section to solve the (VP1) form of the
WLRA problem falls in this category. On the other hand, if as is the current approximate solution,
recall that the Gauss-Newton method for minimizing ψ(.) is based on a linear approximation of the
residual function r(.) from the Taylor’s expansion around as

r(a) = r(as) + J
(
r(as)

)
(a− as) +O(∥a− as∥22) .

The Gauss-Newton step dagn = a−as is then the solution of the linear least-squares problem

dagn = Arg min
da∈Rp.k

1

2
∥r(as) + J

(
r(as)

)
da∥22 .

Since J (r(as)) is always rank deficient, the solution of this linear least-squares problem is not
unique. However, a natural choice is to take dagn to be the unique minimum 2-norm solution,
which is given by

dagn = −J
(
r(as)

)+
r(as) ,

since the linearization argument used to derive the Gauss-Newton iteration is only valid in a ”small”
neighborhood of as. This leads to the generalized (Gauss-)Newton or Ben-Israel iterative method

as+1 = as + dagn = as − J
(
r(as)

)+
r(as) .

The local and global convergence properties of this algorithm when J (r(a)) does not have full
rank in the neighborhood of a solution point â have been first investigated by Ben-Israel [5][6] and
then by several authors afterward [9][73][137][36][42][199]. On assumptions like that J (r(a))+

is Lipschitz-continuous, the Jacobian J (r(a)) is of constant rank in some neighborhood of â or
the cost function ψ(.) verifies a Morse-Bott-like property in a neighborhood of â , they were able
to show the convergence of this generalized (Gauss-)Newton method to a stationary point of ψ(.).
In practice, it is necessary to include some strategy to estimate the numerical rank of J (r(as))

149

and the assigned rank can have a decisive influence on the success of the method. Thus, a QR-
or COD-factorization, or even a SVD-decomposition, of the matrix J (r(as)) are natural tools for
the Ben-Israel iteration. This implies that the Ben-Israel method is relatively expensive. An al-
ternative to this problem is to use a Tikhonov regularized version of the Ben-Israel iteration as in
Levenberg-Marquardt or trust-region methods (see Subsection 5.1), but the choice of the regular-
ization parameter is also a challenge in the rank-deficient case. Fortunately, the specific properties
of the Jacobian J (r(a)) derived in Subsection 5.2 can be used for this purpose and also to reduce
drastically the cost of the Ben-Israel iterative method or its regularized version as we will illustrate
below.

Alternatively, Menzel [121] has proposed to reformulate the exactly rank deficient problem as an
auxiliary least-squares problem of higher dimension which can be shown to be a well-posed one
if the rank deficiency of J (r(a)) is small. Moreover, he was able to prove that for arbitrary rank
deficiency in the consistent case ψ(â) = 0, the Gauss-Newton sequence for his auxiliary least-
squares problem converges at least superlinearly to â. However, his technique, which expands
considerably the size of the problem, is useful in practice only for small dimensions and small rank
deficiency values and cannot be applied to our WLRA problem where both the dimensions and the
rank deficiency values may be high.

More recently, Eriksson and Wedin [52][53][54] also considered the NLLS problem with an exactly
rank-deficient Jacobian matrix for all points in a neighborhood of a local solution. As this situation
corresponds exactly to the minimization of the cost function ψ(.) in the (VP1) formulation of the
WLRA problem, as demonstrated in the previous sections, we discuss now their method in some
details. They suggested the following reformulation (in our notations) of the (VP1) variant of the
WLRA problem in order to obtain a uniquely defined solution

â =

{
Argmina∈Rp.k

1
2∥a∥

2
2

s.t. Argmina∈Rp.k
1
2ψ(a) =

1
2∥r(a)∥

2
2

,

and they proposed two different iterative methods to solve this problem: a Gauss-Newton method
and a Tikhonov regularization method. In words, what Eriksson and Wedin [52][53][54] suggested
is to actually obtain the minimum Euclidean norm solution to the problem of minimizing ψ(.). A
similar approach was already mentioned by Boggs [9]. Using a Taylor series through two terms
around as, we get the linearized version of this problem and the following iterative method

as+1 =

{
Argmina∈Rp.k

1
2∥a∥

2
2

s.t. Argmina∈Rp.k
1
2∥r(as) + J

(
r(as)

)
(a− as)∥22

.

Following Pes and Rodriguez [153][154], we will denote this as the Minimal-Norm Gauss-Newton
(MNGN) method. It must be noted that the Ben-Israel iterative method has no predisposition to-
ward the minimum 2-norm solution of minimizing ψ(.) in the sense that any limit point generated
by the Ben-Israel iteration is a least-squares solution, but not in general the minimum 2-norm solu-
tion and, consequently, the Ben-Israel and MNGN solutions will differ in general [9][54][34][153].
Since

r(as) + J
(
r(as)

)
(a− as) =

(
r(as)− J

(
r(as)

)
as

)
+ J

(
r(as)

)
a ,

the minimum 2-norm solution as+1 of the problem

min
a∈Rp.k

1

2
∥r(as) + J

(
r(as)

)
(a− as)∥22

150

is

as+1 = −J
(
r(as)

)+(
r(as)− J

(
r(as)

)
as

)
= −J

(
r(as)

)+
r(as) + J

(
r(as)

)+
J
(
r(as)

)
as

= dagn +PJ (r(as))T as

= PJ (r(as))T
(
as + dagn

)
,

where PJ (r(as))T is the orthogonal projector onto ran(J (r(as))T) = null(J (r(as)))⊥, e.g., onto the
row space of J (r(as)) and the last equality results from equation (2.9). Thus, to ensure computation
of the minimal 2-norm solution, at the sth iteration of the MNGN method, the standard Gauss-
Newton approximation as + dagn, computed by the Ben-Israel method, is (orthogonally) projected
onto the orthogonal of the null space of J (r(as)), e.g., null(J (r(as)))⊥. Alternatively, the MNGN
iteration proposed by Eriksson and Wedin [53][54] can be written as

as+1 = as + damngn ,

with the MNGN step computed as

damngn = −J
(
r(as)

)+
r(as) +PJ (r(as))T as − as

= dagn −P⊥
J (r(as))T

as

= dagn −Pnull(J (r(as)))as ,

and where Pnull(J (r(as))) is the orthogonal projector onto the null space of J (r(as)). See Sub-
section 2.1 for details how the orthogonal projectors Pnull(J (r(as))) and PJ (r(as))T can be repre-
sented using the SVD of J (r(as)) or much more efficiently using a COD of this matrix. Further-
more, note that these orthogonal projectors can be easily computed using the orthonormal bases of
null(J (r(as))) and its orthogonal complement identified in Corollary 5.6 (assuming that the rank
of J (r(as)) is equal to r = k.(p− k)).

In order to ensure global convergence of the MNGN method, Campbell et al. [34] and Pes and
Rodriguez [154] have also considered the inclusion of relaxation (or damping) parameters in the
MNGN method, giving the iterative methods

as+1 = as + αsdagn −Pnull(J (r(as)))as (MNGN1)

or
as+1 = as + dagn − βsPnull(J (r(as)))as (MNGN2)

and also
as+1 = as + αsdagn − βsPnull(J (r(as)))as , (MNGN3)

where αs and βs are step length parameters, which can be determined by a line search and specific
strategies described in [34][154].

As suggested by Eriksson and Wedin [52][53][54] and Pes and Rodriguez [153], a good approximate
Minimal-Norm Levenberg-Marquardt step, damnlm, can also be found by solving the regularized
linear least-squares problem

damnlm = Arg min
da∈Rp.k

1

2

∥∥∥ [r(as)
µas

]
+

[
J
(
r(as)

)
µIk.p

]
da
∥∥∥2
2
, (6.1)

with a sufficiently small Tikhonov regularization parameter µ since this regularized problem has an
unique solution

damnlm =−
(
J
(
r(as)

)T
J
(
r(as)

)
+ µ2Ik.p

)−1
J
(
r(as)

)T
r(as)

−
(
J
(
r(as)

)T
J
(
r(as)

)
+ µ2Ik.p

)−1
µ2as

151

and

lim
µ→0

(
J
(
r(as)

)T
J
(
r(as)

)
+ µ2Ik.p

)−1
J
(
r(as)

)T
= J

(
r(as)

)+
,

lim
µ→0

(
J
(
r(as)

)T
J
(
r(as)

)
+ µ2Ik.p

)−1
µ2 = Pnull(J (r(as))) ,

as demonstrated in [70]. The Tikhonov method proposed by Eriksson and Wedin [54], and also
considered by Pes and Rodriguez [153], then approximately solves a sequence of Tikhonov regu-
larized NLLS problems for a sequence of decreasing regularization parameter µt where the index t
does not necessarily equal the iteration index s. The approximate solution of one regularized NLLS
problem with Tikhonov parameter µt is taken as the starting point for the next regularized problem
with Tikhonov parameter µt+1 < µt. Eriksson and Wedin [54] proved that both the MNGN and
Tikhonov methods converge to a local minimum 2-norm solution if the iterations are started in a
neighborhood of the solution.

These two methods are directly applicable to an exactly rank deficient problem such as the (VP1)
formulation of the WLRA problem. However, we note that the different damped variants of the
MNGN method may fail to converge in many cases because projecting the GN solution orthogonally
to the null space of J (r(as)) may cause the residual to increase during the iterations for the MNGN1
variant or because the MNGN2 variant is equivalent to the application of the undamped Gauss-
Newton method, whose convergence is not theoretically guaranteed [154][34]. Note further that in
the case of the MNGN3 variant, convergence can be generally obtained if αs and βs are suitably
chosen, but in that case the method does not converge to the minimum 2-norm solution unless βs =
1 for s close to convergence [154]. Moreover, it is not of interest, nor natural to find the minimum
2-norm least-squares solution of our WLRA problem due to its very special structure, separability
properties and over-parameterization (e.g., because it is an optimization problem on manifolds or
subspaces). Additionally, the MNGN and Tikhonov methods involve the extra-computations of the
terms

Pnull(J (r(as)))as and
(
J
(
(r(as)

(
)TJ

(
(r(as)

(
) + µ2Ik.p

)−1
µ2as ,

in each iteration, respectively. This suggests that simple Ben-Israel or regularized Tikhonov meth-
ods will be more appropriate to minimize ψ(.).

With these considerations, we are now in position to give a full formal description of different
variations of the Gauss-Newton, Levenberg-Marquardt and (quasi-)Newton algorithms which may
be used to minimize ψ(.) in practice.

6.1 Variable projection Gauss-Newton algorithms

Using similar notations and definitions as in previous sections, an outline of the variable projection
Gauss-Newton algorithms is as follows:

Gauss-Newton algorithms 1.

Choose starting matrix A1 ∈ Rp×k, ε1, ε2, ε3 ∈ R+∗ and imax, jmax ∈ N∗, appropriately

For i = 1, 2, . . . until convergence do

(0) Optionally, compute a QRCP of Ai (see equation (2.15)) to determine ki = rank(Ai) and an
orthonormal basis of ran(Ai):

QiAiPi =

[
Ri Si

0(p−ki)×ki 0(p−ki)×(k−ki)

]
,

where Qi is an p× p orthogonal matrix, Pi is an k × k permutation matrix, Ri is an ki × ki
nonsingular upper triangular matrix (with diagonal elements of decreasing absolute magni-
tude) and Si an ki × (k− ki) full matrix, which is vacuous if ki = k. If ki < k, complete the

152

orthonormal basis of ran(Ai) with k− ki orthonormal vectors by using the p× p orthogonal
matrix Qi computed implicitly during the QRCP of Ai.

In other words, in all cases, compute a p× k matrix Oi with orthonormal columns as the first
k columns of Qi (i.e., such that ran(Ai) ⊂ ran(Oi) if ki < k and ran(Ai) = ran(Oi) if
ki = k) and set

Ai = Oi .

This optional orthogonalization step is a safe-guard as the condition ki = k is a necessary
condition for the differentiability ofψ(.) at a point Ai and is also useful to limit the occurrence
of overflows and underflows in the next steps by enforcing that the matrix variable Ai ∈
Op×k.

(1) Determine (implicitly) the block diagonal matrix

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

where ai = vec(AT
i) .

(2) Compute (implicitly) a QRCP of F(ai) to determine P⊥
F(ai)

and F(ai)
− (see equations (2.18)

and (2.19)) or, alternatively, a COD of F(ai) to determine P⊥
F(ai)

and F(ai)
+ (see equa-

tions (2.18) and (2.21)).

Note also that F(ai)− = F(ai)
+ if F(ai) is of full column rank and that P⊥

F(ai)
, F(ai)− and

F(ai)
+ are also block diagonal matrices.

(3) Solve the block diagonal linear least-squares problem

bi = Argminb∈Rk.n ∥x− F(ai)b∥22 ,

e.g., compute

bi =

{
F(ai)

−x {if a QRCP of F(ai) is used in step (2)}
F(ai)

+x {if a COD of F(ai) is used in step (2)}
.

(4) Determine:

r(ai) = P⊥
F(ai)

x {current residual vector}

ψ(ai) =
1
2∥r(ai)∥

2
2 {current value of the cost function }

∇ψ(ai) = G(bi)
TG(bi)ai −G(bi)

T z {see Theorems 4.3 and 5.7}

Note that the steps (1) to (4) above can be very easily parallelized using the block diagonal
structure of F(ai).

(5) Check for convergence. Relevant convergence criteria in the algorithms are of the form:

• ∥∇ψ(ai)∥2 ≤ ε1

• ∥ai − ai−1∥2 ≤ ε2(ε2 + ∥ai∥2) {if i ̸= 1}

If step (0) is used, this last convergence condition can be simplified as:

∥ai − ai−1∥2 ≤ ε2∥ai∥2 = ε2
√
k

• |ψ(ai−1)− ψ(ai)| ≤ ε3(ε3 + ψ(ai)) {if i ̸= 1}

• i ≥ imax {e.g., give up if the number of iterations is too large}

where ε1, ε2, ε3 and imax are constants chosen by the user.

Exit if convergence. Otherwise, go to step (6)

153

(6) Compute the Gauss-Newton correction vector dagn as the minimum 2-norm solution of one
of the following linear least-squares problems:

Golub-Pereyra step: Golub and Pereyra [63], Ruhe and Wedin [166]

dagp−gn =
(
M(ai) + L(ai)

)+
r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−

(
M(ai) + L(ai)

)
da∥22

Kaufman step: Kaufman [96], Ruhe and Wedin [166]

dak−gn = M(ai)
+r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−M(ai)da∥22

Gauss-Seidel step: Ruhe and Wedin [166]

dags−gn =
(
K(n,p)G(bi)

)+
r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−K(n,p)G(bi)da∥22

(7) Increment ai = vec(AT
i), e.g., compute ai+1 = vec(AT

i+1) such that ψ(ai+1) < ψ(ai) in
order to obtain global convergence.

(7.1) To this end, first compute

ai+1 = ai + dagn

and if a Golub-Pereyra or Kaufman step is used in step (6)

ψ(ai+1) =
1
2∥r(ai+1)∥22 = 1

2∥P
⊥
F(ai+1)

x∥22 ,

using (implicitly) a QRCP of the block diagonal matrix F(ai+1).

(7.2) If a Golub-Pereyra or Kaufman step is used in step (6) and ψ(ai+1) > ψ(ai) then
recompute ai+1 by one of the following methods:

Gauss-Seidel: ai+1 = ai + dags−gn where dags−gn is a Gauss-Seidel step [166] de-
fined as

dags−gn =
(
K(n,p)G(bi)

)+
r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−K(n,p)G(bi)da∥22

Block alternating least-squares:

ai+1 = G(bi)
+z

=

{
Argmina∈Rp.k ∥a∥22
s.t. Argmina∈Rp.k ∥z−G(bi)a∥22

154

Line search:
ai+1 = ai + αidagn ,

where αi < 1 is determined by a line search to make the algorithm a descent
method (i.e., such that ψ(ai+1) < ψ(ai)). This is always possible as the correction
vector dagn is in a descent direction for ψ(.) if ∥∇ψ(ai)∥2 ̸= 0, see Corollary 5.7.

As an illustration, a simple, but still efficient, strategy is to first shorten the correc-
tion step to half the Gauss-Newton length, compute the new trial value for ψ(ai+1)
and, if it is still worse, continue to reduce the step until we get a step short enough
such that ψ(ai+1) < ψ(ai). The following loop incorporates this simple step-
shortening algorithm:

For j = 1, 2, . . . while
(
ψ(ai+1) > ψ(ai)

)
dagn = 1

2dagn

ai+1 = ai + dagn

ψ(ai+1) =
1
2∥P

⊥
F(ai+1)

x∥22 {using a QRCP of the matrix F(ai+1)}

If j > jmax exit {e.g., give up if the number of iterations is too large}

End do

End do

For the convenience of the reader, we first recall the shape and definition of the vector and matrix
variables used in these Gauss-Newton algorithms. We have: X ∈ Rp×n, W ∈ Rp×n+ , Ai ∈ Rp×k,
Bi ∈ Rk×n, Oi ∈ Op×k and

x = vec(
√
W ⊙X) ,

z = vec
(
(
√
W ⊙X)T

)
,

ai = vec(AT
i) ,

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

bi = vec(Bi) =

{
F(ai)

−x {if a QRCP is used in step (2)}
F(ai)

+x {if a COD is used in step (2)}
,

G(bi) = diag
(
vec(

√
W

T
)
)(
Ip ⊗BT

i

)
,

U(ai) = diag(vec(
√
W))(BT

i ⊗ Ip)K(k,p) ,

V(ai) =
(
(W ⊙ PΩ(X−AiBi))

T ⊗ Ik
)
{where PΩ(.) is defined in equation (3.17)} ,

M(ai) = P⊥
F(ai)

U(ai) = P⊥
F(ai)

K(n,p)G(bi) ,

L(ai) =

{
F(ai)

−TV(ai) {if a QRCP is used in step (2)}
F(ai)

+TV(ai) {if a COD is used in step (2)}
.

In these Gauss-Newton algorithms, the iterations are terminated either when one or several of the
convergence criteria listed in step (5) are satisfied, or when the iteration count exceeds the predeter-
mined number imax.

The Golub-Pereyra step dagp−gn corresponds exactly to the standard Gauss-Newton step dagn ap-
plied to the minimization of the variable projection functional ψ(.), which is introduced in Subsec-
tion 5.1.

The following is a brief review of the basic ideas underlying the simplification introduced by the
Kaufman step dak−gn in the Gauss-Newton algorithms (1) and also in the Marquardt-Levenberg
algorithms (2) described in the next subsection. As stated in Subsection 5.1, the Gauss-Newton

155

method may be interpreted as a variation of Newton’s method to find a zero of the gradient of
ψ(.). More precisely, dropping the iteration index of the algorithm in order to simplify the notation,
the Gauss-Newton algorithm approximates the Hessian matrix H = ∇2ψ(a) with the cross-product
matrix J (r(a))TJ (r(a)) at each iteration based on the assumption that the components of the resid-
ual vector |rl(a)| are small near a solution and using the fact that the second term of the Hessian
matrix ∇2ψ(a) given by

S =

n.p∑
l=1

rl(a)∇2rl(a)

is of order O(∥r(a)∥2) (see equation (5.32) for the explicit form of S in our WLRA context). Now,
the Gauss-Newton approximation of the Hessian matrix is

∇2ψ(a) ≈ J (r(a))TJ (r(a) = M(a)TM(a) + L(a)TL(a) ,

as demonstrated in Subsection 5.3 (see equation (5.29) for details). Hence, the term −L(a) does not
contribute to the gradient ∇ψ(a) (see Theorem 5.7) and changes the Gauss-Newton approximation
of the Hessian only by the term L(a)TL(a), which is of order O(∥r(a)∥22), see equation (5.19). If
∥r(a)∥2 is small then this term is smaller than the second term of ∇2ψ(a), S, which is of order
O(∥r(a)∥2), and which is already dropped in the Gauss-Newton and Levenberg-Marquardt meth-
ods. Following the Gauss-Newton philosophy, it is then natural to drop this term here too. In
addition, since the approximation of the Hessian matrix by its first two symmetric exact terms is
given by

∇2ψ(a) ≈ M(a)TM(a)− L(a)TL(a) ,

see equation (5.34), we may expect that approximating the Hessian matrix by the cross-product
matrix M(a)TM(a) (or equivalently the Jacobian matrix by −M(a)) can perform even better than
the Gauss-Newton approximation of the Hessian matrix, see Subsection 5.3 and equation (5.33) for
details. This leads to the following linear least-squares problems for computing the simplified Kauf-
man correction step in the Gauss-Newton and Levenberg-Marquardt methods, respectively,

dak−gn = Arg min
da∈Rp.k

1

2
∥r(a)−M(a)da∥22 ,

dak−lm = Arg min
da∈Rp.k

1

2
∥r(a)−M(a)da∥22 +

λ

2

∥∥Dda∥∥2
2
,

where λ is the damping Marquardt parameter and D is a diagonal scaling matrix of dimension k.p,
or their variants including a linear constraint to deal with the singularity of the M(a) matrix as
described in Subsection 5.2.

For more details in a general variable projection context, see Kaufman [96], where this simplifi-
cation has been derived for the first time using a QR factorization of the matrix F(a) and differ-
entiation of orthogonal matrices, Ruhe and Wedin [166] where a more direct derivation and gen-
eralizations are given, and also O’Leary and Rust [149] for a recent discussion of the respective
merits of this Jacobian approximation against the true Jacobian matrix, again for general variable
projection NLLS algorithms. Note that, in the computer vision’s community, this Kaufman vari-
ant of the Gauss-Newton or Levenberg-Marquardt algorithms has been already extensively used for
solving Structure-From-Motion (SFM) tasks [147][27][28][37][150][66][81][88] and is incorrectly
called the Wiberg’s algorithm in reference of the conference paper [190]. However, the first applica-
tion of this algorithm to solve WLRA problems (with binary weights) is in fact due to Ruhe [158].
Furthermore, again in the computer vision community, this algorithm has frequently be assumed
to be similar to the block ALS algorithm [176][15] (described in Section 4), which is also incor-
rect as shown above. The first correct derivation of this variant of the Gauss-Newton algorithm
to solve WLRA problems with binary weights in the computer vision field is due to Okatani and
Deguchi [147], see also the excellent Master thesis of Daskalov [37] in which this derivation is
revisited.

156

Now, the Gauss-Seidel step, dags−gn, is closely related to the Kaufman step, dak−gn, since it cor-
responds to applying the Gauss-Seidel iteration to the linear system appearing in the Kaufman-
Gauss-Newton iteration, see [166] for details. It is also closely related to the block ALS algorithm
described in Section 4, as we will demonstrate now.

The Gauss-Seidel step, dags−gn, is computed as the minimum 2-norm solution of the linear least-
squares problem

min
da∈Rp.k

∥r(ai)−K(n,p)G(bi)da∥22

and we have
r(ai) = P⊥

F(ai)
x = x− F(ai)bi = x−K(n,p)G(bi)ai ,

as demonstrated in Subsection 3.4. Hence,

r(ai)−K(n,p)G(bi)da = x−K(n,p)G(bi)ai −K(n,p)G(bi)da

= x−K(n,p)G(bi)
(
ai + da

)
= K(n,p)

(
z−G(bi)

(
ai + da

))
.

Furthermore,
∥r(ai)−K(n,p)G(bi)da∥22 = ∥z−G(bi)

(
ai + da

)
∥22 ,

since K(n,p) is an orthogonal matrix, and we see that the Gauss-Seidel step, dags−gn, solves the
linear least-squares problem

min
da∈Rp.k

∥z−G(bi)
(
ai + da

)
∥22 = ∥

(
z−G(bi)ai

)
−G(bi)da∥22 ,

while the ALS iteration computes ai+1 as the minimum 2-norm solution of the linear least-squares
problem

min
a∈Rp.k

∥z−G(bi)a∥22 .

If G(bi) is a full column-rank matrix, we then have

ai+1 = G(bi)
+z =

(
G(bi)

TG(bi)
)−1

G(bi)
T z

and

dags−gn = G(bi)
+
(
z−G(bi)ai

)
=
(
G(bi)

TG(bi)
)−1

G(bi)
T
(
z−G(bi)ai

)
=
(
G(bi)

TG(bi)
)−1

G(bi)
T z− ai

= ai+1 − ai ,

and, in these conditions, the ALS and Gauss-Seidel-Gauss-Newton algorithms generate exactly the
same iterates. On the other hand, if G(bi) is not a full column-rank matrix, we still have the
equality

∥z−G(bi)ai+1∥22 = ∥
(
z−G(bi)ai

)
−G(bi)dags−gn∥22 .

However, in general ai+1 ̸= ai+dags−gn since the Gauss-Seidel iteration produces the minimum 2-
norm correction vector dags−gn to the above linear least-squares problem while the ALS algorithm
obtains the minimum 2-norm solution ai+1 of this linear least-squares problem. Thus, unless ai+1

belongs to the correct manifold, the Gauss-Seidel and ALS steps do not produce the same iterate
when the matrix G(bi) is not of full column-rank.

We finally observe that a line search in step (7.2) of the Gauss-Newton algorithms (1) is not required
for the Gauss-Seidel correction dags−gn in order to obtain the inequality ψ(ai+1) ≤ ψ(ai) and
global convergence of the iterations, see Section 4 for details. On the other hand, for both the Golub-
Pereyra correction dagp−gn and the Kaufman correction dak−gn, it may happen that ψ(ai+1) >

157

ψ(ai) meaning that the ψ(.) surface is not reliably approximated by a quadratic function. In other
words, the quadratic approximation is only good in the local neighborhood of ai, not at the bottom
of the quadratic valley that the Gauss-Newton approach uses. In such cases, a line search algorithm
to determine αi at each iteration such that ψ(ai+1) < ψ(ai) must be incorporated in step (7.2)
of the Gauss-Newton algorithms (1) in order to obtain global convergence. Note also that this is
always possible despite the singularity of the Jacobian matrix −

(
M(ai) + L(ai)

)
or its Kaufman

approximation −M(ai) (see Theorem 5.2) as the correction vectors dagp−gn and dak−gn are in
a descent direction for ψ(.) if ∇ψ(ai) ̸= 0k.p (see Corollary 5.7). However, to develop damped
versions of these Gauss-Newton algorithms by implementing a line search algorithm, we have to
perform the second part of step (4) of the Gauss-Newton algorithms (1), every time we want to get
ψ(ai+1) for a new trial value of ai+1, since

ψ(ai+1) =
1

2
∥P⊥

F(ai+1)
x∥22 ,

and a line search can involve many extra evaluations of ψ(.), which do not get us closer to the
solution. Furthermore, if a line search is incorporated, the Gauss-Newton algorithms (1) must be
slightly reorganized to avoid duplicate computations in steps (4) and (7), but we omit these details
here.

In these conditions, to obtain global convergence, it is tempting to perform one iteration with a
Gauss-Seidel step dags−gn or even several iterations with the fast block ALS method described in
Section 4 to compute ai+1 in step (7.2) (e.g., if ψ(ai + dagn) > ψ(ai)) instead of using a more
costly line search. In other words, if a full Gauss-Newton step gives a sufficient decrease of ψ(.),
we accept this point as the new iterate. Otherwise we switch to the fast Gauss-Seidel or block ALS
methods.

We now explain how the matrices M(ai) and −J (r(ai)) = M(ai)+L(ai) and their QR factoriza-
tions can be computed efficiently and with reduced storage in order to obtain the correction vectors
dak−gn or dagp−gn at each iteration of the Gauss-Newton algorithms (1). To this end, we first
recall from the results of Subsection 5.2 that we have the following explicit expressions for these
matrices:

M(a) = P⊥
F(a)U(a) ,

L(a) = (F(a)+)TV(a) ,

−J (r(a)) = M(a) + L(a) = P⊥
F(a)U(a) + (F(a)+)TV(a) ,

with

U(a) = diag(vec(
√
W))(B̂T ⊗ Ip)K(k,p) = K(n,p)G(b̂) ,

V(a) = (W ⊙ PΩ(X−AB̂))T ⊗ Ik ,

as stated in equations (5.20), (5.21) and (5.22). The notations here are exactly the same as in
Subsection 5.2 and we have drop again the iteration index of the Gauss-Newton iterations in order
to simplify the notations in the rest of this section. Note that, in the definition of L(a), F(a)+

can be replaced by a symmetric generalized inverse F(a)− at our convenience. We also recall
that the matrices −J (r(a)), M(a) and L(a) have n.p rows if W ∈ Rp×n+∗ , but only nobs rows if
W ∈ Rp×n+ , where nobs is the number of non-zero rows of F(a). As explained in Subsection 5.2,
nobs is simply the number of ”non-missing” elements in the data matrix X or, equivalently, the
number of non-zero weights in the weight matrix W, namely,

nobs =
∑
ij

δij ,

where δ is the incidence matrix associated the weight matrix (also defined in Subsection 5.2). From
the above equations, we see that the matrix −J (r(a)) and its two matrix components are tall and

158

skinny in most cases, even if the number of missing values is high, as k is expected to be much
smaller than min(p, n) and that their evaluations require the computations of the orthogonal pro-
jector P⊥

F(a), and, of F(a)+ and b̂ = F(a)+x if a COD is used in step (2) of the Gauss-Newton

algorithms (1) or, alternatively, of F(a)− and b̂ = F(a)−x if a QRCP is used in this step (2).

The key-observation to compute efficiently these different matrices is to remember that F(a) is a
block-diagonal matrix, namely,

F(a) =

n⊕
j=1

Fj(a) , where Fj(a) = diag(
√
W.j)A .

In these conditions, as already discussed in Subsection 5.2, we have

rank(F(a)) =
n∑
j=1

rank(Fj(a)) =
n∑
j=1

rj = rF(a)

and

P⊥
F(a) =

n⊕
j=1

P⊥
Fj(a)

, F(a)+ =

n⊕
j=1

Fj(a)
+ and F(a)− =

n⊕
j=1

Fj(a)
−.

Taking advantage of these block-structures of P⊥
F(a) and of the generalized inverses of F(a) can re-

duce drastically the required storage and allows us to use efficient parallelization techniques for re-
ducing the computing time needed to solve large WLRA problems using variable projection second-
order algorithms as we will illustrate below. Interestingly, the techniques used for this purpose are
very similar to those developed for solving large and dense structured linear least-squares problems
arising in the context of separable NLLS problems with multiple right hand sides (e.g., NLLS prob-
lems in which a linear combination of nonlinear functions is fit linearly to data in many datasets);
see Kaufman and Silvester [102], Kaufman et al. [103] and Kaufman [97] for more details.

Taking into account the block-structures of P⊥
F(a), F(a)

+ and F(a)−, we first observe that the
n.p× k.p matrices −J (r(a)), M(a) and L(a) can be divided into n blocks, each of shape p× k.p
if W ∈ Rp×n+∗ :

−J (r(a)) =

J1
...
Jj
...
Jn

 , M(a) =

M1

...
Mj

...
Mn

 and L(a) =

L1
...
Lj
...
Ln

 . (6.2)

If W ∈ Rp×n+ , these matrices can also be divided into n blocks, but the number of rows in each
block Jj , Mj and Lj will differ and will be equal to the number of non-missing elements in the
corresponding column of the data matrix X. In order to simplify the exposition, but without loss of
generality, we will assume in the rest of this section that W ∈ Rp×n+∗ . Obviously, if W ∈ Rp×n+ , the
zero-rows of these submatrices should be eliminated in real computations.

For the same reasons, the matrices U(a) and V(a) involved, respectively, in the definitions of M(a)
and L(a) can also be considered as stacks of n blocks. We also observe that these two matrices are
very sparse as U(a) is a row-permuted block diagonal matrix and V(a) is the Kronecker product
of a matrix with Ik, the identity matrix of order k. However, they have also a well-defined regular
structure for the positions of their non-zero elements, which can be exploited in practical compu-
tations. As an illustration, it is easily checked, using the equality, U(a) = K(n,p)G(b̂), that the
matrix U(a) as the following block structure with at most k non-zero elements in each of its rows

159

and at most n non-zero elements in each of its columns:

U(a) =

U1

...
Uj

...
Un

 with Uj ∈ Rp×k.p for j = 1, · · · , n and (6.3)

Uj =

√
W1j(B̂.j)

T 0 . . . 0 0

0
√
W2j(B̂.j)

T 0 . . . 0
...

.
...

0 . . . 0
√
W(p−1)j(B̂.j)

T 0

0 0 . . . 0
√
Wpj(B̂.j)

T

 .

Similarly, it is easily verified that the matrix V(a) has the following block structure with at most n
non-zero elements in each of its columns and at most p non-zero elements in each of its rows:

V(a) =

V1

...
Vj

...
Vn

 with Vj ∈ Rk×k.p for j = 1, · · · , n and Vj =
[
Z1 · · · Zi · · · Zp

]
, (6.4)

with Zi ∈ Rk×k and Zi = βiIk for i = 1, · · · , p, where βi = Wij(X̄ij −
∑k

l=1AilB̂lj), Ik is the
identity matrix of order k and

X̄ij =

{
Xij if Wij ̸= 0

0 if Wij = 0
.

Finally, if W ∈ Rp×n+∗ , the residual vector r(a) = P⊥
F(a)x can also be considered as a stack of n

p-vectors with

r(a) =

r1(a)

...
rj(a)

...
rn(a)

 with rj(a) = P⊥
Fj(a)

xj and xj =
√
W.j ⊙X.j . (6.5)

The subvector rj(a) is the jth residual vector associated with the jth atomic function ψj(.) de-
fined in equation (3.25) of Subsection 3.4. Using these different block-structures, we can use the
following strategy for computing M(a) and −J (r(a)) in n independent steps.

At the jth step, we compute the blocks Mj , Lj and Jj defined above, namely,

Jj = Mj + Lj ,

Mj = P⊥
Fj(a)

Uj ,

Lj = Fj(a)
+TVj or Lj = Fj(a)

−TVj .

To this end, we need to process the jth columns of X and W, and we first compute the matrix Fj(a)
as

Fj(a) = diag(
√
W.j)A ,

where A is the current estimate for this matrix variable of the factor model and we eliminate even-
tually the zero rows in Fj(a) if some elements of the weight column-vector W.j are equal to zero.

160

Next, from the above equations, we see that the computation of Jj and its two matrix components re-
quires the computations of P⊥

Fj(a)
, Fj(a)+ and B̂.j = Fj(a)

+xj , or, Fj(a)− and B̂.j = Fj(a)
−xj ,

where xj =
√
W.j ⊙X.j . This implies that the two matrix components of Jj can be obtained from

a QRCP or a COD (see equations 2.15 and 2.20 in Subsection 2.1) of the p × k matrix Fj(a). See
also Golub and Pereyra [63] [64], Krogh [95], Kaufman [96] and Gay and Kaufman [61] for more
details in a more general framework dealing with general separable NLLS problems. Thus, we first
compute the QRCP of Fj(a) as

Fj(a) = QT
j

[
Rj Sj

0(p−rj)×rj 0(p−rj)×(k−rj)

]
PT
j ,

where Qj is an p × p orthogonal matrix, Rj is an rj × rj nonsingular upper triangular matrix
with rj = rank(Fj(a)), which can be estimated during the QRCP, Sj is vacuous unless Fj(a) is
rank deficient and Pj is a k × k permutation matrix. Note that Fj(a) is a dense matrix, so that
its QRCP can be computed efficiently and cheaply with the help of standard dense methods, see
Subsection 2.1 and [71][8] for details. From the above QRCP of Fj(a), we can compute P⊥

Fj(a)
as

P⊥
Fj(a)

= QT
j

[
0rj×rj 0rj×(p−rj)

0(p−rj)×rj Ip−rj

]
Qj

and also a symmetric generalized inverse of Fj(a) as

Fj(a)
− = Pj

[
R−1
j 0rj×(p−rj)

0(k−rj)×rj 0(k−rj)×(p−rj)

]
Qj .

See again Subsection 2.1 for more information. Next, from this formulation of Fj(a)−, the jth

column of B̂ can be computed as

B̂.j = Fj(a)
−xj = P1

jR
−1
j Q1

jxj .

In this last equation, the orthogonal matrices Qj and Pj have been partitioned as

Qj =

[
Q1
j

Q2
j

]
and

[
P1
j P2

j

]
,

where

• Q1
j and Q2

j have, respectively, rj and p− rj rows ,

• P1
j and P2

j have, respectively, rj and k − rj columns .

If rj = k then Fj(a)
+ = Fj(a)

−. On the other hand, if Fj(a) is singular, we can optionally com-
pute its COD from its QRCP in order to obtain Fj(a)

+ and compute B̂.j as Fj(a)+xj . However,
taking into account the special structure and indeterminacy associated with the solutions (Â, B̂)
of the WLRA problem (see Section 3), we don’t really need to compute Fj(a)

+ even if Fj(a) is
rank-deficient, so we omit here the details of the optional computation of the COD of Fj(a).

Once B̂.j has been computed, the submatrices Uj and Vj defined above can then be evaluated,
or more precisely are available, to compute Mj and Lj . Finally, rj(a) can be computed as fol-
lows

rj(a) = P⊥
Fj(ai)

xj = QT
j

[
0rj

Q2
jxj

]
= (Q2

j)
T (Q2

jxj) ,

using the above results, and similarly if a QRCP or COD of Fj(a) is available. Inserting now the

161

above expressions for P⊥
Fj(a)

and Fj(a)
− in the definition of Jj , we obtain

Jj = P⊥
Fj(a)

Uj + (Fj(a)
−)TVj

= QT
j

[
0rj×rj 0rj×(p−rj)

0(p−rj)×rj Ip−rj

]
QjUj +QT

j

[
R−T
j 0rj×(k−rj)

0(p−rj)×rj 0(p−rj)×(k−rj)

]
PT
j Vj

= QT
j

([0rj×rj 0rj×(p−rj)

0(p−rj)×rj Ip−rj

]
QjUj +

[
R−T
j 0rj×(k−rj)

0(p−rj)×rj 0(p−rj)×(k−rj)

]
PT
j Vj

)
= QT

j

([0rj×k.p
Q2
jUj

]
+

[
R−T
j (P1

j)
TVj

0(p−rj)×k.p

])
= QT

j

[
R−T
j (P1

j)
TVj

Q2
jUj

]
.

In these conditions, for da ∈ Rk.p, we have

rj(a)− Jjda = QT
j

([0rj

Q2
jxj

]
−
[
R−T
j (P1

j)
TVj

Q2
jUj

]
da
)
.

At this point, we introduce several new block matrix and vector definitions again to simplify the
notation going forward:

J̃ (r(a)) =

J̃1
...
J̃j
...
J̃n

 with J̃j =

[
R−T
j (P1

j)
TVj

Q2
jUj

]
(6.6)

and

r̃(a) =

r̃1
...
r̃j
...
r̃n

 with r̃j =

[
0rj

Q2
jxj

]
. (6.7)

Thus, r̃(a) is an n.p-vector, which is a stack of n (p−rj)-subvectors, separated by rj zero elements
in sequential order. Finally, we conceptually define the orthogonal block diagonal matrix

QF =
n⊕
j=1

Qj . (6.8)

With these new notations and the preceding results, we have

−J (r(a)) = QFJ̃ (r(a)) and r(a) = QFr̃(a) . (6.9)

Now, as the 2-norm is unitarily invariant, ∀da ∈ Rk.p, we have

∥r(a) + J
(
r(a)

)
da∥2 = ∥r(a)−

(
M(a) + L(a)

)
da∥2 = ∥r̃(a)− J̃

(
r(a)

)
da∥2 ,

as QF is an p.n× p.n orthogonal matrix. In other words, the linear least-squares problem

min
da∈Rp.k

∥r(a)−
(
M(a) + L(a)

)
da∥22 , (6.10)

which must be solved at each iteration of the Gauss-Newton algorithm if a Golub-Pereyra step
dagp−gn is used, is equivalent to the linear least-squares problem

min
da∈Rp.k

∥r̃(a)− J̃ (r(a))da∥22 . (6.11)

162

Similarly, if we use the Kaufman variant at each iteration of the Gauss-Newton algorithm (1), it
is not difficult to verify using similar arguments that computing a QRCP of Fj(a) at step (2) of
this algorithm is again sufficient and that the associated linear least-squares problem to solve for
computing the correction vector dak−gn, namely,

min
da∈Rp.k

∥r(a)−M(a)da∥22 , (6.12)

is equivalent to the linear least-squares problem

min
da∈Rp.k

∥r̃(a)− M̃(a)da∥22 ,

where M̃(a) has the following block structure

M̃(a) =

M̃1

...
M̃j

...
M̃n

 with M̃j =

[
0rj×k.p

Q2
jUj

]
, (6.13)

and we also have the matrix equality

M(a) = QFM̃(a) . (6.14)

Furthermore, as zero rows appearing in the coefficient matrix of a linear least-squares problem do
not affect the solution of this linear least-squares problem, these zero rows can be deleted and the
linear least-squares problem to be solved at each iteration of the Kaufman variant of the Gauss-
Newton algorithm (1) reduces, finally, to

min
da∈Rp.k

∥r̄(a)− M̄(a)da∥22 , (6.15)

where

M̄(a) =

M̄1

...
M̄j

...
M̄n

 with M̄j = Q2
jUj (6.16)

and

r̄(a) =

r̄1
...
r̄j
...
r̄n

 with r̄j = Q2
jxj . (6.17)

M̄(a) and r̄(a) have, respectively, only n.p − rF(a) rows and elements if W ∈ Rp×n+∗ , and,
nobs − rF(a) rows and elements if W ∈ Rp×n+ . Thus, the work involved in solving this linear
least-squares problem is further reduced in addition to the simplifications introduced by the use
of the approximated Jacobian matrix −M(a) as the coefficient matrix of the linear least-squares
problem.

In all the above alternative formulations of the linear least-squares problems involving the Jaco-
bian matrix or its approximation, which must be solved at each iteration of the Gauss-Newton

163

algorithms (1), we observe that both the coefficient matrix and the right hand-side vector of the as-
sociated linear least-squares problems can be computed independently in n steps, which may offer
some important speed-up in a parallel environment.

The next critical step is to solve the linear least-squares problems involving the huge, but tall and
skinny, matrices J̃ (r(a)) or M̄(a) in a computationally responsible manner. If W ∈ Rp×n+∗ , J̃ (r(a))
and M̄(a) will have, respectively, n.p and n.p− rF(a) rows and k.p columns (with k ≪ min(n, n))
and it is not conceivable to store such huge matrices in main memory to compute their SVD, QRCP
or COD by standard methods as soon as both p and n are relatively large numbers. We suggest
two different strategies to alleviate this problem. The first one uses a QR decomposition of the
transformed matrices J̃ (r(a)) or M̄(a) as a preliminary step to reduce the size of the problems
and the second one consists in solving the normal equations associated with the linear least-squares
problems (6.10) and (6.12) or their transformed versions (6.11) and (6.15).

For most NLLS problems, separable or not, using a QR decomposition of the Jacobian matrix takes
at least twice as long as using the normal equations, but gives improved accuracy when the Jacobian
matrix is ill-conditioned. As we already know that −J (r(a)) and M(a), or their transformed ver-
sions, are always rank-deficient matrices (see Theorem 5.2), this may favor a QR approach for more
reliable results. However, computing a Cholesky factor of the Gauss-Newton approximations of
the Hessian matrix is substantially faster than computing a QR factorization of the (approximated)
Jacobian matrix, especially when this matrix is tall and skinny. This explains why the normal equa-
tions approach has been favored in past studies [150][81][88] despite the inherent difficulties in this
approach to deal efficiently and accurately with the singularity of the Gauss-Newton approximations
of the Hessian matrix.

We first describe the iterative methods, which aim at computing the thin QR decomposition of the
n.p× k.p transformed Jacobian matrix

J̃ (r(a)) = Q̃JRJ , (6.18)

where Q̃J is an n.p×k.p matrix (if W ∈ Rp×n+∗) with orthonormal columns and RJ is an k.p×k.p
(singular) upper-triangular matrix, or of its Kaufman approximation

M̄(a) = Q̄MRM , (6.19)

where Q̄M and RM have similar shapes than M̄(a) and RJ , respectively. In most practical appli-
cations k is much smaller than min(p, n) and the matrices J̃ (r(a)) and M̄(a) are tall and skinny, as
discussed above, for which highly efficient parallel QR algorithms have been proposed in the litera-
ture [48]. These dedicated Tall and Skinny QR (TSQR) algorithms are often referred as communica-
tion avoiding algorithms and outperform significantly the conventional Householder QR algorithm
for an m× n matrix with m ≫ n. Furthermore, these TSQR algorithms can be combined or more
precisely ”fused” with the n independent steps described above for the computation of J̃ (r(a)) or
M̄(a). This allows us to get the triangular factors RJ or RM in the standard QR factorizations of
J̃ (r(a)) or M̄(a) without storing in main memory these huge matrices or explicitly computing the
orthonormal matrices Q̃J or Q̄M.

We now focus on two TSQR algorithms for computing these triangular factors and also the matrix-
vector products Q̃T

J r̃(a) or Q̄T
Mr̄(a), which are needed to solve the associated linear least-squares

problems involving J̃ (r(a)) and M̄(a) in a final step. The first TSQR method is a serial algorithm
and the second one is a parallel algorithm. Both of them processes the rows of J̃ (r(a)) or M̄(a)
in n steps as described above, but in different order and with different computational kernels as we
will see now.

For the sake of convenience, we first describe the serial TSQR, which proceeds the n steps in sequen-
tial order from j = 1 to n. Again, to simplify the presentation, but without loss of generality, we
will also assume that W ∈ Rp×n+∗ , so that J̃ (r(a)) have n.p rows and each of the n steps processes
exactly p rows of J̃ (r(a)), namely, the jth step processes the submatrix J̃j defined above.

164

In the first step, the submatrix J̃1 and the subvector r̃1 are evaluated exactly as described above.
Then, a standard Householder QR algorithm is applied to J̃1 to transform this target matrix into an
upper triangular (if k = 1) or trapezoidal (if k > 1) matrix R̃1:

J̃1 = Q̃1R̃1 ,

where Q̃1 is an p×p orthogonal matrix and R̃1 is an p×k.p upper triangular or trapezoidal matrix.
This is performed by the application of a sequence of pHouseholder transformations, whose product
implicitly represents the orthogonal matrix Q̃1, see Subsection 2.1 for more details. The algorithm
consists of the iterations of two steps: generation of the Householder transformation from the target
column vector of J̃1 and application of this Householder transformation to the trailing part of J̃1.
Next, the right hand-side subvector r̃1 is pre-multiplied by the transpose of Q̃1. Note that, in a
practical implementation of this TSQR algorithm, it is convenient to concatenate and store J̃1 and
r̃1 in the same matrix array (with p rows and k.p + 1 columns if W ∈ Rp×n+∗) so that the matrix-
vector product Q̃T

1 r̃1 is directly computed when the Householder transformations are applied to the
trailing part of J̃1 during its QR factorization.

In the second step of the TSQR algorithm, the submatrix J̃2 and the subvector r̃2 are first evaluated
and then combined with the results of the first step as follows:

˜̃
J 2 =

[
R̃1

J̃2

]
and ˜̃r2 = [Q̃T

1 r̃1
r̃2

]
.

Then, a structured and thin QR factorization of the matrix ˜̃J 2 is performed

˜̃
J 2 = Q̃2R̃2 ,

where Q̃2 is a matrix with min(2.p, k.p) orthonormal columns and R̃2 is an upper triangular or

trapezoidal matrix. This reduction to triangular or trapezoidal form of ˜̃J 2 can be accomplished by
a special sequence of min(2.p, k.p) Householder transformations in which the ith transformation

is designed to annihilate the nonzero subdiagonal elements in the ith column of ˜̃J 2. Note that no

fill-in occurs during this process because the columns of ˜̃J 2 are reduced from left to right. Finally,
the vector ˜̃r2 is pre-multiplied by the transpose of Q̃2 and this ends the second step.

At the jth step, the submatrix J̃j and subvector r̃j are evaluated and concatenated with the outputs
of the j − 1 step as ˜̃

J j =

[
R̃j−1

J̃j

]
and ˜̃rj = [Q̃T

j−1r̃j−1

r̃j

]
,

and a structured and thin QR factorization of ˜̃J j is performed as

˜̃
J j = Q̃jR̃j ,

where Q̃j is a matrix with min(j.p, k.p) orthonormal columns and R̃j is an upper triangular or
trapezoidal matrix. The vector ˜̃rj is also pre-multiplied by the transpose of Q̃j after this new
structured QR factorization.

Then, the following steps are exactly similar to the jth step and this process continues in blocks
of p rows of J̃ (r(a)) until there are no more rows of J̃ (r(a)) left. In exact arithmetic without
roundoff errors, it can be shown that the final triangular factor R̃n obtained by this recursive algo-
rithm is the upper triangular factor RJ of the standard thin QR factorization of J̃ (r(a)) defined in
equation (6.18). Furthermore, the associated right hand-side vector Q̃T

n
˜̃rn in output of the recursive

process is also equal the matrix-vector product Q̃T
J r̃(a), where Q̃J is also defined in equation (6.18)

and r̃(a) in equation (6.7).

165

For the description of the parallel TSQR algorithm, we assume that t processors are available with
their own memory. Then, the n columns of the matrices X and W and the n steps are distributed
equally among these t processors (or eventually such that the rows of J̃ (r(a)) are partitioned equally
among the t processors if W ∈ Rp×n+).

Next, each processor i processes its own ni steps independently without any communication be-
tween the processors as in the serial TSQR algorithm. The obtained triangular factors and trans-
formed right hand-side vectors, say,

R̃(i) = R̃(i)ni
and r̃(i)(a) = Q̃(i)

T

ni

˜̃
r(i)ni

for i = 1 to t ,

are then reduced into an unique triangular factor RJ and an unique transformed right hand-side
vector Q̃T

J r̃(a) by the QR factorizations (in parallel) of a sequence of matrices built by coupling
two upper-triangular factors R̃(i) and R̃(j) on top of each other. We also call such special QR
factorization, a structured QR factorization, and this QR factorization can also be performed by a
special sequence of Householder transformations [111][48]. In this second part of the parallel TSQR
algorithm, we note that several reduction trees are available to obtain the final triangular factor RJ

and transformed right hand-side vector Q̃T
J r̃(a) [48]. But, for simplicity, we further assume that t is

a power of two and that a binary reduction tree is used. In other words, the pairs of processors used
in the second part of the parallel TSQR algorithm are given by simply grouping together, initially, a
processor and its neighbour, e.g., (0, 1), (2, 3), · · · , (t− 2, t− 1). Then, in the next recursion level,
we group the left most processor of a pair, e.g., (0, 2), (4, 6), · · · and proceed in this fashion until
the last pair is (0, t/2) with the result that the triangular factor and right hand-side vector stored in
processor 0 contains RJ and the matrix-vector product Q̃T

J r̃(a), e.g., the actual triangular factor in
the QR factorization of J̃ (r(a)) and the associated transformed right hand-side vector.

Thus, in the parallel version of the TSQR algorithm, after each processor i has computed its own
triangular factor R̃(i), one repeats sending, receiving one’s R̃(j) to/from one’s processor neighbour
and calculating structured QR factorizations in parallel. Then, another round of a reduced number
of structured QR factorizations is performed in parallel and this process repeats until the final RJ

factor is obtained. Obviously, other groupings of processors can be used to take advantage of a
given topology of a network of processors. As noted in Demmel et al. [48], any sequence of tree
of (structured) QR factorizations between the serial and parallel versions of the TSQR algorithm
will work. Our binary tree version shows how to compute the TSQR factorization with maximum
parallelism while the serial version does not exhibit any parallelism, but requires less memory. Note,
finally, that the two structured QR factorizations used in the serial and parallel TSQR algorithms,
namely, [

R1

R2

]
= QR and

[
R1

X

]
= QR ,

where R1,R2 and R are upper triangular or trapezoidal matrices, Q is an orthogonal matrix and X
is a full matrix, can be computed very efficiently using BLAS3 algorithms exploiting the triangular
structure of the R1 and R2 matrices appearing in these structured QR factorizations [48]. As an
illustration, such computational kernels are already available in the recent versions of the LAPACK
library.

Furthermore, the orthonormal matrix Q̃J in the thin QR factorization of J̃ (r(a)) (see equation (6.18))
is never explicitly formed in both the serial and parallel TSQR algorithms, but pre-multiplying the
vector r̃(a) by Q̃T

J can be done also recursively and efficiently during the TSQR algorithms (as
illustrated above) and this is sufficient to solve the linear least-squares problems involving J̃ (r(a))
as a coefficient matrix, or as a block of the coefficient matrix to deal with its singularity as we will
illustrate below. Obviously, the same recursive TSQR methods can be used to compute the thin QR
factorization of M̄(a) if a Kaufman step is used in the Gauss-Newton algorithms (1), but we omit
the details here as the steps are essentially the same.

166

In the previous paragraphs, we show how variable projection WLRA solvers, which request the
Jacobian matrix (or its approximation in the case of the Kaufman variant) and perform a QR de-
composition of it for solving the linear least-squares problems (6.10) or (6.12) at each iteration, can
be implemented efficiently and with reduced memory requirements by exploiting the block diag-
onal structure of F(a) and using a parallel two-step TSQR algorithm. We now consider variable
projection WLRA solvers, which, at each iteration, solve the linear least-squares problems (6.10)
or (6.12) by computing the k.p× k.p cross-product positive semi-definite matrices

∆ = J (r(a))TJ (r(a)) or Λ = M(a)TM(a)

and solving the associated normal equations, e.g.,

∆da = −∇ψ(a) or Λda = −∇ψ(a) ,

where ∇ψ(a) = J (r(a))T r(a).

In order to present in more details this Cholesky approach, we first recall from the results in Sec-
tion 5.2 that

J (r(a)) = −
(
M(a) + L(a)

)
and that the columns of L(a) lie in ran(F(a)), the range of F(a), and those of M(a) lie in
ran(F(a))⊥. This implies the equalities

M(a)TL(a) = 0k.p×k.p and L(a)T r(a) = 0k.p ,

from which we deduce that

∆ = M(a)TM(a) + L(a)TL(a) and ∇ψ(a) = M(a)T r(a) .

Thus, ∆ is the sum of two positive semi-definite matrices and L(a) does not contribute in ∇ψ(a),
see Section 5.3 for details. As in the QR approach, to speed up and parallelize the computations, it
is convenient to consider the matrices −J (r(a)), M(a) and L(a) as stacks of n submatrices (each
of p rows if W ∈ Rp×n+∗) as in equation (6.2). As before, the jth blocks Jj , Mj and Lj are defined
by

Jj = Mj + Lj ,

Mj = P⊥
Fj(a)

Uj ,

Lj = Lj = Fj(a)
−TVj .

and can be computed from the jth columns of the matrices X and W. Similarly, it is useful to
consider the n.p-vector r(a) as a stack of n subvectors of dimension p (if W ∈ Rp×n+∗) as in
equation (6.5). With these block-structures of −J (r(a)), M(a), L(a) and r(a), we have the equal-
ities

Λ = M(a)TM(a) =
n∑
j=1

MT
j Mj and L(a)TL(a) =

n∑
j=1

LTj Lj

and also

∆ =
(n∑
j=1

MT
j Mj +

n∑
j=1

LTj Lj
)

and ∇ψ(a) =
n∑
j=1

MT
j rj(a) ,

which show that the computations of ∆, Λ and ∇ψ(a) can be easily parallelized if several processors
are available.

As in the QR approach, we can also use the transformed versions of −J (r(a)) and M(a) (see
equations (6.8), (6.9) and (6.14)) defined as

J̃
(
r(a)

)
= QT

FJ
(
r(a)

)
and M̃(a) = QT

FM(a)

167

since
∆ = J̃

(
r(a)

)T
J̃
(
r(a)

)
and Λ = M̃(a)TM̃(a) = M̄(a)TM̄(a) .

Furthermore, taking again into account the respective block-structures of J̃ (r(a)), M̃(a) and M̄,
defined, respectively, in equations (6.6), (6.13) and (6.16), we have the equalities

∆ =
n∑
j=1

J̃Tj J̃j and Λ =
n∑
j=1

M̃T
j M̃j =

n∑
j=1

M̄T
j M̄j ,

which demonstrate that the evaluation of these transformed forms of ∆ and Λ can also be eas-
ily parallelized. Similarly, using the block-structures of r̃(a) and r̄(a) (defined in equations (6.7)
and (6.17)) and equations (6.13), (6.14) and (6.16), we can also express ∇ψ(a) as

∇ψ(a) =
n∑
j=1

M̃T
j r̃j =

n∑
j=1

M̄T
j r̄j .

This demonstrates that the evaluation of ∇ψ(a) can also be easily evaluated and parallelized in
the normal-equation framework. An alternative approach to evaluate ∇ψ(a) in parallel is to use
Theorems 4.3 and 5.7 and the equality

∇ψ(a) = ∂φ∗(A, B̂)

∂a
= G(b̂)TG(b̂)a−G(b̂)T z ,

where z = vec
(
(
√
W⊙X)T

)
, as already indicated in the formal description of the variable projec-

tion Gauss-Newton algorithms (1) at the beginning of this section. Taking into account the diagonal
block-structure of G(b̂) (see equation (3.22)), the evaluation of ∇ψ(a) using this last formulation
can also be parallelized very efficiently.

We now explain how to compute the correction vectors dagp−gn and dak−gn in the Gauss-Newton
algorithms (1) using both the TSQR and normal-equation approaches described above.

In the TSQR approach, we compute implicitly a thin QR decomposition of −J (r(a)) or M(a) in
two stages. For the Jacobian matrix J (r(a)), these two steps are as follows

(a) −J
(
r(a)

)
= QFJ̃

(
r(a)

)
,

(b) J̃
(
r(a)

)
= Q̃JRJ ,

giving the thin QR factorization of −J (r(a)) = M(a) + L(a) as

M(a) + L(a) = (QFQ̃J)RJ = QJRJ , (6.20)

where QJ is an p.n×k.pmatrix with orthonormal columns and RJ is an k.p×k.p upper triangular
matrix. Similarly, if we use the approximate Jacobian matrix −M(a), we have the two steps:

(a) M(a) = QFM̃(a) ,

(b) M̃(a) = Q̃MRM ,

giving the thin QR factorization of M(a) as

M(a) = (QFQ̃M)RM = QMRM , (6.21)

where, again, QM is an p.n× k.p matrix with orthonormal columns and RM is an k.p× k.p upper
triangular matrix.

As noted above, M̃(a) has rF(a) zero rows and these zero rows can be eliminated in the second
step, giving the following simplified step

(b′) M̄(a) = Q̄MRM ,

168

for the computation of the upper triangular factor RM in the Kaufman variant of the Gauss-Newton
algorithm. Note that the matrices QJ and QM are never explicitly computed and all that is needed
to solve the associated linear least-squares problems (6.10) and (6.12), and compute the correction
vectors dagp−gn and dak−gn are the triangular factor RJ and the matrix-vector product QT

J r(a)
in the case of the Golub-Pereyra variant or the triangular factor RM and the matrix-vector product
QT

Mr(a) in the case of the Kaufman variant. These two matrix-vector products are given, respec-
tively, by

QT
J r(a) = Q̃T

JQ
T
Fr(a) = Q̃T

J r̃(a) (6.22)

and
QT

Mr(a) = Q̃T
MQT

Fr(a) = Q̃T
Mr̃(a) = Q̄T

Mr̄(a) . (6.23)

As explained in the previous paragraphs, both QT
J r(a) and QT

Mr(a) can be computed recursively,
as the triangular factors RJ and and RM, and without explicitly computing the matrices QJ and
QM with the help of the (parallel) TSQR algorithm.

Now, if we assume that the triangular matrices RJ and RM are of full rank (which is equivalent to
assume that −J (r(a)) and M(a) are of full column-rank), the unique solutions of the associated
linear least-squares problems (6.10) and (6.12) are simply found by solving the following upper
triangular systems, for da ∈ Rk.p,

RJda = QT
J r(a) and RMda = QT

Mr(a) ,

since the 2-norm is unitarily invariant. Thus, in this case, we obtain

dagp−gn = R−1
J QT

J r(a) and dak−gn = R−1
MQT

Mr(a) .

Of course, in our case, this simple approach cannot be used as we already know that the trian-
gular factors RJ and RM are rank deficient since −J (r(a)) and M(a) are always column rank
deficient (see Theorem 5.2). Thus, we will discuss how to proceed in order to compute the mini-
mum 2-norm solutions of these triangular systems (and, thus, of the associated linear least-squares
problems (6.10) and (6.12)) using the theoretical results of Subsection 5.2 once we have pre-
sented how the correction vectors dagp−gn and dak−gn can be computed in the normal-equation
approach.

In the normal-equation approach, the correction vectors dagp−gn and dak−gn can be found by com-
puting, respectively, the matrices ∆ and Λ, as described above, and solving the associated normal
equations, namely,

∆da = −∇ψ(a) or Λda = −∇ψ(a) ,

where ∇ψ(a) = J (r(a))T r(a) is also evaluated by one of the methods described in the preced-
ing paragraphs. Since ∆ and Λ are symmetric and positive semi-definite matrices, these normal
equations are usually solved by computing the Cholesky factorization of ∆ and Λ, namely,

∆ = RT
∆R∆ or Λ = RT

ΛRΛ ,

where R∆ and RΛ are k.p × k.p upper-triangular matrices. Then, if we assume that ∆ and Λ are
of full rank and, thus, positive definite (which is again equivalent to assume that J (r(a)) and M(a)
are of full column-rank), the normal equations can be solved by backward and forward substitutions
using these Cholesky triangular factors. For example, assuming that ∆ is nonsingular, we first solve,
for da∆ ∈ Rk.p, the triangular system

RT
∆da∆ = −J

(
r(a)

)T
r(a) =⇒ da∆ = −R−T

∆ J
(
r(a)

)T
r(a) ,

and, then, solve for dagp−gn ∈ Rk.p,

R∆dagp−gn = da∆ =⇒ dagp−gn = R−1
∆ da∆ .

169

Note that, up to the sign of the rows of the matrices, we have the equality

R∆ = RJ ,

and, also up to the sign of the elements of the vectors, the equality

da∆ = QT
J r(a) ,

where QJ and RJ are, respectively, a n.p× k.p matrix with orthonormal columns and n k.p× k.p
upper triangular matrix, which define the two matrix factors of the QR decomposition of −J (r(a))
in equation (6.20). Obviously, similar results are valid for Λ. In such conditions, we have, thus, the
equivalences

R∆dagp−gn = da∆ ⇐⇒ RJdagp−gn = QT
J r(a)

and
RΛdak−gn = daΛ ⇐⇒ RMdak−gn = QT

Mr(a) ,

which establish the equivalence between the QR and Cholesky approaches when we assume that
−J (r(a)) and M(a) are of full column rank and that the computations are performed with exact
arithmetic without any roundoff errors. However, again, dagp−gn and dak−gn cannot be found in
this simple way with the normal-equation approach as we already know that the symmetric matrices
∆ and Λ are only positive semi-definite since −J (r(a)) and M(a) are always rank-deficient and
we will also come back to this problem after discussing the respective merits of the QR and normal-
equation approaches in more details.

Because n.p is in most cases much larger than k.p (assuming that p < n and k ≪ p) and the
computation of the QR decomposition of the (approximated) Jacobian matrix is the major portion
of the time for the variable projection WLRA solvers, which use this QR approach (despite of the
use of a parallel TSQR algorithm and BLAS3 kernels for the structured QR decompositions in it), a
standard normal-equation approach can be much faster than the QR approach. However, while the
normal-equation approach is extremely efficient in terms of work and speed, it may be also numeri-
cally unreliable for ill-conditioned linear least-squares problems as it is well know [111][71][87][8].
Furthermore, as −J (r(a)) and M(a) are always rank-deficient, but their precise rank is not known
if W ∈ Rp×n+ and the number of zero weights in W is large (see Section 5), it is important to
have reliable information about the rank of these matrices, which can be obtained theoretically from
the triangular factors RJ and RM in the QR approach or R∆ and RΛ in the normal equations
approach. However, the errors in the computation of RJ and RM depend on the condition number
of −J (r(a)) and M(a), while that of R∆ and RΛ depend on the square of the condition numbers
of −J (r(a)) and M(a) [111][71][87][8]. Thus, the QR approach can still be preferred for stability
and accuracy reasons, especially when the number of zero weights in W is large.

More precisely, from the results of Subsection 5.2, we know that the matrices −J (r(a)) and M(a)
have a rank r at most equal to (p− k).k if rank(A) = k (see Theorem 5.2 and Corollary 5.3; recall
also that the condition rank(A) = k is required for the continuity and differentiability of P⊥

F(.),
F(.)+ and F(.)− at a), but that r can be smaller than (p − k).k depending on the number of zero
weights or missing values in X (see Theorems 5.5 and 5.6 for details). Standard tools for solving
linear least-squares problems with such deficient matrices are the SVD or the COD, as outlined in
Subsection 2.1, which both allow to estimate the solution vectors dagp−gn and dak−gn of minimum
2-norm of problems (6.11) and (6.15) with the help of the generalized inverse of RJ or RM in the
QR approach.

As an illustration, if the SVD of the upper triangular matrix RJ is given by

RJ = UJDJVJ
T ,

where UJ and VJ are k.p × k.p orthogonal matrices and DJ is a k.p × k.p diagonal matrix with
its diagonal elements equal to the singular values of RJ in decreasing order with at least its k.k

170

last diagonal elements equal to zero according to Theorem 5.2. As stated in equation (2.12), we
have

R+
J = VJDJ

+UJ
T ,

where [DJ
+]ii = [DJ]

−1
ii if [DJ]ii ̸= 0 and [DJ

+]ii = 0 if [DJ]ii = 0 and the correction vector
dagp−gn of minimum 2-norm can be computed as

dagp−gn = R+
J Q

T
J r(a)

and, similarly, if we use the Kaufman variant of the Gauss-Newton algorithm, the correction vector
dak−gn of minimum 2-norm can be estimated as

dak−gn = R+
MQT

Mr(a) = R+
MQ̄T

Mr̄(a) .

Note that if any [DJ]ii or [DM]ii is small, but non-zero, these computations can be numerically
unstable, which makes important to consider approximate methods, which can provide control over
the size of dagp−gn or dak−gn. This leads to consider low rank estimates of RJ and RM by
considering only their singular values, which are above a suitable threshold ν ∈ R+∗ in the SVDs
of RJ and RM, and, finally, in the computations of R+

J and dagp−gn or, alternatively, of R+
M and

dak−gn.

As an illustration, for the Golub-Pereyra variant of the Gauss-Newton algorithm, without a thresh-
old, we will have

dagp−gn =
∑

[DJ]ii>0

(
QT

J r(a)
)T

[UJ].i

[DJ]ii
[VJ].i ,

but, using the threshold ν, we will get

dagp−gn =
∑

[DJ]ii>ν

(
QT

J r(a)
)T

[UJ].i

[DJ]ii
[VJ].i ,

which obviously limits the potential occurrence of large elements in dagp−gn. Alternatively, we
can estimate R+

J and R+
M by a COD of RJ and RM as described in Subsection 2.1. This will

be less time consuming, but also less reliable in estimating precisely the ranks of −J (r(a)) and
M(a). However, recent investigations in the context of general NLLS problems suggest that using
a COD can even be more reliable than the truncated SVD approach described above, see [90] for
details.

Similarly, in the normal-equation approach, we can compute the Eigenvalue-Vector Decomposition
(EVD) of the positive semi-definite matrices ∆ (or Λ) and use a truncated EVD to estimate its
pseudo-inverses ∆+ (or Λ+) and, finally, dagp−gn (or dak−gn) as

dagp−gn = −
∑

[DJ]
2
ii>ν

2

(
J (r(a))T r(a)

)T
[VJ].i

[DJ]2ii
[VJ].i ,

where the EVD of ∆ is given by
∆ = VJDJ

2VJ
T ,

where the matrices VJ and DJ have the same meaning as in the SVD of RJ .

However, if p is large and the rank k of the WLRA matrix approximation we are seeking is also not
small, the dimensions of RJ and RM in the TSQR approach, or, ∆ and Λ in the normal-equation
approach, can be very large. In these conditions, computing a SVD, or even a COD, of RJ (or RM)
in the TSQR approach or an EVD of ∆ (or Λ) in the normal-equation approach, at each iteration of
the variable projection Gauss-Newton algorithms (1), can be very costly and, consequently, must be
avoided as much as possible.

171

In many practical applications, for example if W ∈ Rp×n+∗ or if the number of observed values in
each column and row of the data matrix X is larger than the rank k of the matrix approximation we
are seeking, we also know that r = rank(J (r(a))) will be exactly equal to (p−k).k with high prob-
ability (see Theorem 5.3 and Corollaries 5.4 and 5.5), the last k.k columns of J (r(a)) and M(a)
are linearly dependent upon the first (p − k).k columns of these matrices (see Theorem 5.4) and,
finally, that it is easy to compute an orthonormal basis of the null-space of J (r(a)) and M(a) from
an orthonormal basis of A if rank(A) = k (see Corollary 5.6). Collectively, these different results
suggest that the minimum 2-norm solutions of the linear least-squares problems (6.10) and (6.12)
involving the rank deficient matrices −J (r(a)) and M(a) can still be found accurately and much
more efficiently without resorting to costly techniques like the SVD or a full COD in the TSQR ap-
proach or the EVD in the normal-equation framework as already illustrated in Subsection 5.2.

We first reconsider the TSQR approach in which we want to find the minimum 2-norm solutions
dagp−gn or dak−gn of the rank-deficient, but consistent upper triangular systems,

RJdagp−gn = QT
J r(a) or RMdak−gn = QT

Mr(a) ,

assuming that
rank(RJ) = rank(J (r(a))) = (p− k).k

and, similarly, that
rank(RM) = rank(M(a)) = (p− k).k .

Under the hypotheses of Theorem 5.4, we know that the first (p − k).k columns of −J (r(a)) and
M(a) are linearly independent and that the last k.k columns of these matrices are linearly dependent
onto the first (p − k).k columns of these matrices. Obviously, the same relationships hold for
RJ and RM are these matrices are, respectively, the triangular factors in the QR factorizations of
−J (r(a)) and M(a). Then, it is possible to compute the vectors dagp−gn or dak−gn efficiently as
follows.

First, we define the following partitions of the two matrix factors in the thin QR decompositions of
−J (r(a)) and M(a), defined in equations (6.20) and (6.21), which correspond to the partitions of
J (r(a)) and M(a) used in Theorem 5.4:

QJ =
[
Q1

J Q2
J

]
, RJ =

[
R11

J R12
J

0k.k×(p−k).k R22
J

]
,

and

QM =
[
Q1

M Q2
M

]
, RM =

[
R11

M R12
M

0k.k×(p−k).k R22
M

]
,

where

• Q1
J and Q1

M ∈ Op.n×(p−k).k ,

• Q2
J and Q2

M ∈ Op.n×k.k ,

• R11
J and R11

M are (p− k).k × (p− k).k upper triangular matrices ,

• R22
J and R22

M are k.k × k.k upper triangular matrices ,

• R12
J and R12

M are (p− k).k × k.k full matrices .

From Theorem 5.4, we deduce immediately that

R22
J = R22

M = 0k.k×k.k ,

as RJ and RM exhibit the same linear dependencies as J (r(a)) and M(a).

172

Next, applying (p−k).k Householder transformations to the right of
[
R11

J R12
J

]
and

[
R11

M R12
M

]
to annihilate R12

J and R12
M, we obtain the following simplified CODs of RJ and RM:

RJ =

[
R11

J R12
J

0k.k×(p−k).k 0k.k×k.k

]
=

[
TJ 0(p−k).k×k.k

0k.k×(p−k).k 0k.k×k.k

]
ZTJ

and

RM =

[
R11

M R12
M

0k.k×(p−k).k 0k.k×k.k

]
=

[
TM 0(p−k).k×k.k

0k.k×(p−k).k 0k.k×k.k

]
ZTM ,

where TJ and TM are (p−k).k×(p−k).k nonsingular upper triangular matrices, and, ZJ and ZM

are k.p× k.p orthogonal matrices, which are the product of (p− k).k Householder transformations
designed to annihilate R12

J and R12
M, respectively. In doing so, we implicitly obtain the follow-

ing CODs of −J (r(a)) or M(a) from their thin QR decompositions (defined in equations (6.20)
and (6.21)) and computed by the TSQR algorithm:

−J (r(a)) = QJRJ = QJ

[
TJ 0(p−k).k×k.k

0k.k×(p−k).k 0k.k×k.k

]
ZTJ

and

M(a) = QMRM = QM

[
TM 0(p−k).k×k.k

0k.k×(p−k).k 0k.k×k.k

]
ZTM ,

and we can express −J (r(a))+ or M(a)+ as

−J (r(a))+ = ZJ

[
T−1

J 0(p−k).k×k.k

0k.k×(p−k).k 0k.k×k.k

]
QT

J = ZJ

[
T−1

J (Q1
J)
T

0k.k×(p−k).k

]
and

M(a)+ = ZM

[
T−1

M 0(p−k).k×k.k

0k.k×(p−k).k 0k.k×k.k

]
QT

M = ZM

[
T−1

M (Q1
M)T

0k.k×(p−k).k

]
.

Finally, dagp−gn and dak−gn can be computed as

dagp−gn = −J (r(a))+r(a) = ZJ

[
T−1

J (Q1
J)
T r(a)

0k.k×(p−k).k

]
= ZJ

[
T−1

J (Q̃1
J)
T r̃(a)

0k.k×(p−k).k

]
and

dak−gn = M(a)+r(a) = ZM

[
T−1

M (Q1
M)T r(a)

0k.k×(p−k).k

]
= ZM

[
T−1

M (Q̄1
M)T r̄(a)

0k.k×(p−k).k

]
,

where we have used equations (6.22) and (6.23), and, in both cases, the matrix expressions on the
right hand-side of these equalities are available on output of the TSQR algorithm.

Alternatively, the correction vectors dagp−gn and dak−gn can be computed with the help of Theo-
rem 5.3 and Corollary 5.6, which state that the matrix

N = K(p,k)(Ik ⊗A)

is a matrix of full column rank and that the columns of N form a basis of null
(
J (r(a))

)
=

null(M(a)), if rank(A) = k and the hypotheses of Theorem 5.3 are verified. Note that the condition
rank(A) = k is always verified if step (0) of the Gauss-Newton algorithms (1) is performed at each
iteration. On the other hand, the hypotheses of Theorem 5.3 can be violated or, more generally, the
condition rank(J (r(a))) = rank(M(a)) = (p− k).k can be not verified, especially, in the case of
a very large number of missing values in X or zero weights in W as demonstrated in Theorems 5.5
and 5.6. However, as noted at the end of Subsection 5.2 , if we restrict the set of WLRA problems by

imposing the condition
p∑
l=1

δlj > k for all j = 1, · · · , n, where δ is the incidence matrix associated

with the matrix X, the condition rank(J (r(a))) = rank(M(a)) = (p− k).k will be also verified in

173

the majority of practical applications. In this scenario, the columns of N form also an orthonormal
basis of null

(
J (r(a))

)
= null(M(a)) if step (0) of the Gauss-Newton algorithms (1) is used at each

iteration according to Corollary 5.6, since A has orthonormal columns after step (0) is performed.
Then, using the results of Section 5.2, it is not difficult to see that the vector dagp−gn is the unique
solution of the structured linear system[

RJ

NT

]
dagp−gn =

[
Q̃T

J r̃(a)
0k.k×k.p

]
,

which can be solved by computing the structured thin QR decomposition of
[
RJ

NT

]
in a first step

as [
RJ

NT

]
= QJ (N)RJ (N) ,

where QJ (N) is an k.(p+ k)× k.p matrix with orthonormal columns and RJ (N) is an k.p× k.p
nonsingular upper triangular matrix. In these conditions, dagp−gn is the unique solution of the upper
triangular system

RJ (N)dagp−gn = QJ (N)T
[
Q̃T

J r̃(a)
0k.k×k.p

]
,

which can be easily solved by backward substitution. In a similar fashion and using the same

notations, dak−gn can be evaluated by computing the structured thin QR decomposition of
[
RM

NT

]
in a first step [

RM

NT

]
= QM(N)RM(N) ,

and by solving the following nonsingular upper triangular system in the second step

RM(N)dak−gn = QM(N)T
[
Q̄T

Mr̄(a)
0k.k×k.p

]
.

Recall, finally, that solving these upper triangular systems for dagp−gn and dak−gn in output of
the TSQR algorithm is equivalent to find, respectively, the unique solutions of the following ”con-
strained” linear least-squares problems

dagp−gn = Arg min
da∈Rp.k

1

2

∥∥ [r(a)
0k.k

]
−
[
M(a) + L(a)

NT

]
da
∥∥2
2

(6.24)

and

dak−gn = Arg min
da∈Rp.k

1

2

∥∥ [r(a)
0k.k

]
−
[
M(a)
NT

]
da
∥∥2
2
, (6.25)

in three steps at each iteration of the Golub-Pereyra or Kaufman variants of the Gauss-Newton al-
gorithms (1) (as discussed in Section 5.2).

Remark 6.1. A third solution for computing the correction vectors dagp−gn and dak−gn in the
Gauss-Newton algorithms (1), if we assumed again that rank(A) = k and rank(J (r(a))) =
rank(M(a)) = (p − k).k, is to apply the TSQR algorithm to the matrices −J (r(a))Ō⊥ and
M(a)Ō⊥ defined in Corollary 5.6 instead to −J (r(a) and M(a) as described above. In these
conditions, the upper triangular matrices obtained in the output of the TSQR algorithm are also
nonsingular and can, thus, be directly solved by backward substitution. Finally, the correction
vectors dagp−gn and dak−gn can be computed by a simple matrix-vector product as described in
Subsection 5.2. ■

174

Similarly, in the normal-equation approach, several faster alternative methods can be used to find the
correction vectors dagp−gn and dak−gn from the symmetric positive semi-definite matrices

∆ = J
(
r(a)

)T
J
(
r(a)

)
= J̃

(
r(a)

)T
J̃
(
r(a)

)
and

Λ = M(a)TM(a) = M̄(a)TM̄(a) ,

if we assume that rank(A) = k and rank(J (r(a))) = rank(M(a)) = (p− k).k. Remember again
that the first condition is always true if step (0) of the Gauss-Newton algorithms (1) is performed
at each iteration. Under these hypotheses, we deduce immediately that rank(∆) = rank(Λ) =
(p − k).k and to cope with this uniform rank deficiency of ∆ and Λ, we can again use the results
of Corollary 5.6, which state that the matrices N = K(p,k)(Ik ⊗ A) and Ō = K(p,k)(Ik ⊗ O)
(where O is an orthonormal basis of ran(A)) are, respectively, a basis and an orthonormal basis of
null
(
J (r(a))

)
= null(M(a)) and, thus, also of the null spaces of the matrices ∆ and Λ.

In these conditions, as first suggested by Okatani et al. [150], we can compute

NNT = K(p,k)(Ik ⊗AAT)K(k,p)

or
ŌŌT = K(p,k)(Ik ⊗OOT)K(k,p) ,

and add these positive semi-definite matrices of rank k.k to ∆ and Λ. Again, note that, if step (0) of
the Gauss-Newton algorithms (1) is performed, we have N = Ō and, thus, NNT = ŌŌT . Next,
we can compute

∆(N) = ∆+NNT =

[
J (r(a))
NT

]T [
J (r(a))
NT

]
or Λ(N) = Λ +NNT =

[
M(a)
NT

]T [
M(a)
NT

]
.

Since ran(NNT) = ran(∆)⊥ = ran(Λ)⊥ if rank(J (r(a))) = rank(M(a)) = (p − k).k, we have
the relationships

dim(∆(N)) = dim(∆) + dim(NNT) = (p− k).k + k.k = k.p ,

and, similarly, dim(Λ(N)) = k.p. In other words, the matrices ∆(N) and Λ(N) are positive definite
and, thus, of full rank. In these conditions, the normal equations

∆(N)dagp−gn = −∇ψ(a) or Λ(N)dak−gn = −∇ψ(a)

have an unique solution, which are also the solutions of the associated linear least-square prob-
lems (6.24) and (6.25) solved in the TSQR approach in order to find dagp−gn and dak−gn. Thus,
when using the normal-equation approach, we finally need to compute the Cholesky factorizations
of ∆(N) or Λ(N) and solve the above positive definite systems by forward and backward substitu-
tions using these triangular Cholesky factors as described in Okatani et al. [150].

Remark 6.2. As for the TSQR method, an alternative solution for computing the correction vectors
dagp−gn and dak−gn in the Gauss-Newton algorithms (1), if we assumed that rank(J (r(a))) =
rank(M(a)) = (p − k).k, is to apply the normal-equation algorithm to the matrices −J (r(a))Ō⊥

and M(a)Ō⊥ defined in Corollary 5.6 instead to −J (r(a) and M(a) as described above. In these
conditions, the upper triangular matrices obtained in the output of the Cholesky factorization are
nonsingular and can, thus, be directly solved by forward and backward substitutions. Finally, the
correction vectors dagp−gn and dak−gn can also be computed by a simple matrix-vector product as
described in Subsection 5.2. ■

175

6.2 Variable projection Levenberg-Marquardt algorithms

This subsection describes and investigates variable projection Levenberg-Marquardt methods for the
solution of the WLRA problem. Using similar notations as in the Gauss-Newton algorithms (1) de-
scribed in the previous subsection, an outline of a first version of the variable projection Levenberg-
Marquardt algorithms is as follows:

Levenberg-Marquardt algorithms 2.

Choose starting matrix A1 ∈ Rp×k , ε1, ε2, ε3, β, ∥∇ψ∥min ∈ R+∗ and imax, jmax ∈ N∗, appro-
priately

For i = 1, 2, . . . until convergence do

(0) Optionally, compute a QRCP of Ai (see equation (2.15)) to determine ki = rank(Ai) and an
orthonormal basis of ran(Ai):

QiAiPi =

[
Ri Si

0(p−ki)×ki 0(p−ki)×(k−ki)

]
,

where Qi is an p× p orthogonal matrix, Pi is an k × k permutation matrix, Ri is an ki × ki
nonsingular upper triangular matrix (with diagonal elements of decreasing absolute magni-
tude) and Si an ki × (k − ki) full matrix, which is vacuous if ki = k.

In all cases, compute an p× k matrix Oi with orthonormal columns as the first k columns of
Qi (i.e., such that ran(Ai) ⊂ ran(Oi) if ki < k and ran(Ai) = ran(Oi) if ki = k) and set

Ai = Oi .

This optional orthogonalization step is a safe-guard as the condition ki = k is a necessary
condition for the differentiability of ψ(.) at a point Ai and is also to limit the occurrence of
overflows and underflows in the next steps by enforcing that the matrix variable Ai ∈ Op×k.

(1) Determine (implicitly) the block diagonal matrix

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

where ai = vec(AT
i).

(2) Compute (implicitly) a QRCP of F(ai) to determine P⊥
F(ai)

and F(ai)
− (see equations (2.18)

and (2.19)) or, alternatively, a COD of F(ai) to determine P⊥
F(ai)

and F(ai)
+ (see equa-

tions (2.18) and (2.21)).

Note also that F(ai)− = F(ai)
+ if F(ai) is of full column rank and that P⊥

F(ai)
, F(ai)− and

F(ai)
+ are also block diagonal matrices.

(3) Solve the block diagonal linear least-squares problem

bi = Argminb∈Rk.n ∥x− F(ai)b∥22 ,

e.g., compute

bi =

{
F(ai)

−x {if a QRCP of F(ai) is used in step (2)}
F(ai)

+x {if a COD of F(ai) is used in step (2)}
.

(4) Determine:

r(ai) = P⊥
F(ai)

x {current residual vector}

ψ(ai) =
1
2∥r(ai)∥

2
2 {current value of the cost function }

∇ψ(ai) = G(bi)
TG(bi)ai −G(bi)

T z {see Theorems 4.3 and 5.7}

176

λi = β∥∇ψ(ai)∥22 {set ridge parameter proportional to the squared 2-norm of the gradient}

Note that the steps (1) to (4) above can be very easily parallelized using the block diagonal
structure of F(ai).

(5) Check for convergence. Relevant convergence criteria in the algorithms are of the form:

• ∥∇ψ(ai)∥2 ≤ ε1

• ∥ai − ai−1∥2 ≤ ε2(ε2 + ∥ai∥2) {if i ̸= 1}

If step (0) is used, this last convergence condition can be simplified as:

∥ai − ai−1∥2 ≤ ε2∥ai∥2 = ε2
√
k

• |ψ(ai−1)− ψ(ai)| ≤ ε3(ε3 + ψ(ai)) {if i ̸= 1}

• i ≥ imax {e.g., give up if the number of iterations is too large}

where ε1, ε2, ε3 and imax are constants chosen by the user.

Exit if convergence. Otherwise, go to step (6)

(6) Compute the Levenberg-Marquardt correction vector dalm as the (minimum 2-norm) solution
of one of the following (regularized) linear least-squares problems:

(6.1) If ∥∇ψ(ai)∥2 ≥ ∥∇ψ∥min then

Golub-Pereyra Levenberg-Marquardt step: Golub and Pereyra [63]

dagp−lm =

[
M(ai) + L(ai)√

λiDi

]+ [
r(ai)
0k.p

]
= Arg min

da∈Rp.k
∥r(ai)−

(
M(ai) + L(ai)

)
da∥22 + λi∥Dida∥22

Kaufman Levenberg-Marquardt step: Kaufman [96]

dak−lm =

[
M(ai)√
λiDi

]+ [
r(ai)
0k.p

]
= Arg min

da∈Rp.k
∥r(ai)−M(ai)da∥22 + λi∥Dida∥22

(6.2) Else

Golub-Pereyra Gauss-Newton step: Golub and Pereyra [63], Ruhe and Wedin [166]

dagp−gn =
(
M(ai) + L(ai)

)+
r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−

(
M(ai) + L(ai)

)
da∥22

Kaufman Gauss-Newton step: Kaufman [96], Ruhe and Wedin [166]

dak−gn = M(ai)
+r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−M(ai)da∥22

177

(7) Increment ai = vec(AT
i), e.g., compute ai+1 = vec(AT

i+1) such that ψ(ai+1) < ψ(ai) in
order to obtain global convergence.

(7.1) To this end, first compute

ai+1 = ai + dalm

ψ(ai+1) =
1
2∥r(ai+1)∥22 = 1

2∥P
⊥
F(ai+1)

x∥22 ,

using (implicitly) a QRCP of the block diagonal matrix F(ai+1).

(7.2) If ψ(ai+1) > ψ(ai) then recompute ai+1 by one of the following methods:

Gauss-Seidel: ai+1 = ai + dags−gn where dags−gn is a Gauss-Seidel step [166]

dags−gn =
(
K(n,p)G(bi)

)+
r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−K(n,p)G(bi)da∥22

Block alternating least-squares:

ai+1 = G(bi)
+z

=

{
Argmina∈Rp.k ∥a∥22
s.t. Argmina∈Rp.k ∥z−G(bi)a∥22

Line search:
ai+1 = ai + αidalm

where αi < 1 is determined by a line search to make the algorithm a descent
method (i.e, such that ψ(ai+1) < ψ(ai)). This is always possible as the correction
vector dalm is in a descent direction for ψ(.) if ∥∇ψ(ai)∥2 ̸= 0, see Corollaries 5.7
and 5.8.

As an illustration, a simple, but still efficient, strategy is to first shorten the cor-
rection step to half the Levenberg-Marquardt length (or Gauss-Newton length if
∥∇ψ(ai)∥2 < ∥∇ψ∥min), compute the new trial value for ψ(ai+1) and, if it is
still worse, continue to reduce the step until we get a step short enough such that
ψ(ai+1) < ψ(ai). The following loop incorporates this simple step-shortening
algorithm:

For j = 1, 2, . . . while
(
ψ(ai+1) > ψ(ai)

)
dalm = 1

2dalm

ai+1 = ai + dalm

ψ(ai+1) =
1
2∥P

⊥
F(ai+1)

x∥22 {using a QRCP of the matrix F(ai+1)}

If j > jmax exit {give up if the number of iterations is too large}

End do

End do

In this version of the Levenberg-Marquardt algorithms (2), the shape and definition of the different
vector and matrix variables are exactly the same as in the Gauss-Newton algorithms (1) described
in the previous subsection. Furthermore, if, during the iterations, ∥∇ψ(ai)∥2 < ∥∇ψ∥min where

178

∥∇ψ∥min is a positive real constant greater than ε1 chosen by the user, we use a Gauss-Newton
correction step as also described in the previous subsection. In addition, as in the Gauss-Newton
algorithm, the computations in the above Levenberg-Marquardt algorithms (2) are terminated either
when one or several of the convergence criteria listed in step (5) are satisfied, or when the itera-
tion count exceeds the predetermined number imax. Obviously, this version (2) of the Levenberg-
Marquardt algorithms is, thus, similar to the Gauss-Newton algorithms (1), except in step (6.1),
when ∥∇ψ(ai)∥2 ≥ ∥∇ψ∥min .

This approach is first justified by the fact that, when ε1 < ∥∇ψ(ai)∥2 < ∥∇ψ∥min, we are near
a stationary or local solution point of our minimization problem, in which case, we want to benefit
from the faster convergence of the Gauss-Newton method, see Subsection 5.1 for more details. On
the other hand, if ∥∇ψ(ai)∥2 ≥ ∥∇ψ∥min, we consider that we are far away from a stationary
or solution point in which case the Gauss-Newton method may be much less satisfactorily and we
prefer to use a more robust correction step, which will be more in the steepest descent direction, in
order to widen the basin of convergence of the method. With these considerations in mind, when
∥∇ψ(ai)∥2 ≥ ∥∇ψ∥min, we introduce both a strictly positive damping parameter λi (e.g. the
Marquardt parameter), which takes into account how far we are from a solution and, optionally, a
strictly positive scaling diagonal matrix Di ∈ Rk.p×k.p+ , which may be useful to render the algorithm
invariant under diagonal scaling of the solution vector â and even more robust when λi becomes
very large as discussed also in Subsection 5.1.

The choice of λi influences both the direction and the size of the correction vector dagp−lm and
dak−lm. If λi tends to zero, dagp−lm and dak−lm will tend, respectively, to the corresponding
Gauss-Newton steps dagp−gn and dak−gn. On the other hand, if λi tends to infinity, then dagp−lm
and dak−lm will tend to a short step in the steepest descent direction, e.g., − 1

λi
∇ψ(ai), see Sub-

section 5.1 for more information. Thus, the choice of the Marquardt parameter λi is based on the
following considerations: if we are close to a local solution then we want the faster convergence of
the Gauss-Newton method while it is safe to choose the steepest descent method when we are far
from the solution. In other words, the selection procedure

λi = β∥∇ψ(ai)∥22 ,

used in step (6.1) of our Levenberg-Marquardt algorithms (2), is first motivated by the fact that the
method of steepest descent has global convergence not held by the Gauss-Newton method. When
one is far away from the solution (i.e. ∥∇ψ(ai)∥2 is large), λi is chosen to be large in order to weight
the descent part of the correction. As the iterates proceed toward the solution (i.e. ∥∇ψ(ai)∥2 is
small), λi is decreased to weight the Gauss-Newton part of the correction. When we are far from
the solution we are interested in the stability of the steepest descent method; when we are close, we
strive for the rapidity of convergence of the Gauss-Newton method.

However, taking into account the systematic rank deficiency of the Jacobian matrix J (r(ai)) or
its Kaufman approximation −M(ai) demonstrated in the previous sections, we cannot let λi tends
to zero freely and we need to control it appropriately in order to avoid numerical instability when
computing the correction steps dagp−lm or dak−lm if λi approaches zero. Thus, in an actual com-
puter implementation, the condition test λi = 0 must be replaced by the condition λi ≤ λmin (with
λmin ∈ R+∗) to switch to the Gauss-Newton method, where λmin is a suitably chosen real constant
such that the matrices [

M(ai) + L(ai)√
λiDi

]
and

[
M(ai)√
λiDi

]
do not become nearly singular or ill-conditioned when λi approaches zero as it is expected after
some iterations of the Levenberg-Marquardt algorithms (2). Equivalently, in our version (2) of the
Levenberg-Marquardt algorithms, such numerical test is also performed in step (6.1), on ∥∇ψ(a)∥2
using the user defined threshold ∥∇ψ∥min ∈ R+∗ rather on λi. This is justified by the fact that λi =
β∥∇ψ(ai)∥2, where β is a strictly positive real constant also chosen by the user. Obviously, the
choice of ∥∇ψ∥min (or alternatively λmin) can be tricky as it depends on the scaling of the problem.

179

Moreover, it must be done with care to avoid numerical instabilities when computing dagp−lm
or dak−lm, and, at the same time, maintain the global convergence properties of the Levenberg-
Marquardt algorithms (2) .

In addition, we have introduced a strictly positive diagonal matrix Di ∈ Rk.p×k.p+ in step (6.1) of
the Levenberg-Marquardt algorithms. A common simple choice for this scaling diagonal matrix is
to set Di = Ik.p, the identity matrix of order k.p. This choice together with a suitable strategy
to update λi across the iterations gives the original Levenberg algorithm [107]. Note that Di can
also vary during the iterations and permits for example to introduce some scaling in order to take
into account the relative sizes of the columns of the Jacobian matrix or its Kaufman approximation.
Thus, as first suggested by Marquardt [120], we can also set

[
Di

]
jj

=

{
∥
[
M(ai) + L(ai)].j∥2 {if dalm = dagp−lm in step (6.1)}

∥
[
M(ai)].j∥2 {if dalm = dak−lm in step (6.1)}

,

for j = 1, · · · , k.p, see Subsection 5.1 for further details. Note, however, that this last choice for
the scaling matrix Di implies that the conditions stated in Theorem 5.6 are not verified as otherwise
some of the elements of the diagonal of Di will be equal to zero during the whole iterative process.

The Golub-Pereyra step dagp−lm corresponds exactly to the standard Levenberg-Marquardt step
dalm applied to the minimization of the variable projection functional ψ(.), which is introduced
in Subsection 5.1. The philosophy behind the Kaufman step dak−lm is exactly similar to the one
detailed for the Gauss-Newton algorithms (2): in most cases, approximating the Jacobian matrix
by −M(a) can perform even better than to use the exact Jacobian matrix, taking into account the
particular form of the Hessian matrix ∇2ψ(a) derived in Subsection 5.3.

The Golub-Pereyra and Kaufman variants in the Gauss-Newton algorithms (1) generate a sequence
{ai} by setting ai+1 = ai + αidai, where dai is the minimum 2-norm solution of one of the
linearized subproblems

dai = Arg min
da∈Rp.k

1

2
∥l(da)∥22 ,

with

l(da) =

{
r(ai)−

(
M(ai) + L(ai)

)
da {if dagp−gn is used in step (6)}

r(ai)−M(ai)da {if dak−gn is used in step (6)}
, (6.26)

as explained in the previous subsection. However, we know from the results of the previous sections
that a solution of the WLRA problem, if it exists, is never unique and isolated. Furthermore, since
we also know that the above linear least-squares subproblems are always rank-deficient, Levenberg-
Marquardt methods, which replace them by regularized linearized subproblems of the form

dai = Arg min
da∈Rp.k

1

2
∥l(da)∥22 +

λi
2
∥Dida∥22 ,

where λi is a strictly positive parameter and Di is a (positive) diagonal matrix, are an interest-
ing alternative. Equivalently, this means that the correction step dai in the Levenberg-Marquardt
approach minimizes one of the following quadratic models

Lλi(da) =

{
ψ(ai) + daT∇ψ(ai) + 1

2da
T
(
M(ai)

TM(ai) + L(ai)
TL(ai) + λiD

2
i

)
da

ψ(ai) + daT∇ψ(ai) + 1
2da

T
(
M(ai)

TM(ai) + λiD
2
i

)
da

,

since ∇ψ(ai) = −
(
M(ai) + L(ai)

)T
r(ai) = −M(ai)

T r(ai). On the other hand, the correction
step dai in the Gauss-Newton methods is based on the simpler quadratic models

G(da) = L0(da) =

{
ψ(ai) + daT∇ψ(ai) + 1

2da
T
(
M(ai)

TM(ai) + L(ai)
TL(ai)

)
da

ψ(ai) + daT∇ψ(ai) + 1
2da

TM(ai)
TM(ai)da

.

180

The gradients of the quadratic functions Lλi(.) are, respectively,

∇Lλi(da) =

{
∇ψ(ai) +

(
M(ai)

TM(ai) + L(ai)
TL(ai) + λiD

2
i

)
da

∇ψ(ai) +
(
M(ai)

TM(ai) + λiD
2
i

)
da

,

and, by setting these gradients equal to zero, we get dagp−lm and dak−lm as the solutions to the
linear systems(

M(ai)
TM(ai) + L(ai)

TL(ai) + λiD
2
i

)
dagp−lm = −∇ψ(ai) = M(ai)

T r(ai)

and (
M(ai)

TM(ai) + λiD
2
i

)
dak−lm = −∇ψ(ai) = M(ai)

T r(ai) ,

which are, respectively, the normal equations for the damped linear least-squares problems

min
da∈Rp.k

∥∥ [r(ai)
0p.k

]
−
[
M(ai) + L(ai)√

λiDi

]
da
∥∥2
2

and

min
da∈Rp.k

∥∥ [r(ai)
0p.k

]
−
[
M(ai)√
λiDi

]
da
∥∥2
2
.

Furthermore, as the coefficient matrices of the above normal equations are always positive definite if
λi > 0, these linear systems have always an unique solution, which are the global minimizers of the
associated linear least-squares problems or quadratic model functions, and these quadratic functions
are also strictly convex. These nice properties are important numerically and are also an another
advantage of the Levenberg-Marquardt methods over a simple Gauss-Newton approach. These
results also show that the correction vectors dagp−lm and dak−lm can be computed, alternatively,
by a normal-equation or a more stable QR method as for the Gauss-Newton correction vectors
dagp−gn and dak−gn and we will discuss this matter in more details below after we derive a second
and third versions of the Levenberg-Marquardt algorithms.

One disadvantage with the simple strategy used in the Levenberg-Marquardt algorithms (2) for
updating the Marquardt parameter λi is, however, that strict descent (i.e., ψ(ai+1) < ψ(ai)) is not
guaranteed if a line search or alternative strategies for computing ai+1 are not incorporated in step
(7.2) of the algorithms. However, as for the Gauss-Newton algorithms (1), in order to implement a
line search algorithm, we have to perform the second part of step (4) of the algorithm, every time
we want to get ψ(ai+1) for a new trial value of αi since

ψ(ai+1) =
1

2
∥P⊥

F(ai+1)
x∥22 ,

and this line search can involve many extra evaluations of ψ(.), which do not get us closer to an
acceptable solution. In these conditions, it is again tempting to perform one or several iterations
with the fast Gauss-Seidel or block ALS methods to compute ai+1 in step (7.2) in case we have
ψ(ai+dalm) > ψ(ai) instead of using a more costly line search algorithm. In other words, if a full
Levenberg-Marquardt step gives a sufficient decrease of ψ(.), we accept the point ai + dalm as the
new iterate. Otherwise we switch to the fast Gauss-Seidel or block ALS methods.

Alternatively, it is well-known that a line search can be completely avoided in Levenberg-Marquardt
methods by using a more sophisticated strategy for updating λ during the iterations since the choice
of the Marquardt parameter influences both the direction and the size of the correction vector
dalm [139][123]. Furthermore, it is always possible to find a λ such that ψ(ai + dalm) < ψ(ai)
if ∥∇ψ(ai)∥2 ̸= 0 [139][123]. Thus, by a proper adjustment of the damping parameter λ we have
also a direct method for ensuring the descent condition ψ(ai + dalm) < ψ(ai).

As first suggested by Marquardt [120], one such strategy is to start with λ sets at a small value, 10−8

for example. Whenever a step is unsuccessful, λ gets multiplied by 10 to force smaller steps until

181

ψ(ai + dalm) < ψ(ai). On the other hand, when the steps become successful λ is divided by 10.
This simple strategy results in a fully adaptive technique that behaves just like Gauss-Newton when
Gauss-Newton is successful, but shifts in the steepest descent direction and shortens steps when the
steps are not successful.

More sophisticated strategies for updating the Marquardt parameter λ during the iterations are based
on the so-called gain factor

ρ =
ψ(ai)− ψ(ai + da)

G(0k.p)−G(da)
=
ψ(ai)− ψ(ai + da)

L0(0k.p)− L0(da)
,

where
G(da) = L0(da) =

1

2
l(da)T l(da) ,

and l(.) is defined in equation (6.26), see [141][122][139][123] for a discussion of this strategy in
a general NLLS context. G(da) is assumed to be a good approximation to ψ(ai + da) when da
is sufficiently small since l(da) is based on first order Taylor’s expansions for the residual function
r(a) around the current iterate ai. Note further that G(da) = L0(da) is the quadratic model,
which is used to approximate ψ(a) in the neighborhood of the current iterate ai and is minimized
at each iteration of the variable projection Gauss-Newton algorithms (1) as discussed above. Now,
we have for the Kaufman variant of the variable projection Levenberg-Marquardt algorithm the
equalities

G(0k.p)−G(dak−lm) =
1

2
l(0k.p)T l(0k.p)− 1

2
l(dak−lm)

T l(dak−lm)

= ψ(ai)−
1

2

(
r(ai)−M(ai)dak−lm

)T (
r(ai)−M(ai)dak−lm

)
= −daTk−lm∇ψ(ai)−

1

2
daTk−lmM(ai)

TM(ai)dak−lm

= −1

2
daTk−lm

(
2∇ψ(ai) +M(ai)

TM(ai)dak−lm
)

= −1

2
daTk−lm

(
2∇ψ(ai) +

(
M(ai)

TM(ai) + λiD
2
i − λiD

2
i

)
dak−lm

)
= −1

2
daTk−lm

(
2∇ψ(ai)−∇ψ(ai)− λiD

2
i dak−lm

)
=

1

2
daTk−lm

(
λiD

2
i dak−lm −∇ψ(ai)

)
=

1

2

(
λi∥Didak−lm∥22 − daTk−lm∇ψ(ai)

)
,

where we have used the equalities

∇ψ(ai) = −M(ai)
T r(ai) and

(
M(ai)

TM(ai) + λiD
2
i

)
dak−lm = −∇ψ(ai) ,

derived in Theorem 5.7 and Corollary 5.8. Moreover, the same equality holds for the Golub-Pereyra
variant since

ran(M(ai)) ⊂ ran(F(ai))⊥ and ran(L(ai)) ⊂ ran(F(ai)) .

Thus, in both cases, G(0k.p) − G(dalm) and the gain factor ρ can be easily computed at each
iteration of the Levenberg-Marquardt algorithms as the terms λi∥Didalm∥22 and ∇ψ(ai) are already
available before the gain factor must be evaluated.

Furthermore, G(0k.p) − G(dalm) is always guaranteed to be positive as both ∥Didalm∥22 and
−daTlm∇ψ(ai) are positive if ∥∇ψ(ai)∥2 ̸= 0 since dalm is in a descent direction for ψ(.), as
demonstrated in Corollary 5.7. In these conditions, it follows that the condition ρ > 0 is equivalent
to the descending condition ψ(ai + dalm) < ψ(ai) if ∥∇ψ(ai)∥2 ̸= 0 for both the Golub-Pereyra
and Kaufman variants of the Levenberg-Marquardt algorithm. Using these results, the following

182

clever strategy proposed by Madsen and Nielsen [123] may be used to update λ at each iteration of
Levenberg-Marquardt methods:

For i = 1, 2, . . . until convergence do

(0) · · ·
...

(6) Compute the Levenberg-Marquardt correction vector dalm as the solution of one of the fol-
lowing constrained and damped linear least-squares problems:

Golub-Pereyra Levenberg-Marquardt step:

dagp−lm = Arg min
da∈Rp.k

∥r(ai)−
(
M(ai) + L(ai)

)
da∥22 + λ∥Dida∥22 ,

Kaufman Levenberg-Marquardt step:

dak−lm = Arg min
da∈Rp.k

∥r(ai)−M(ai)da∥22 + λ∥Dida∥22 ,

(7) Increment ai = vec(AT
i), e.g., compute ai+1 = vec(AT

i+1) such that ψ(ai+1) < ψ(ai) in
order to obtain global convergence. To this end, first compute the gain factor

ρ = ψ(ai)−ψ(ai+dalm)
G(0k.p)−G(dalm)

= ψ(ai)−ψ(ai+dalm)
1
2

(
λ∥Didalm∥22−daT

lm∇ψ(ai)
)

If ρ > 0 then

ai+1 = ai + dalm

λ = λ.max
(
1
3 , 1− (2.ρ− 1)3

)
ν = 2

Else

λ = ν.λ

ν = 2.ν

Go to step (6)

End do

In this algorithm, the factor ν is initialized to 2 and the Marquardt parameter λ is again initialized
to a small value like 10−8 (see below for more details). With this updating strategy, if ρ ≤ 0 then
Ai is kept fixed, but we increase λ quickly with the twofold purpose of getting closer to the steepest
descent direction and reduce the step length. On the other hand, if ρ > 0 we accept the new point
ai+1 = ai + dalm. However, if ρ is small, the quadratic model G(da) is considered not to be a
good approximation to the function ψ(ai+da) in the neighborhood of ai and λ is increased. On the
other hand, if ρ is large the quadratic model G(da) is considered to be a good approximation to the
function ψ(ai + da) and λ is decreased in order to get closer to the Gauss-Newton direction in the
next iteration step. Thus, this more sophisticated strategy results also in a fully adaptive technique
that behaves just like Gauss-Newton when it is successful, but shifts smoothly in the steepest descent
direction and shortens steps when the steps are not successful [123].

However, in our specific WLRA context, both updating schemes of the Marquardt parameter must
be adapted to take care of the systematic rank deficiency of the coefficient matrices M(ai) +L(ai)
or M(ai) across the iterations and this without using a specific threshold like λmin or ∥∇ψ∥min
to shift to a Gauss-Newton step when λ approaches zero as this will break the incremental nature
of the updating schemes if we set λ = 0 when a full Gauss-Newton step is used at one particular

183

iteration. Furthermore, as before, we must also avoid the near singularity and ill-conditioning of the
regularized coefficient matrices[

M(ai) + L(ai)√
λDi

]
and

[
M(ai)√
λDi

]
,

when λ approaches zero.

A clever way to avoid the use of a threshold and to deal efficiently with the uniform rank deficiency
of the Jacobian matrix J (r(ai)) or its Kaufman approximation −M(ai), if we want to incorporate
these updating schemes in the variable projection Levenberg-Marquardt algorithms, is to solve at
step (6) the constrained and regularized problems

dagp−lm = Arg min
da∈Rp.k

∥r(ai)−
(
M(ai) + L(ai)

)
da∥22 + ∥NT

i da∥22 + λi∥Dida∥22

or

dak−lm = Arg min
da∈Rp.k

∥r(ai)−M(ai)da∥22 + ∥NT
i da∥22 + λi∥Dida∥22 ,

where the columns of Ni = K(p,k)(Ik ⊗Ai) are a (orthonormal) basis of null
(
M(ai) + L(ai)

)
=

null(M(ai)) if rank(Ai) = k and rank(J (r(ai))) = rank(M(ai)) = k.(p − k) (see Corollary 5.6
for details). The associated quadratic models are

LNi
λi

(da) = ψ(ai) + daT∇ψ(ai) +
1

2
daT

(
M(ai)

TM(ai) + L(ai)
TL(ai) +NiN

T
i + λiD

2
i

)
da

or
LNi
λi

(da) = ψ(ai) + daT∇ψ(ai) +
1

2
daT

(
M(ai)

TM(ai) +NiN
T
i + λiD

2
i

)
da ,

which can be minimized by solving the symmetric linear systems(
M(ai)

TM(ai) + L(ai)
TL(ai) +NiN

T
i + λiD

2
i

)
dagp−lm = M(ai)

T r(ai)

or (
M(ai)

TM(ai) +NiN
T
i + λiD

2
i

)
dak−lm = M(ai)

T r(ai) ,

which, in turn, are the normal equations for the constrained and damped linear systems

min
da∈Rp.k

∥∥r(ai)0k.k

0p.k

−

M(ai) + L(ai)
NT
i√

λiDi

 da∥∥2
2

and

min
da∈Rp.k

∥∥r(ai)0k.k

0p.k

−

M(ai)
NT
i√

λiDi

 da∥∥2
2
.

This approach was first suggested by Okatani et al. [150]. These two linear least-squares problems
always have an unique solution independently of the value of λ if we assume that

rank(Ai) = k and rank(J (r(ai))) = rank(M(ai)) = k.(p− k) ,

during the iterations or, at least, that these conditions are verified as soon as λ = 0. If λ = 0,
we again obtained dagp−lm = dagp−gn and dak−lm = dak−gn as in version (2) of the Levenberg-
Marquardt algorithms if the above assumptions are verified. However, the key-difference with this
version (2) is that these two linear least-squares problems remain nonsingular and well-conditioned
when λ approaches zero if the above assumptions are verified thanks to the inclusion of the block
NT
i in the coefficient matrix of these linear least-squares problems or to the addition of the term

NiN
T
i in the associated normal equations if we use a normal-equation approach to solve them.

184

Finally, when λ ≫ 0, and we want to shift dagp−lm or dak−lm in the steepest descent direction in
order to benefit of the good global convergence ability of the gradient descent method, the inclusion
of the block NT

i or the term NiN
T
i is of secondary importance and will not impair the performance

of the algorithm as they just try to constrain the columns of the perturbation matrices dAgp−lm or
dAk−lm to belong to ran(Ai)

⊥, see the discussion after Corollary 5.6 for details.

Finally, note that the computations of the gain factor ρ at step (7) must also be slightly modified as
follows

ρ =
ψ(ai)− ψ(ai + dalm)

G(0k.p)−G(dalm)
=

ψ(ai)− ψ(ai + dalm)
1
2

(
∥NT

i dalm∥22 + λ∥Didalm∥22 − daTlm∇ψ(ai)
) ,

when the above constrained and regularized linear least-squares problems are solved in step (6).
This is justified by the fact that we cannot assume that ∥NT

i dalm∥2 = 0 if a damping term
λ∥Didalm∥22 with λ > 0 is also used in the algorithms.

These different considerations lead to our second and third versions of the Levenberg-Marquardt
algorithms, which use, respectively, the simple and more sophisticated updating strategies of λ dis-
cussed above:

Levenberg-Marquardt algorithms 3.

Choose starting matrix A1 ∈ Rp×k , ε1, ε2, ε3, λ ∈ R+∗ and imax, jmax ∈ N∗, appropriately

For i = 1, 2, . . . until convergence do

(0) Optionally, compute a QRCP of Ai (see equation (2.15)) to determine ki = rank(Ai) and an
orthonormal basis of ran(Ai):

QiAiPi =

[
Ri Si

0(p−ki)×ki 0(p−ki)×(k−ki)

]
,

where Qi is an p× p orthogonal matrix, Pi is an k × k permutation matrix, Ri is an ki × ki
nonsingular upper triangular matrix (with diagonal elements of decreasing absolute magni-
tude) and Si an ki × (k − ki) full matrix, which is vacuous if ki = k.

In all cases, compute an p× k matrix Oi with orthonormal columns as the first k columns of
Qi (i.e., such that ran(Ai) ⊂ ran(Oi) if ki < k and ran(Ai) = ran(Oi) if ki = k) and set

Ai = Oi .

This optional orthogonalization step is a safe-guard as the condition ki = k is a necessary
condition for the differentiability of ψ(.) at a point Ai and also to limit the occurence of
overflows and underflows in the next steps by enforcing that the matrix variable Ai ∈ Op×k.

(1) Determine (implicitly) the block diagonal matrix

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

where ai = vec(AT
i).

(2) Compute (implicitly) a QRCP of F(ai) to determine P⊥
F(ai)

and F(ai)
− (see equations (2.18)

and (2.19)) or, alternatively, a COD of F(ai) to determine P⊥
F(ai)

and F(ai)
+ (see equa-

tions (2.18) and (2.21)).

Note also that F(ai)− = F(ai)
+ if F(ai) is of full column rank and that P⊥

F(ai)
, F(ai)− and

F(ai)
+ are also block diagonal matrices.

(3) Solve the block diagonal linear least-squares problem

bi = Argminb∈Rk.n ∥x− F(ai)b∥22 ,

185

e.g., compute

bi =

{
F(ai)

−x {if a QRCP of F(ai) is used in step (2)}
F(ai)

+x {if a COD of F(ai) is used in step (2)}
.

(4) Determine and set:

r(ai) = P⊥
F(ai)

x {current residual vector}

ψ(ai) =
1
2∥r(ai)∥

2
2 {current value of the cost function }

∇ψ(ai) = G(bi)
TG(bi)ai −G(bi)

T z {see Theorems 4.3 and 5.7}

j = 0 {initialize counter for the ridge scaling subiterations}

Note that the steps (1) to (4) above can be very easily parallelized using the block diagonal
structure of F(ai).

(5) Check for convergence. Relevant convergence criteria in the algorithms are of the form:

• ∥∇ψ(ai)∥2 ≤ ε1

• ∥ai − ai−1∥2 ≤ ε2(ε2 + ∥ai∥2) {if i ̸= 1}

If step (0) is used, this convergence condition can be simplified as:

∥ai − ai−1∥2 ≤ ε2∥ai∥2 = ε2
√
k

• |ψ(ai−1)− ψ(ai)| ≤ ε3(ε3 + ψ(ai)) {if i ̸= 1}

• i ≥ imax {e.g., give up if the number of iterations is too large}

where ε1, ε2, ε3 and imax are constants chosen by the user.

Exit if convergence. Otherwise, go to step (6)

(6) Compute the Levenberg-Marquardt correction vector dalm as the solution of one of the fol-
lowing constrained and damped linear least-squares problems:

Golub-Pereyra Levenberg-Marquardt step:

dagp−lm =

M(ai) + L(ai)
NT
i√
λDi

+ r(ai)0k.k

0k.p

= Arg min

da∈Rp.k
∥r(ai)−

(
M(ai) + L(ai)

)
da∥22 + ∥NT

i da∥22 + λ∥Dida∥22

Kaufman Levenberg-Marquardt step: Okatani et al. [150]

dak−lm =

M(ai)
NT
i√
λDi

+ r(ai)0k.k

0k.p

= Arg min

da∈Rp.k
∥r(ai)−M(ai)da∥22 + ∥NT

i da∥22 + λ∥Dida∥22

where the columns of Ni = K(p,k)(Ik ⊗ Ai) are a (orthonormal) basis of null
(
M(ai) +

L(ai)
)
= null(M(ai)), see Corollary 5.6.

(7) Compute ai+1 = vec(AT
i+1) such that ψ(ai+1) < ψ(ai) in order to obtain global conver-

gence.

(7.1) To this end, first compute

186

ψ(ai + dalm) =
1
2∥r(ai + dalm)∥22 = 1

2∥P
⊥
F(ai+dalm)x∥

2
2 ,

using (implicitly) a QRCP of the block diagonal matrix F(ai + dalm).

(7.2) If ψ(ai + dalm) > ψ(ai) then {step rejected}

j = j + 1

λ = 10.λ {scale up the ridge parameter}

If j ≤ jmax go to step (6) {recompute dalm with inflated diagonal}

(7.3) Else {step acceptable}

If j = 0 then λ = λ/10 {scale down the ridge parameter if step is successful}

(7.4) Increment ai:

ai+1 = ai + dalm{compute new iterate}

End do

Levenberg-Marquardt algorithms 4.

Choose starting matrix A1 ∈ Rp×k , ε1, ε2, ε3, λ ∈ R+∗ and imax, jmax ∈ N∗, appropriately, and
initialize ν = 2

For i = 1, 2, . . . until convergence do

(0) Optionally, compute a QRCP of Ai (see equation (2.15)) to determine ki = rank(Ai) and an
orthonormal basis of ran(Ai):

QiAiPi =

[
Ri Si

0(p−ki)×ki 0(p−ki)×(k−ki)

]
,

where Qi is an p× p orthogonal matrix, Pi is an k × k permutation matrix, Ri is an ki × ki
nonsingular upper triangular matrix (with diagonal elements of decreasing absolute magni-
tude) and Si an ki × (k − ki) full matrix, which is vacuous if ki = k.

In all cases, compute an p× k matrix Oi with orthonormal columns as the first k columns of
Qi (i.e., such that ran(Ai) ⊂ ran(Oi) if ki < k and ran(Ai) = ran(Oi) if ki = k) and set

Ai = Oi .

This optional orthogonalization step is a safe-guard as the condition ki = k is a necessary
condition for the differentiability of ψ(.) at a point Ai and also to limit the occurence of
overflows and underflows in the next steps by enforcing that the matrix variable Ai ∈ Op×k.

(1) Determine (implicitly) the block diagonal matrix

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

where ai = vec(AT
i).

(2) Compute (implicitly) a QRCP of F(ai) to determine P⊥
F(ai)

and F(ai)
− (see equations (2.18)

and (2.19)) or, alternatively, a COD of F(ai) to determine P⊥
F(ai)

and F(ai)
+ (see equa-

tions (2.18) and (2.21)).

Note also that F(ai)− = F(ai)
+ if F(ai) is of full column rank and that P⊥

F(ai)
, F(ai)− and

F(ai)
+ are also block diagonal matrices.

(3) Solve the block diagonal linear least-squares problem

187

bi = Argminb∈Rk.n ∥x− F(ai)b∥22,

e.g., compute

bi =

{
F(ai)

−x {if a QRCP of F(ai) is used in step (2)}
F(ai)

+x {if a COD of F(ai) is used in step (2)}
.

(4) Determine and set:

r(ai) = P⊥
F(ai)

x {current residual vector}

ψ(ai) =
1
2∥r(ai)∥

2
2 {current value of the cost function }

∇ψ(ai) = G(bi)
TG(bi)ai −G(bi)

T z {see Theorems 4.3 and 5.7}

j = 0 {initialize counter for the ridge scaling subiterations}

Note that the steps (1) to (4) above can be very easily parallelized using the block diagonal
structure of F(ai).

(5) Check for convergence. Relevant convergence criteria in the algorithms are of the form:

• ∥∇ψ(ai)∥2 ≤ ε1

• ∥ai − ai−1∥2 ≤ ε2(ε2 + ∥ai∥2) {if i ̸= 1}

If step (0) is used, this convergence condition can be simplified as:

∥ai − ai−1∥2 ≤ ε2∥ai∥2 = ε2
√
k

• |ψ(ai−1)− ψ(ai)| ≤ ε3(ε3 + ψ(ai)) {if i ̸= 1}

• i ≥ imax {e.g., give up if the number of iterations is too large}

where ε1, ε2, ε3 and imax are constants chosen by the user.

Exit if convergence. Otherwise, go to step (6)

(6) Compute the Levenberg-Marquardt correction vector dalm as the solution of one of the fol-
lowing constrained and damped linear least-squares problems:

Golub-Pereyra Levenberg-Marquardt step:

dagp−lm =

M(ai) + L(ai)
NT
i√
λDi

+ r(ai)0k.k

0k.p

= Arg min

da∈Rp.k
∥r(ai)−

(
M(ai) + L(ai)

)
da∥22 + ∥NT

i da∥22 + λ∥Dida∥22

Kaufman Levenberg-Marquardt step: Okatani et al. [150]

dak−lm =

M(ai)
NT
i√
λDi

+ r(ai)0k.k

0k.p

= Arg min

da∈Rp.k
∥r(ai)−M(ai)da∥22 + ∥NT

i da∥22 + λ∥Dida∥22

where the columns of Ni = K(p,k)(Ik ⊗ Ai) are a (orthonormal) basis of null
(
M(ai) +

L(ai)
)
= null(M(ai)), see Corollary 5.6.

(7) Compute ai+1 = vec(AT
i+1) such that ψ(ai+1) < ψ(ai) in order to obtain global conver-

gence.

188

(7.1) To this end, first compute

ψ(ai + dalm) =
1
2∥P

⊥
F(ai+dalm)x∥

2
2 ,

using (implicitly) a QRCP of the block diagonal matrix F(ai + dalm), and the gain
factor

ρ = ψ(ai)−ψ(ai+dalm)
G(0k.p)−G(dalm)

= ψ(ai)−ψ(ai+dalm)
1
2

(
∥NT

i dalm∥22+λ∥Didalm∥22−daT
lm∇ψ(ai)

)
(7.2) If ρ > 0 then {step acceptable}

λ = λ.max
(
1
3 , 1− (2.ρ− 1)3

)
{scale down the ridge parameter}

ν = 2 {reinitialize the growth factor of the ridge parameter}

(7.3) Else {step rejected}

j = j + 1

λ = ν.λ {scale up the ridge parameter}

ν = 2.ν {increase the growth factor of the ridge parameter}

If j ≤ jmax go to step (6) {recompute dalm with inflated diagonal}

(7.4) Increment ai:

ai+1 = ai + dalm{compute new iterate}

End do

In the Levenberg-Marquardt algorithms (3) and (4), the Marquardt parameter λ is initialized to
λ = τ if

[
Di

]
jj

=

{
∥
[
M(ai) + L(ai)].j∥2 {when dalm = dagp−lm in step (6)}

∥
[
M(ai)].j∥2 {when dalm = dak−lm in step (6)},

for j = 1, · · · , k.p during the iterations, or to

λ = τ.

{
maxj=1,··· ,k.p∥

[
(M(a1) + L(a1)].j∥22) {when dalm = dagp−lm in step (6)}

maxj=1,··· ,k.p∥
[
(M(a1)].j∥22) {when dalm = dak−lm in step (6)},

if Di is set to the identity matrix during the iterations. In both cases τ is taken in the interval [10−8 1]
and a small value of τ is selected if we believe that A1 is close to a solution (say τ = 10−6). Other-
wise, we can use τ = 10−3 or even 1. The algorithms are not very sensitive to this initial choice of
τ as λ is quickly updated during the iterations in both Levenberg-Marquardt algorithms (3) and (4).
Version (4) of the Levenberg-Marquardt algorithms also uses a growth factor ν for the ridge param-
eter, which is initialized to 2 at the start of the algorithm and reinitialized to this initial value in step
(7.2) when a step is successful.

Remark 6.3. An alternative for computing the correction vectors dagp−lm and dak−lm in step (6)
of the Levenberg-Marquardt algorithms (3) and (4), if we assume again that rank(Ai) = k and
rank(J (r(ai))) = rank(M(ai)) = (p − k).k, is to first find the unique solutions of the following
”reduced” and damped linear least-squares problems

dāgp−lm = Arg min
dā∈R(p−k).k

∥r(ai)−
(
M(ai) + L(ai)

)
Ō⊥
i dā∥22 + λ∥D̄idā∥22 ,

or
dāk−lm = Arg min

dā∈R(p−k).k
∥r(ai)−M(ai)Ō

⊥
i dā∥22 + λ∥D̄idā∥22 ,

189

where Ō⊥
i is an orthonormal basis of null

(
J (r(ai))

)⊥
= null(M(ai))

⊥ and D̄i is now a positive
diagonal matrix of order (p−k).k, see Corollary 5.6 for more information. Finally, in an additional
step just before incrementing ai in step (7.4), the correction vectors dagp−lm and dak−lm can be
computed by the matrix-vector products

dagp−lm = Ō⊥
i dāgp−lm and dak−lm = Ō⊥

i dāk−lm ,

or, equivalently, the matrix-matrix products

dAgp−lm = O⊥
i dĀgp−lm and dAk−lm = O⊥

i dĀk−lm ,

where O⊥
i is an orthonormal basis of ran(Ai)

⊥, as also described in Subsection 5.2. ■

We now consider in more details how to compute the correction vectors dagp−lm and dak−lm in the
variable projection Levenberg-Marquardt algorithms (2), (3) and (4) using the normal-equation or
TSQR approaches.

Using the normal-equation framework, the first step to obtain the correction vectors dagp−lm or
dak−lm in all the Levenberg-Marquardt algorithms is to form the cross-product positive semi-
definite matrices (e.g., the Gauss-Newton approximations of the Hessian matrix)

∆ = J
(
r(a)

)T
J
(
r(a)

)
= M(a)TM(a) + L(a)TL(a) or Λ = M(a)TM(a) ,

exactly as in the Gauss-Newton algorithms (1) described in the previous subsection. Note that,
in these last equations and the rest of this subsection, we have drop the iteration index i of the
Levenberg-Marquardt algorithms for notational convenience and the notations are exactly similar
as in the Gauss-Newton methods described in the previous subsection. Furthermore, this first and
costly step can be easily parallelized as for the Gauss-Newton algorithms (1).

For the Levenberg-Marquardt algorithms (2), in a second stage, we just need to regularize (or damp)
these positive semi-definite matrices by adding the diagonal matrix λD2 to these Gauss-Newton
approximations of the Hessian matrix:

∆(λ) = ∆+ λD2 or Λ(λ) = Λ + λD2 ,

where λ > 0 is a ridge parameter, which will control both the magnitude and the direction of the
correction vectors dagp−lm and dak−lm, and D is a strictly positive diagonal matrix. Finally, in the
third and last step of the Levenberg-Marquardt algorithms (2), we have to solve the consistent linear
systems

∆(λ)dagp−lm = −J
(
r(a)

)T
r(a) = M(a)T r(a) (6.27)

or
Λ(λ)dak−lm = −J

(
r(a)

)T
r(a) = M(a)T r(a) , (6.28)

in order to obtain the correction vectors dagp−lm and dak−lm. As λ > 0, ∆(λ) and Λ(λ) are
positive definite matrices and we can simply compute their Cholesky factorizations as

∆(λ) = R∆(λ)
TR∆(λ) or Λ(λ) = RΛ(λ)

TRΛ(λ) ,

where R∆(λ) and RΛ(λ) are k.p×k.p nonsingular upper triangular matrices. Then, in a final step,
dagp−lm and dak−lm can be obtained by forward and backward substitutions in the usual manner,
using these Cholesky factors, as

dagp−lm = R∆(λ)
−1R∆(λ)

−TM(a)T r(a) and dak−lm = RΛ(λ)
−1RΛ(λ)

−TM(a)T r(a) .

On the other hand, if we use a normal-equation approach in both the Levenberg-Marquardt algo-
rithms (3) and (4), we have first to compute the constrained and damped cross-product (approxi-
mated) Jacobian matrices

∆(N, λ) = ∆+NNT + λD2 or Λ(N, λ) = Λ +NNT + λD2 ,

190

perform their Cholesky decompositions as

∆(N, λ) = R∆(N, λ)
TR∆(N, λ) or Λ(N, λ) = RΛ(N, λ)

TRΛ(N, λ) ,

where R∆(N, λ) and RΛ(N, λ) are k.p × k.p upper triangular matrices. and, finally, solve the
consistent linear systems

∆(N, λ)dagp−lm = M(a)T r(a) (6.29)

and
Λ(N, λ)dak−lm = M(a)T r(a) , (6.30)

using these Cholesky factorizations. These normal equations always have an unique solution inde-
pendently of the value of λ if we assume that rank(A) = k and rank(J (r(a))) = rank(M(a)) =
k.(p − k) during the iterations (or at least that these conditions are verified as soon as λ = 0). If
λ = 0, we simply obtained dagp−lm = dagp−gn and dak−lm = dak−gn as in version (2) of the
Levenberg-Marquardt algorithm when ∥∇ψ(a)∥2 < ∥∇ψ∥min. However, the key-difference with
version (2) of the Levenberg-Marquardt algorithms is that these two linear systems remain nonsin-
gular and well-conditioned when λ approaches zero thanks to the addition of the term NNT in the
coefficient matrix of these normal equations. In other words, in these conditions, R∆(N, λ) and
RΛ(N, λ) are nonsingular upper triangular matrices and the normal equations can be solved by for-
ward and backward substitutions to get dagp−lm and dak−lm in step (6) of the Levenberg-Marquardt
algorithms (3) and (4), respectively,:

dagp−lm = R∆(N, λ)
−1R∆(N, λ)

−TM(a)T r(a)

or
dak−lm = RΛ(N, λ)

−1RΛ(N, λ)
−TM(a)T r(a) .

Note that, as this step (6) of the Levenberg-Marquardt algorithms (3) and (4) has to be performed
several times with different values of λ, but the same matrix N, for some particular iterations i of
these algorithms, it is convenient to first add the cross-product matrix NNT to ∆ or Λ at each itera-
tion and, then update only the diagonal of these intermediate matrices with λD2 before computing
the Cholesky decomposition for a new λ value at each subiteration j of the algorithms.

If we want to use a more accurate QR approach in the Levenberg-Marquardt algorithms (2), (3)
and (4), the key-observation is to recognize that the linear systems (6.27), (6.28), (6.29) and (6.30)
solved in the above Cholesky approach are, respectively, the normal equations of the damped linear
least-squares problems

dagp−lm = Arg min
da∈Rp.k

∥∥ [r(a)
0p.k

]
−
[
M(a) + L(a)√

λD

]
da
∥∥2
2

(6.31)

dak−lm = Arg min
da∈Rp.k

∥∥ [r(a)
0p.k

]
−
[
M(a)√
λD

]
da
∥∥2
2
, (6.32)

for the Levenberg-Marquardt algorithms (2), and of the constrained and damped linear least-squares
problems

dagp−lm = Arg min
da∈Rp.k

∥∥r(a)0k.k

0p.k

−

M(a) + L(a)
NT
√
λD

 da∥∥2
2

(6.33)

dak−lm = Arg min
da∈Rp.k

∥∥r(a)0k.k

0p.k

−

M(a)
NT
√
λD

 da∥∥2
2
, (6.34)

for the Levenberg-Marquardt algorithms (3) and (4).

191

Thus, the linear least-squares problems (6.31), (6.32), (6.33) and (6.34) can be solved by computing,
respectively, a thin QR decomposition of the ”damped” Jacobian matrices

J (r(a))(λ) =

[
M(a) + L(a)√

λD

]
or M(a)(λ) =

[
M(a)√
λD

]
, (6.35)

for the Levenberg-Marquardt algorithms (2) and a thin QR decomposition of the ”constrained” and
damped” Jacobian matrices

J (r(a))(N, λ) =

M(a) + L(a)
NT
√
λD

 or M(a)(N, λ) =

M(a)
NT
√
λD

 , (6.36)

for the Levenberg-Marquardt algorithms (3) and (4). Furthermore, these different thin QR decom-
positions can again be done in several steps if we take into account the block-column structure of
these constrained and damped Jacobian matrices in order to reduce the memory footprint of the
algorithms.

In the first stage, for all the algorithms, we compute the QR decomposition of M(a) + L(a) or
M(a) (without column pivoting) with the same TSQR algorithms as used in the Gauss-Newton
methods. This produces implicitly the thin QR factorizations

M(a) + L(a) = QJRJ or M(a) = QMRM ,

where QJ and QM are n.p×k.pmatrices with orthonormal columns, and, RJ and RM are k.p×k.p
singular upper triangular matrices as discussed in the previous subsection.

Next, in step (6.1) of the Levenberg-Marquardt algorithms (2) in which λ > 0, we first note, using
the above thin QR decomposition of M(a) + L(a) or M(a), that we have

J
(
r(a)

)
(λ) =

[
QJRJ√
λD

]
=

[
QJ 0n.p×k.p

0k.p×k.p Ik.p

] [
RJ√
λD

]
and

M(a)(λ) =

[
QMRM√

λD

]
=

[
QM 0n.p×k.p

0k.p×k.p Ik.p

] [
RM√
λD

]
.

Thus, in a second stage, we can factorize the block-column matrices
[
RJ√
λD

]
or
[
RM√
λD

]
on the right

hand side of these equations into the product of an orthogonal matrix times a rectangular matrix in
upper triangular form. This can be done efficiently with a sequence of k.p.(k.p+1) Givens rotations
applied to the left of these block-column matrices to annihilate their bottom diagonal block,

√
λD.

These Givens rotations use the diagonal elements of RJ and RM to eliminate the diagonal elements
of

√
λD and reduce the fill-in in this process. Note further that, in this recursive process, the bands

of zeros introduced in the previous stages are unaffected by the subsequent stages thanks to the use
of Givens rotations in the calculations; see Section 10.3 of Nocedal and Wright [139] for a good
account of this computing scheme. At the end, we get the matrix equations

WJ (λ)

[
RJ√
λD

]
=

[
RJ (λ)
0k.p×k.p

]
or WM(λ)

[
RM√
λD

]
=

[
RM(λ)
0k.p×k.p

]
.

Here, WJ (λ) and WM(λ) are 2.k.p × 2.k.p orthogonal matrices, which are the products of
k.p.(k.p + 1) Givens rotations, and, RJ (λ) and RM(λ) are nonsingular k.p × k.p upper trian-
gular matrices as λ > 0 and D has no zero elements on its diagonal.

192

Proceeding in this way, we implicitly build up thin QR decompositions of J (r(a))(λ) or M(a)(λ)
in several stages since

J
(
r(a)

)
(λ) =

[
QJ 0n.p×k.p

0k.p×k.p Ik.p

]
WJ (λ)

T

[
RJ (λ)
0k.p×k.p

]
=

[
QJW

11
J (λ)T

W12
J (λ)T

]
RJ (λ)

= QJ (λ)RJ (λ)

and

M(a)(λ) =

[
QM 0n.p×k.p

0k.p×k.p Ik.p

]
WM(λ)T

[
RM(λ)
0k.p×k.p

]
=

[
QMW11

M(λ)T

W12
M(λ)T

]
RM(λ)

= QM(λ)RM(λ) ,

where the 2.k.p × 2.k.p orthogonal matrices WJ (λ) and WM(λ) have been partitioned in four
blocks of k.p rows and columns each:

WJ (λ) =

[
W11

J (λ) W12
J (λ)

W21
J (λ) W22

J (λ)

]
, WM(λ) =

[
W11

M(λ) W12
M(λ)

W21
M(λ) W22

M(λ)

]
,

and the (p.n+k.p)×k.pmatrices QJ (λ) and QM(λ) have orthonormal columns since WJ (λ) and
WM(λ) are orthogonal matrices, and, the matrices QJ and QM have orthonormal columns.

Finally, using these thin QR decompositions of J (r(a))(λ) and M(a)(λ), the solutions dagp−lm
and dak−lm of the damped linear least-square problems (6.31) and (6.32), which must be solved
in step (6.1) of the Levenberg-Marquardt algorithms (2), can be easily computed in a last step as
RJ (λ) and RM(λ) are nonsingular upper triangular matrices, e.g.,

dagp−lm = RJ (λ)
−1QJ (λ)

T

[
r(a)
0k.p

]
or dak−lm = RM(λ)−1QM(λ)T

[
r(a)
0k.p

]
.

Next, if we want to use a QR approach in the Levenberg-Marquardt algorithms (3) and (4), we
have to solve the constrained and damped linear least-squares problems (6.33) or (6.34) at each
iteration. This can also be done by computing the thin QR decomposition of the block-column
matrices J (r(a))(N, λ) and M(a)(N, λ) defined in equation (6.36) in several steps to reduce the
memory footprint of the algorithms. More precisely with one more steps compared to the structured
QR algorithm used in step (6.1) of the Levenberg-Marquardt algorithms (2) to reduce the matrices
J (r(a))(λ) and M(a)(λ) (defined in equation (6.35)) to triangular form.

Thus, after using the same first stage as before to get the QR decomposition of M(a) + L(a) or
M(a) with the TSQR algorithms, we next compute implicitly the thin QR factorizations of

J
(
r(a)

)
(N) =

[
M(a) + L(a)

NT

]
= QJ (N)RJ (N)

or

M(a)(N) =

[
M(a)
NT

]
= QM(N)RM(N) ,

where QJ (N) and QM(N) are (p.n+ k.k)× k.p matrices with orthonormal columns and RJ (N)
and RM(N) are k.p× k.p upper triangular matrices. Since

J
(
r(a)

)
(N) =

[
QJRJ

NT

]
=

[
QJ 0n.p×k.k

0k.k×k.p Ik.k

] [
RJ

NT

]
193

and

M(a)(N) =

[
QMRM

NT

]
=

[
QM 0n.p×k.k

0k.k×k.p Ik.k

] [
RM

NT

]
,

this can be done by performing structured and thin QR factorizations of the matrices
[
RJ

NT

]
and[

RM

NT

]
; more precisely, by applying a sequence of k.p dedicated Householder transformations on

the left of the matrices. These Householder transformations are designed to annihilate the lower
block NT of these matrices, giving the matrix equalities,

WJ (N)

[
RJ

NT

]
=

[
RJ (N)
0k.k×k.p

]
or WM(N)

[
RM

NT

]
=

[
RM(N)
0k.k×k.p

]
,

where WJ (N) and WM(N) are k.(p+k)×k.(p+k) orthogonal matrices composed of the product
of these k.p elementary Householder transformations, and RJ (N) and RM(N) are nonsingular
upper triangular matrices if rank(A) = k and rank(M(a) + L(a)) = rank(M(a)) = k.(p − k).
This reduction to triangular from is exactly similar to one of the steps of the serial TSQR algorithm
described in Subsection 6.1, after the first one. Note also that, in this recursive process, the band of
zeros introduced in the previous stages or preceding Householder transformations are unaffected by
the subsequent stages if dedicated Householder transformations are used in the calculations.

Using this computational sequence, we finally obtain a thin QR factorization of J (r(a))(N) or
M(a)(N) since

J
(
r(a)

)
(N) =

[
QJ 0n.p×k.k

0k.k×k.p Ik.k

]
WJ (N)T

[
RJ (N)
0k.k×k.p

]
=

[
QJW

11
J (N)T

W12
J (N)T

]
RJ (N)

= QJ (N)RJ (N)

and

M(a)(N) =

[
QM 0n.p×k.k

0k.k×k.p Ik.k

]
WM(N)T

[
RM(N)
0k.k×k.p

]
=

[
QMW11

M(N)T

W12
M(N)T

]
RM(N)

= QM(N)RM(N) ,

where the k.(p+ k)× k.(p+ k) orthogonal matrices WJ (N) and WM(N) have been partitioned
in four blocks as

WJ (N) =

[
W11

J (N) W12
J (N)

W21
J (N) W22

J (N)

]
and WM(N) =

[
W11

M(N) W12
M(N)

W21
M(N) W22

M(N)

]
,

where

W11
J (N),W11

M(N) ∈ Rk.p×k.p ,

W12
J (N),W12

M(N) ∈ Rk.p×k.k ,

W21
J (N),W21

M(N) ∈ Rk.k×k.p ,

W22
J (N),W22

M(N) ∈ Rk.k×k.k ,

and the (n.p+ k.k)× k.p matrices QJ (N) and QM(N) have orthonormal columns since WJ (N)
and WM(N) are orthogonal matrices and the n.p × k.p matrices QJ and QM have orthonormal
columns.

194

Using these results, we can write, finally,

J
(
r(a)

)
(N, λ) =

[
J (r(a))(N)√

λD

]
=

[
QJ (N)RJ (N)√

λD

]
=

[
QJ (N) 0(n.p+k.k)×k.p

0k.p×k.p Ik.p

] [
RJ (N)√
λD

]
and

M(a)(N, λ) =

[
M(a)(N)√

λD

]
=

[
QM(N)RM(N)√

λD

]
=

[
QM(N) 0(n.p+k.k)×k.p

0k.p×k.p Ik.p

] [
RM(N)√

λD

]
,

and the thin QR decompositions of J (r(a))(N, λ) and M(a)(N, λ) can be obtained by computing

the structured and thin QR decompositions of the column-block matrices
[
RJ (N)√
λD

]
and

[
RM(N)√

λD

]
using the same computing sequence as performed in the last stage of step (6.1) of the Levenberg-
Marquardt algorithm (2) described above.

In other words, the elements of the diagonal matrix
√
λD can be eliminated by a sequence of

k.p.(k.p+ 1) Givens rotations and, at the end of this process, we get

WJ (N, λ)

[
RJ (N)√
λD

]
=

[
RJ (N, λ)
0k.p×k.p

]
or WM(N, λ)

[
RM(N)√

λD

]
=

[
RM(N, λ)
0k.p×k.p

]
.

where WJ (N, λ) and WM(N, λ) are 2.k.p× 2.k.p orthogonal matrices, which are the products of
these k.p.(k.p+1) Givens rotations, and, RJ (N, λ) and RM(N, λ) are nonsingular k.p×k.p upper
triangular matrices. Finally, using these matrices equalities, we obtain the thin QR factorizations of
J (r(a))(N, λ) and M(a)(N, λ) since

J
(
r(a)

)
(N, λ) =

[
QJ (N) 0(n.p+k.k)×k.p

0k.p×k.p Ik.p

]
WJ (N, λ)

T

[
RJ (N, λ)
0k.p×k.p

]
=

[
QJ (N)W11

J (N, λ)T

W12
J (N, λ)T

]
RJ (N, λ)

= QJ (N, λ)RJ (N, λ)

and

M(a)(N, λ) =

[
QM(N) 0(n.p+k.k)×k.p

0k.p×k.p Ik.p

]
WM(N, λ)T

[
RM(N, λ)
0k.p×k.p

]
=

[
QM(N)W11

M(N, λ)T

W12
M(N, λ)T

]
RM(N, λ)

= QM(N, λ)RM(N, λ) ,

where the 2.k.p × 2.k.p orthogonal matrices WJ (N, λ) and WM(N, λ) have been partitioned in
four blocks of k.p rows and columns each, and the (p.n+ k.k+ k.p)× k.p matrices QJ (N, λ) and
QM(N, λ) have orthonormal columns since WJ (N, λ) and WM(N, λ) are orthogonal matrices,
and, the matrices QJ (N) and QM(N) have orthonormal columns.

Using these thin QR factorizations of J (r(a))(N, λ) and M(a)(N, λ), the correction vectors dagp−lm
and dak−lm in step (6) of the Levenberg-Marquardt algorithms (3) and (4) can then be computed
as

dagp−lm = RJ (N, λ)
−1QJ (N, λ)

T

[
r(a)

0k.k+k.p

]
and

dak−lm = RM(N, λ)−1QM(N, λ)T
[

r(a)
0k.k+k.p

]
,

if we use a QR approach in these algorithms.

195

Note, finally, that if, at a particular iteration i of the Levenberg-Marquardt algorithms (3) and (4),
we have to solve several times the constrained and damped linear least squares problems (6.33)
and (6.34) for the same value of ai, but different values of λ in order to ensure the descending con-
dition ψ(ai+1) < ψ(ai) and the convergence of the algorithms, only the last stage of the structured
and thin QR factorizations of J (r(ai))(Ni, λ) and M(ai)(Ni, λ) involving the damping parame-
ter λ has to be performed again as the first two stages remain identical if ai is not changed. This
obviously can save a lot of computing time as p.n ≫ k.p for most WLRA problems encountered
in practice. This is an interesting feature of the QR approach, see Section 10.3 of Nocedal and
Wright [139] for further discussion on these algorithmic, but important, details in a more general
NLLS context.

6.3 Variable projection Newton and quasi-Newton algorithms

For large residuals WLRA problems, the variable projection Gauss-Newton and Levenberg-Marquardt
algorithms described in Subsections 6.1 and 6.2 can be much less efficient as they do not include
second-order derivative information from the Hessian matrix ∇2ψ(a) in their associated quadratic
models for the variations of ψ(.) in a neighborhood of a. Thus, their asymptotic convergence rates
are expected to be only linear in these conditions [45][139]. Fortunately, from the results of Subsec-
tion 5.3, we have a compact expression for the Hessian matrix ∇2ψ(a) (see equation (5.33))

H = M(a)TM(a)− L(a)TL(a) +
(
U(a)TL(a) + L(a)TU(a)

)
,

under the hypothesis that F(.) has full column-rank in a neighborhood of a, and, also, all the ma-
chinery to implement full Newton algorithms based on this exact three-term expression of ∇2ψ(a)
or quasi-Newton methods based on its two-term approximation (see equation (5.34))

H̄ = M(a)TM(a)− L(a)TL(a) .

Here M(a),L(a) and U(a) are defined, respectively, in equations (5.15), (5.19) and (5.20). Note
further that, as we assume that F(a) is of full column rank, e.g., rF(a) = rank(F(a)) = k.p, we
have F(a)+ = F(a)− and the computation of the three matrices M(a),L(a) and U(a) can be
simplified accordingly. Finally, the cost of the above quasi-Newton methods is similar to those of
the Golub-Pereyra Gauss-Newton algorithms using a Cholesky approach as both methods compute
exactly the same symmetric matrix terms, e.g., M(a)TM(a) and L(a)TL(a).

Furthermore, as demonstrated in the Cholesky approach of the Gauss-Newton algorithms (1), the
computations of these two symmetric terms can be easily parallelized since

M(a)TM(a) =
n∑
j=1

MT
j Mj and L(a)TL(a) =

n∑
j=1

LTj Lj ,

where M(a) and L(a) have been divided into n blocks Mj and Lj as defined in equation (6.2).
The last symmetric term U(a)TL(a)+L(a)TU(a) in the above expression of ∇2ψ(a) can also be
efficiently computed in two stages. First, by computing in n parallel steps, the term

L(a)TU(a) = V(a)TF(a)−U(a) =

n∑
j=1

VT
j Fj(a)

−Uj ,

where V(a) is defined in equation (5.21) and the matrices U(a) and V(a) have also been partitioned
into n blocks Vj and Uj as defined in equations (6.3) and (6.4). Note that, in this last equation,
we have used again a symmetric generalized inverse of F(a) instead of the Moore-Penrose inverse
F(a)+ as we assume here that F(a) is of full column rank, e.g., that rF(a) = rank(F(a)) = k.p. In
a second stage, we just transpose this squared matrix and sum this squared matrix and its transpose
to get the third symmetric term in the above expression of ∇2ψ(a).

196

Using the matrix H or its two-term approximation H̄, a basic variable projection Newton or quasi-
Newton algorithm for the WLRA problem has to solve at each iteration, respectively, the constrained
linear systems (see equations (5.40) and (5.41))(

H+NNT
)
dan = −∇ψ(a) = M(a)T r(a)

and (
H̄+NNT

)
dan = −∇ψ(a) = M(a)T r(a) ,

where the columns of the matrix N = K(p,k)(Ik ⊗A) form a (orthonormal) basis of the null space
of J (r(a)). As already discussed in the previous subsections, such a basis can be easily com-
puted with the help of Corollary 5.6 under the hypothesis that rank(A) = k and rank(J (r(a))) =
rank(M(a)) = k.(p− k). Furthermore, the cross-product matrix NNT can be evaluated efficiently
with equation (5.42) and the matrix-product M(a)T r(a) = −∇ψ(a) can also be computed in n
parallel steps as the matrices H and H̄ (see Subsection 6.1 for details).

As discussed at the end of Subsection 5.3, adding the symmetric matrix NNT to H and H̄ will
guarantee that the minimum 2-norm solutions of the consistent linear systems

Hdan = M(a)T r(a) and H̄dan = M(a)T r(a)

are computed if rank(A) = k and rank(J (r(a))) = rank(M(a)) = k.(p − k) and, thus, will
overcome the systematic singularity and ill-conditioning of H̄ or those of H at the stationary points
of ψ(.) in most cases without using any pre-conditioner for the Hessian matrix or its approximation
as suggested in [14]. Note that these two constrained linear systems are based, respectively, on the
quadratic approximation models

ψ(a+ da) ≈ NN(da) = ψ(a) + daT∇ψ(a) + 1

2
daT

(
H+NNT

)
da

and
ψ(a+ da) ≈ NN(da) = ψ(a) + daT∇ψ(a) + 1

2
daT

(
H̄+NNT

)
da .

These quadratic functions are more accurate then the corresponding Golub-Pereyra and Kaufman
quadratic models

GN(da) = ψ(a) + daT∇ψ(a) + 1

2
daT

(
M(a)TM(a) + L(a)TL(a) +NNT

)
da

and
GN(da) = ψ(a) + daT∇ψ(a) + 1

2
daT

(
M(a)TM(a) +NNT

)
da ,

which are used in the variable projection Gauss-Newton methods, as information on second-order
derivatives of ψ(.) is included in NN(.), but not in GN(.).

However, if the addition of the term NNT to the Hessian matrix H, or to its two-term approximation
H̄, is useful to ensure that these matrices stay nonsingular and well-conditioned at each iteration, it
is not sufficient to guarantee that these two matrices stay positive definite in all the steps and , thus,
that dan is always in a descent direction for ψ(.). As explained in Subsection 5.1, this property
can be achieved by adding an (another) damping term λIk.p (where λ > 0) in the above Newton
quadratic models

NN
λ (da) = ψ(a) + daT∇ψ(a) + 1

2
daT

(
H+NNT + λIk.p

)
da

or
NN
λ (da) = ψ(a) + daT∇ψ(a) + 1

2
daT

(
H̄+NNT + λIk.p

)
da ,

which lead, respectively, to the damped and constrained linear systems(
H+NNT + λIk.p

)
dan = M(a)T r(a)

197

and (
H̄+NNT + λIk.p

)
dan = M(a)T r(a) ,

for the computation of the Newton or quasi-Newton correction step at each iteration.

Remark 6.4. Alternatively, as already discussed at the end of Subsection 5.3, the correction vec-
tors in the variable projection Newton or quasi-Newton algorithms can be computed in a two-step
procedure as first suggested by Chen [28]. First, by solving the reduced damped linear system

(Ō⊥)T
(
H+ λIk.p

)
Ō⊥dān =

(
M(a)Ō⊥)T r(a)

or
(Ō⊥)T

(
H̄+ λIk.p

)
Ō⊥dān =

(
M(a)Ō⊥)T r(a) ,

for dān ∈ R(p−k).k and where Ō⊥ = K(p,k)(Ik ⊗O⊥) ∈ Ok.p×(p−k).k and O⊥ ∈ Op×(p−k) is an
orthonormal matrix whose columns form a basis of ran(A)⊥. Next, dan is computed by

dAn = O⊥dĀn ,

in a second step. ■

In other words, we can develop variable projectionLevenberg-Marquardt-type Newton and quasi-
Newton algorithms with a wider basin of convergence by using the same strategies as used in the
Levenberg-Marquardt algorithms described in Subsection 6.2.

Note that we can also define and use a gain factor ρ in the context of these variable projection
Levenberg-Marquardt-type Newton and quasi-Newton methods, e.g.,

ρ =
ψ(ai)− ψ(ai + da)

N(0k.p)−N(da)
,

where N(.) is the more accurate quadratic model used by the (quasi-)Newton iterations and defined
by

N(da) = ψ(a) + daT∇ψ(a) + 1

2
daTHda

or
N(da) = ψ(a) + daT∇ψ(a) + 1

2
daT H̄da ,

if we use a quasi-Newton algorithm. Furthermore, in both cases, a direct computation shows that
we can compute cheaply the difference N(0k.p)−N(dan) at each iteration of the (quasi-)Newton
algorithms as

N(0k.p)−N(dan) =
1

2

(
∥NT

i dan∥22 + λ∥dan∥22 − daTn∇ψ(ai)
)
,

similarly as for the Levenberg-Marquardt algorithms (4) developed in the last subsection. Further-
more, N(0k.p)−N(dan) will be guaranteed to be positive, if dan is in a descent direction for ψ(.)
and ∥∇ψ(ai)∥2 ̸= 0.

Using these considerations and inspired by the Levenberg-Marquardt algorithms (2), (3) and (4), an
outline of three different versions of the variable projection (quasi-)Newton algorithms is detailed
below. The definitions and variables used in these Newton and quasi-Newton algorithms have the
same meaning as in the previous Gauss-Newton and Levenberg-Marquardt algorithms.

Note that, in all these algorithms, we compute the Newton correction step dan with the exact Hes-
sian matrix H. However, at the user convenience, for example to reduce the computing time per
iteration and the memory footprint in all the algorithms, we can eliminate the computation of the

198

third symmetric term of ∇2ψ(a) and use the approximate Hessian matrix H̄ instead to compute
the Newton correction step dan at each iteration. Thus, this simple modification defines the quasi-
Newton variant for all the algorithms.

Newton algorithms 5.

Choose starting matrix A1 ∈ Rp×k , ε1, ε2, ε3, β ∈ R+∗ and imax, jmax ∈ N∗, appropriately

For i = 1, 2, . . . until convergence do

(0) Optionally, compute a QRCP of Ai (see equation (2.15)) to determine ki = rank(Ai) and an
orthonormal basis of ran(Ai):

QiAiPi =

[
Ri Si

0(p−ki)×ki 0(p−ki)×(k−ki)

]
,

where Qi is an p× p orthogonal matrix, Pi is an k × k permutation matrix, Ri is an ki × ki
nonsingular upper triangular matrix (with diagonal elements of decreasing absolute magni-
tude) and Si an ki × (k − ki) full matrix, which is vacuous if ki = k.

In all cases, compute an p× k matrix Oi with orthonormal columns as the first k columns of
Qi (i.e., such that ran(Ai) ⊂ ran(Oi) if ki < k and ran(Ai) = ran(Oi) if ki = k) and set

Ai = Oi .

This optional orthogonalization step is a safe-guard as the condition ki = k is a necessary
condition for the differentiability of ψ(.) at a point Ai and also to limit the occurrence of
overflows and underflows in the next steps by enforcing that the matrix variable Ai ∈ Op×k.

(1) Determine (implicitly) the block diagonal matrix

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

where ai = vec(AT
i).

(2) Compute (implicitly) a QRCP of F(ai) to determine rF(ai) = rank(F(ai)), P⊥
F(ai)

and
F(ai)

− (see equations (2.18) and (2.19)). Note that P⊥
F(ai)

and F(ai)
− are also block di-

agonal matrices and that the Newton and quasi-Newton algorithms assume that rF(ai) = k.p;
see the derivation of the Hessian matrix ∇2ψ(ai) in Subsection 5.3 for more details. Note
that the validity of this hypothesis can be checked here in output of the QRCP of F(ai).

(3) Solve the block diagonal linear least-squares problem

bi = Argminb∈Rk.n ∥x− F(ai)b∥22 ,

e.g., compute bi = F(ai)
−x.

(4) Determine:

r(ai) = P⊥
F(ai)

x {current residual vector}

ψ(ai) =
1
2∥r(ai)∥

2
2 {current value of the cost function }

∇ψ(ai) = G(bi)
TG(bi)ai −G(bi)

T z {see Theorems 4.3 and 5.7}

λi = β∥∇ψ(ai)∥22 {set ridge parameter proportional to the squared 2-norm of the gradient}

Note that the steps (1) to (4) above can be very easily parallelized using the block diagonal
structure of F(ai).

(5) Check for convergence. Relevant convergence criteria in the algorithms are of the form:

• ∥∇ψ(ai)∥2 ≤ ε1

199

• ∥ai − ai−1∥2 ≤ ε2(ε2 + ∥ai∥2) {if i ̸= 1}.

If step (0) is used, this convergence condition can be simplified as:

∥ai − ai−1∥2 ≤ ε2∥ai∥2 = ε2
√
k

• |ψ(ai−1)− ψ(ai)| ≤ ε3(ε3 + ψ(ai)) {if i ̸= 1}

• i ≥ imax {e.g., give up if the number of iterations is too large}

where ε1, ε2, ε3 and imax are constants chosen by the user.

Exit if convergence. Otherwise, go to step (6)

(6) Compute the Newton correction vector dan.

(6.1) To this end, first compute Hessian matrix or its two-term approximation:

H1
i = M(ai)

TM(ai) +NiN
T
i + λiIk.p

H2
i = L(ai)

TL(ai)

H3
i = U(ai)

TL(ai) + L(ai)
TU(ai) {only if a full Newton step is wanted}

Hi =

{
H1
i −H2

i +H3
i {for a full Newton step}

H1
i −H2

i {for a quasi-Newton step}

where the columns of Ni = K(p,k)(Ik⊗Ai) are a (orthonormal) basis of null
(
M(ai)+

L(ai)
)
= null(M(ai)), see Corollary 5.6.

(6.2) If Hi is positive definite then {use Cholesky factorization}

Newton step: get Newton or quasi-Newton step as the solution of the linear system

Hidan = −∇ψ(ai) = M(ai)
T r(ai)

(6.3) Else

Gauss-Newton step: get (Gauss-)Newton step as the solution of the linear system

H1
i dan = −∇ψ(ai) = M(ai)

T r(ai)

(7) Increment ai = vec(AT
i), e.g., compute ai+1 = vec(AT

i+1) such that ψ(ai+1) < ψ(ai) in
order to obtain global convergence.

(7.1) To this end, first compute:

ai+1 = ai + dan

ψ(ai+1) =
1
2∥r(ai+1)∥22 = 1

2∥P
⊥
F(ai+1)

x∥22 ,

using (implicitly) a QRCP of the block diagonal matrix F(ai+1).

(7.2) If ψ(ai+1) > ψ(ai) then recompute ai+1 by one of the following methods:

Gauss-Seidel: ai+1 = ai + dags−gn where dags−gn is a Gauss-Seidel step [166]

dags−gn =
(
K(n,p)G(bi)

)+
r(ai)

=

{
Argminda∈Rp.k ∥da∥22
s.t. Argminda∈Rp.k ∥r(ai)−K(n,p)G(bi)da∥22

200

Block alternating least-squares:

ai+1 = G(bi)
+z

=

{
Argmina∈Rp.k ∥a∥22
s.t. Argmina∈Rp.k ∥z−G(bi)a∥22

Line search:
ai+1 = ai + αidan

where αi < 1 is determined by a line search to make the algorithm a descent
method (i.e., such that ψ(ai+1) < ψ(ai)). This is always possible as the correction
vector dan is in a descent direction for ψ(.) if ∥∇ψ(ai)∥2 ̸= 0.

A simple strategy is to first shorten the correction step to half the Newton length (or
Gauss-Newton length if Hi is not positive definite), compute the new trial value for
ψ(ai+1) and, if it is still worse, continue to reduce the step until we get a step short
enough such that ψ(ai+1) < ψ(ai). The following loop incorporates this simple
step-shortening algorithm:

For j = 1, 2, . . . while
(
ψ(ai+1) > ψ(ai)

)
dan = 1

2dan

ai+1 = ai + dan

ψ(ai+1) =
1
2∥P

⊥
F(ai+1)

x∥22 {using a QRCP of the matrix F(ai+1)}

If j > jmax exit {give up if the number of iterations is too large}

End do

End do

Newton algorithms 6.

Choose starting matrix A1 ∈ Rp×k , ε1, ε2, ε3, λ ∈ R+∗ and imax, jmax ∈ N∗, appropriately

For i = 1, 2, . . . until convergence do

(0) Optionally, compute a QRCP of Ai (see equation (2.15)) to determine ki = rank(Ai) and an
orthonormal basis of ran(Ai):

QiAiPi =

[
Ri Si

0(p−ki)×ki 0(p−ki)×(k−ki)

]
,

where Qi is an p× p orthogonal matrix, Pi is an k × k permutation matrix, Ri is an ki × ki
nonsingular upper triangular matrix (with diagonal elements of decreasing absolute magni-
tude) and Si an ki × (k − ki) full matrix, which is vacuous if ki = k.

In all cases, compute an p× k matrix Oi with orthonormal columns as the first k columns of
Qi (i.e., such that ran(Ai) ⊂ ran(Oi) if ki < k and ran(Ai) = ran(Oi) if ki = k) and set

Ai = Oi .

This optional orthogonalization step is a safe-guard as the condition ki = k is a necessary
condition for the differentiability of ψ(.) at a point Ai and also to limit the occurrence of
overflows and underflows in the next steps by enforcing that the matrix variable Ai ∈ Op×k.

(1) Determine (implicitly) the block diagonal matrix

201

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

where ai = vec(AT
i)

(2) Compute (implicitly) a QRCP of F(ai) to determine rF(ai) = rank(F(ai)), P⊥
F(ai)

and
F(ai)

− (see equations (2.18) and (2.19)). Note that P⊥
F(ai)

and F(ai)
− are also block di-

agonal matrices and that the Newton and quasi-Newton algorithms assume that rF(ai) = k.p;
see the derivation of the Hessian matrix ∇2ψ(ai) in Subsection 5.3 for more details. Note
that, optionally, the validity of this hypothesis can be checked here in output of the QRCP of
F(ai).

(3) Solve the block diagonal linear least-squares problem

bi = Argminb∈Rk.n ∥x− F(ai)b∥22 ,

e.g., compute bi = F(ai)
−x.

(4) Determine and set:

r(ai) = P⊥
F(ai)

x {current residual vector}

ψ(ai) =
1
2∥r(ai)∥

2
2 {current value of the cost function }

∇ψ(ai) = G(bi)
TG(bi)ai −G(bi)

T z {see Theorems 4.3 and 5.7}

j = 0 {initialize counter for the ridge scaling subiterations}

Note that the steps (1) to (4) above can be very easily parallelized using the block diagonal
structure of F(ai).

(5) Check for convergence. Relevant convergence criteria in the algorithms are of the form:

• ∥∇ψ(ai)∥2 ≤ ε1

• ∥ai − ai−1∥2 ≤ ε2(ε2 + ∥ai∥2) {if i ̸= 1}

If step (0) is used, this convergence condition can be simplified as:

∥ai − ai−1∥2 ≤ ε2∥ai∥2 = ε2
√
k

• |ψ(ai−1)− ψ(ai)| ≤ ε3(ε3 + ψ(ai)) {if i ̸= 1}

• i ≥ imax {e.g., give up if the number of iterations is too large}

where ε1, ε2, ε3 and imax are constants chosen by the user.

Exit if convergence. Otherwise, go to step (6)

(6) Compute the Newton correction vector dan.

(6.1) To this end, first compute Hessian matrix or its two-term approximation:

H1
i = M(ai)

TM(ai)

H2
i = L(ai)

TL(ai)

H3
i = U(ai)

TL(ai) + L(ai)
TU(ai) {only if a full Newton step is wanted}

Hi =

{
H1
i −H2

i +H3
i {for a full Newton step}

H1
i −H2

i {for a quasi-Newton step}

Hi = Hi +NiN
T
i

where the columns of Ni = K(p,k)(Ik⊗Ai) are a (orthonormal) basis of null
(
M(ai)+

L(ai)
)
= null(M(ai)), see Corollary 5.6.

202

(6.2) Check first diagonal elements of Hi:

hmin = minl=1,··· ,k.p[Hi]ll

If hmin < 0 then λ = λ− hmin {scale up the ridge parameter}

(6.3) Do while Hi + λIk.p is not positive definite {use Cholesky factorization}

j = j + 1

λ = 10.λ {scale up the ridge parameter}

(6.4) Newton step: get Newton step as the solution of the positive definite linear system(
Hi + λIk.p

)
dan = −∇ψ(ai) = M(ai)

T r(ai)

(7) Compute next iterate ai+1 = vec(AT
i+1) such that ψ(ai+1) < ψ(ai) in order to obtain global

convergence.

(7.1) To this end, first compute

ψ(ai + dan) =
1
2∥r(ai + dan)∥22 = 1

2∥P
⊥
F(ai+dan)

x∥22

using (implicitly) a QRCP of the block diagonal matrix F(ai + dan).

(7.2) If ψ(ai + dan) > ψ(ai) then {step rejected}

j = j + 1

λ = 10.λ {scale up the ridge parameter}

If j ≤ jmax go to step (6.3) {recompute dan with inflated diagonal of Hi}

(7.3) Else {step acceptable}

If j = 0 then λ = λ/10 {scale down the ridge parameter if step is successful}

(7.4) Increment ai:

ai+1 = ai + dan{compute new iterate}

End do

Newton algorithms 7.

Choose starting matrix A1 ∈ Rp×k , ε1, ε2, ε3, λ ∈ R+∗ and imax, jmax ∈ N∗, appropriately, and
initialize ν = 2

For i = 1, 2, . . . until convergence do

(0) Optionally, compute a QRCP of Ai (see equation (2.15)) to determine ki = rank(Ai) and an
orthonormal basis of ran(Ai):

QiAiPi =

[
Ri Si

0(p−ki)×ki 0(p−ki)×(k−ki)

]
,

where Qi is an p× p orthogonal matrix, Pi is an k × k permutation matrix, Ri is an ki × ki
nonsingular upper triangular matrix (with diagonal elements of decreasing absolute magni-
tude) and Si an ki × (k − ki) full matrix, which is vacuous if ki = k.

In all cases, compute an p× k matrix Oi with orthonormal columns as the first k columns of
Qi (i.e., such that ran(Ai) ⊂ ran(Oi) if ki < k and ran(Ai) = ran(Oi) if ki = k) and set

Ai = Oi .

203

This optional orthogonalization step is a safe-guard as the condition ki = k is a necessary
condition for the differentiability of ψ(.) at a point Ai and also to limit the occurrence of
overflows and underflows in the next steps by enforcing that the matrix variable Ai ∈ Op×k.

(1) Determine (implicitly) the block diagonal matrix

F(ai) = diag
(
vec(

√
W)

)(
In ⊗Ai

)
,

where ai = vec(AT
i).

(2) Compute (implicitly) a QRCP of F(ai) to determine rF(ai) = rank(F(ai)), P⊥
F(ai)

and
F(ai)

− (see equations (2.18) and (2.19)). Note that P⊥
F(ai)

and F(ai)
− are also block di-

agonal matrices and that the Newton and quasi-Newton algorithms assume that rF(ai) = k.p;
see the derivation of the Hessian matrix ∇2ψ(ai) in Subsection 5.3 for more details. Note
that, optionally, the validity of this hypothesis can be checked here in output of the QRCP of
F(ai).

(3) Solve the block diagonal linear least-squares problem

bi = Argminb∈Rk.n ∥x− F(ai)b∥22 ,

e.g., compute bi = F(ai)
−x.

(4) Determine and set:

r(ai) = P⊥
F(ai)

x {current residual vector}

ψ(ai) =
1
2∥r(ai)∥

2
2 {current value of the cost function }

∇ψ(ai) = G(bi)
TG(bi)ai −G(bi)

T z {see Theorems 4.3 and 5.7}

j = 0 {initialize counter for the ridge scaling subiterations}

Note that the steps (1) to (4) above can be very easily parallelized using the block diagonal
structure of F(ai).

(5) Check for convergence. Relevant convergence criteria in the algorithms are of the form:

• ∥∇ψ(ai)∥2 ≤ ε1

• ∥ai − ai−1∥2 ≤ ε2(ε2 + ∥ai∥2) {if i ̸= 1}

If step (0) is used, this convergence condition can be simplified as:

∥ai − ai−1∥2 ≤ ε2∥ai∥2 = ε2
√
k

• |ψ(ai−1)− ψ(ai)| ≤ ε3(ε3 + ψ(ai)) {if i ̸= 1}

• i ≥ imax {e.g., give up if the number of iterations is too large}

where ε1, ε2, ε3 and imax are constants chosen by the user.

Exit if convergence. Otherwise, go to step (6)

(6) Compute the Newton correction vector dan.

(6.1) To this end, first compute Hessian matrix or its two-term approximation:

H1
i = M(ai)

TM(ai)

H2
i = L(ai)

TL(ai)

H3
i = U(ai)

TL(ai) + L(ai)
TU(ai) {only if a full Newton step is wanted}

Hi =

{
H1
i −H2

i +H3
i {for a full Newton step}

H1
i −H2

i {for a quasi-Newton step}

204

Hi = Hi +NiN
T
i

where the columns of Ni = K(p,k)(Ik⊗Ai) are a (orthonormal) basis of null
(
M(ai)+

L(ai)
)
= null(M(ai)), see Corollary 5.6.

(6.2) Check first diagonal elements of Hi:

hmin = minl=1,··· ,k.p[Hi]ll

If hmin < 0 then λ = λ− hmin {scale up the ridge parameter}

(6.3) Do while Hi + λIk.p is not positive definite {use Cholesky factorization}

j = j + 1

λ = ν.λ {scale up the ridge parameter}

ν = 2.ν {increase the growth factor of the ridge parameter}

(6.4) Newton step: get Newton step as the solution of the positive definite linear system(
Hi + λIk.p

)
dan = −∇ψ(ai) = M(ai)

T r(ai)

(7) Compute next iterate ai+1 = vec(AT
i+1) such that ψ(ai+1) < ψ(ai) in order to obtain global

convergence.

(7.1) To this end, first compute

ψ(ai + dan) =
1
2∥P

⊥
F(ai+dan)

x∥22,

using (implicitly) a QRCP of the block diagonal matrix F(ai+dan), and the gain factor

ρ = ψ(ai)−ψ(ai+dan)
N(0k.p)−N(dan)

= ψ(ai)−ψ(ai+dan)
1
2

(
∥NT

i dan∥22+λ∥dan∥22−daT
n∇ψ(ai)

)
(7.2) If ρ > 0 then {step acceptable}

λ = λ.max
(
1
3 , 1− (2.ρ− 1)3

)
{scale down the ridge parameter}

ν = 2 {reinitialize the growth factor of the ridge parameter}

(7.3) Else {step rejected}

j = j + 1

λ = ν.λ {scale up the ridge parameter}

ν = 2.ν {increase the growth factor of the ridge parameter}

If j ≤ jmax go to step (6.3) {recompute dan with inflated diagonal of Hi}

(7.4) Increment ai:

ai+1 = ai + dan{compute new iterate}

End do

As in the Gauss-Newton or Levenberg-Marquardt algorithms, the computations in the above Newton
algorithms are terminated either when one or several of the convergence criteria listed in step (5)
are satisfied, or when the iteration count exceeds the predetermined number imax.

In both the Newton algorithms (6) and (7), the Marquardt parameter λ is taken in the interval
[10−8 1] and a small value of λ is selected if we believe that A1 is close to a solution (say λ = 10−6).
Otherwise, we can use λ = 10−3 or 10−4, or even 1. The algorithms are not very sensitive to
this initial choice of λ as this parameter is quickly updated during the iterations in both Newton
algorithms (6) and (7). Version (7) of the Newton algorithms also uses a growth factor ν for the

205

ridge parameter, which is initialized to 2 at the start of the algorithm and reinitialized to this initial
value in step (7.2) when a Newton step is successful.

Note that it may happens during some iterations that the exact Hessian matrix Hi or its two-term
approximation H̄i may become not positive definite in which case the computed Newton correction
vector dan is not in a descent direction for ψ(.). The Newton algorithms (5) overcome this difficulty
by using immediately a Gauss-Newton step, more precisely a Kaufman Gauss-Newton step, which
is always in a descent direction if ai is not a stationary point as demonstrated in Corollary 5.7. On
the other hand, the Newton algorithms (6) and (7) use the simple strategy of adding a multiple of the
identity to the Hessian matrix until this modified Hessian matrix becomes positive definite; see step
(6.3) in these algorithms. The drawback in this simple approach is that each time we add a multiple
of the identity to the Hessian matrix, a new Cholesky factorization of Hi+λIk.p must be attempted.
This can become very expensive if the process is repeated many times across the iterations. This
explains why λ is multiplied by a value as large as 10 in step (6.3) of the Newton algorithm (6)
and that the updating strategy of λ in step (6.3) of the Newton algorithm (7) is modified so that
consecutive failures of getting a positive definite modified Hessian matrix give a very fast growth
of λ. The same modified strategy with a faster growth of λ is also used in step (7.3) of the Newton
algorithms (7) when the gain factor is negative and a trial Newton step is rejected. However, in both
Newton algorithms (6) and (7), if the number of ridge scaling subiterations in steps (6.3) and (7.2)
(or (7.3) for Newton algorithms (7)) become too important, we stop this ridge scaling process at the
end of step (7.2) (or (7.3) for Newton algorithms (7)) and we try to decrease the cost function ψ(.)
through the main loop of the algorithms instead.

6.4 Variable projection hybrid algorithms

In the previous subsections, we have presented a large variety of variable projection WLRA solvers
based on Gauss-Newton, Levenberg-Marquardt and Newton algorithms, which can all be considered
as second-order or pseudo second-order methods. The complexity of these algorithms is relatively
high, especially when p ≈ n, even if min(p, n) ≫ k, as these algorithms have to solve a large linear
system or a tall and skinny linear least-squares problem at each iteration as discussed in the previous
subsections. Furthermore, the pre-processing of the Hessian matrix and its different approximations
in a normal-equation approach or of the coefficient matrix of the linear least-squares problem in a
QR approach for the Gauss-Newton and Levenberg-Marquardt methods is also expensive and has
a high memory footprint [28][150][81][88]. In the previous section, we have provided different
parallel techniques to reduce both the computing time and the memory storage requirements for
this expensive pre-processing step included in all these variable projection (pseudo) second-order
algorithms.

However, all these (pseudo) second-order algorithms have a much higher complexity than the block
ALS method (e.g., NIPALS, presented in Section 4) or other first-order algorithms based on ma-
jorization or Expectation-Maximization (EM) methods, steepest, conjugate or stochastic gradient
descent (or combinations of some of them), which have been proposed in the literature to solve
the WLRA problem, since most of them are based on relatively inexpensive iterative algorithms
that monotonically improve the function value by sequential repetition of local optimizations as the
ALS method [98][99][93][91][86][129][167][23][17][181][146]. Moreover, the block ALS method
greatly reduces the memory footprint requirements and can also be parallelized easily and very
efficiently taking into account the block diagonal structures of the matrices F(a) and G(b) as ex-
plained in Section 4. On the other hand, it is known that the block ALS method and its variants
fail frequently to converge to an acceptable optimal solution for difficult WLRA problems without
the use of a proper regularization, and are prone to flattening, especially when the percentage of
missing data or/and the level of noise are high [15][28][37][150][81][88].

These different features suggest that hybrid methods combining the fast block ALS algorithm with
any of the (pseudo) second-order variable projection algorithms detailed in the last subsections can
performed much better than any of the previous individual algorithms as first suggested by [15]

206

and confirmed by Chen [28] in the specific case of variable projection Newton algorithms. In this
way, we can benefit of the remarkable efficiency of the block ALS method in terms of speed and,
at the same time, of the good convergence ability of the (pseudo) second-order methods to reduce
drastically the computing time without sacrificing the overall performance of the (pseudo) second-
order WLRA solvers.

As an illustration, one simple, but still very efficient, choice of such hybrid methods could be to
add an additional step consisting of a fixed number of iterations (say between 2 and 20) of the
block ALS algorithm before step (0) in all our (pseudo) second-order variable projection algorithms.
Preliminary tests (not shown) suggest that this simple modification is always very beneficial in
terms of speed without impairing the global convergence performance of the (pseudo) second-order
variable projection WLRA solvers discussed here. Of course, many variations other than this simple
hybrid scheme are possible [15][28].

7 Conclusions and discussion

In this monograph, we consider the difficult WLRA problem, an extension of the well-known ma-
trix completion problem [44]. The WLRA problem is NP-hard and has no closed solution in gen-
eral [62], but has an increasing number of important applications in practice.

We survey many different approaches which have been used to solve it, with a particular focus
on variable projection second-order methods [158][63][166][10][150][149][81]. A large variety of
low-complexity first-order methods have been already proposed in the past to solve the WLRA
problem [188][186][14][86][17] [181][146], but only a few second-order methods, as these second-
order methods have a very high per-iteration complexity, which preclude their use for very large
datasets commonly found in recent applications. However, variable projection second-order meth-
ods perform better than first-order methods for badly conditioned WLRA problems, which are very
common, and these more costly methods are thus still of interest in this context [150][81].

First, we review in detail the connections between manifold, variety, factorization and variable
projection formulations of the WLRA problem, which are most often treated as disconnected ap-
proaches in the literature and establish relationships between (local) minima, first- and second-order
critical points of the objective functions used in the these different formulations of the WLRA prob-
lem. These results are an illustration and slight extension in the context of the WLRA problem of
recent results presented in [173][84][83][115][113] about the near equivalences of first- and second-
order critical points of the objective functions in nonconvex factorization, manifold and variety
formulations in more general low-rank matrix optimization.

Second, we provide an extended and original overview of the variable projection formulation of
the WLRA problem both from theoretical and algorithmic perspectives. In particular, we study
in detail the non-smoothness of the variable projection cost function of the WLRA problem when
some weights are equal to zero (e.g., in presence of missing values) and when this cost function is not
regularized. We characterize precisely its discontinuities generalizing the preliminary investigations
of Dai et al. [46][47] on this topic. These points of discontinuity form barrier sets in the feasible
space of solutions, which prevent low-complexity algorithms like gradient descent or alternating
least squares to converge to first-order critical points for some WLRA problems when missing
values are present. Up to now, most of variable projection algorithms proposed in the literature for
solving the WLRA problem simply ”ignore” these discontinuities when missing values are present
or use a regularized objective function to eliminate them. However, such regularization may degrade
significantly the compression quality of the computed low-rank matrix approximation. It is thus
interesting to explore whether it is possible to detect if we move in front of these discontinuity
points in the unregularized variable projection methods when missing values are present and to
find ways of escaping from them during the course of the computations as was discussed in Dai
et al. [46] for a gradient descent algorithm. Finally, it is also worth to explore in more depth the

207

landscape connections between these discontinuity points in the variable projection formulation and
the corresponding points in the manifold and factorization formulations of the WLRA problem. As
an illustration, the matrix incoherency hypotheses, which are often used to prove the convergence
of gradient descent or alternating least-squares for matrix completion problems [187] mainly lead
to the exclusion of the above barrier sets.

Next, we derive new formulae for the variable projection gradient vector, and Jacobian and Hessian
matrices, which are pivotal in all the second-order variable projection methods. These new formulae
also allow a better understanding of the geometric landscape of the objective function associated
with the variable projection formulation. In particular, they allow to characterize precisely the
systematic rank degeneracy of the variable projection Jacobian matrix and also the singularities of
the variable projection Hessian at first-order stationarity points of the variable projection objective
function. Furthermore, these new formulae allow us to demonstrate that most of the first- and
second-order variable projection methods, which can be used to solve the WLRA problem, can be
viewed as as Riemannian optimization methods operating on the Grassmann manifold when the
variable projection objective function is smooth over all the points of the Grassmannian.

Our new formulae for the variable projection gradient vector, Jacobian and Hessian matrices also
allow us to formulate more accurate and robust variable projection second-order algorithms based
on stable orthogonal kernels to tackle the systematic rank degeneracy of the Jacobian, the singularity
of the Hessian at first-order stationarity points of the variable projection functional and, finally, the
ill-conditioning and indefinite nature of the Hessian at points arbitrarily closed to local minima of
this functional. These singularities and instabilities are inescapable here as the (local) minima of the
variable projection objective function are always non-isolated and form a differentiable submanifold
of the ambient linear space around around each of the minima under some regularity hypotheses of
the variable projection functional as demonstrated in Subsection 5.3.

From an algorithmic point of view, these formulae also allow us to formulate more efficient variable
projection second-order algorithms to tackle WLRA problems of larger dimensions, which are now
the rule in many applications, despite these variable projection second-order algorithms have still a
high per-iteration complexity. In particular, we improve significantly the scalability and efficiency
of the proposed variable projection second-order algorithms compared to previous studies by taking
better into account the sparseness of the different matrix variables involved in each iteration of the
algorithms and by using large-scale parallelization techniques and highly optimized BLAS3 kernels
in the sensible parts of the algorithms. However, some parts of the variable projection algorithms
still do not explicitly take into account the sparsity of the matrix variables. This concerns espe-
cially the recursive and parallel implementations of the QR decomposition of the the tall and skinny
matrices generated by blocks and used in the iterations of both the Gauss-Newton and Levenberg-
Marquardt algorithms. Devising more efficient recursive and parallel QR decompositions of these
sparse, tall and skinny matrices is thus an important topic for future research, including possibly the
use of very fast randomized QR methods [128].

Finally, here, we have assumed that the rank of the low-rank matrix approximation we are seeking
is given or bounded before hand by the user. Of course, in practice, this rank is often unknown. An
interesting continuation of this work would thus be to devise efficient variable projection algorithms
specifically designed to adaptively select or change the rank of the low-rank matrix solution of the
WLRA problem during the computations as was done for Riemannian descent methods on low-rank
matrix varieties in [183][184]. Such rank-adaptive optimization strategies in which local minima
of smaller rank are used as starting points for improved approximation with a larger rank will be
very useful to select the best rank in practical applications and can also lead to improve efficiency
and accuracy in the computations of larger, but fixed low-rank matrix approximation, especially
for ill-conditioned WLRA problems. More generally, selecting accurate, but cheap, initial low-
rank matrix approximations as a first guess of the costly variable projection second-order methods
described here is another useful and important continuation of this work.

208

Obviously, the variable projection second-order algorithms described here must be compared to
the many other state-of-the-art first-order methods already proposed in the literature for solving
the WLRA problem [188][186][14][86][17] [181][146] in comprehensive benchmark experiments.
This benchmark must be based on both synthetic and real datasets and not only restricted to the
matrix completion problem as in many past experiments. In particular, we expect that the variable
projection second-order algorithms grow more efficient, robust and accurate than gradient-based
or alternating least-squares methods as the amount of missing values (e.g., zero weights) increase
in the WLRA problem, but this must be objectively validated in comprehensive experiments. Of
course, if speed is the priority, first-order (e.g. gradient descent or alternating least squares) or
hybrid algorithms as described in Subsection 6.4 will be the methods of choice.

Fortran90 codes with OpenMP and BLAS supports, for the variable projection second-order al-
gorithms described here, will be later available in the open source STATPACK library available
at:

https://pagesperso.locean-ipsl.upmc.fr/terray/statpack2.3/index.html.

209

https://pagesperso.locean-ipsl.upmc.fr/terray/statpack2.3/index.html

References

[1] P.-A. Absil, J. Malick (2012) Projection-like retractions on matrix manifolds, SIAM J. Op-
tim., 22:135-158.

[2] E.L. Allgower, K. Bohmer, A. Hoy, V. Janovsky (1999) Direct methods for solving singular
nonlinear equations, Z. Angew. Math. Mech. 79(4):219-231.

[3] P.-A. Absil, R. Mahony, R. Sepulchre (2008) Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, NJ.

[4] H. Attouch, J. Bolte, P. Redont, A. Soubeyran (2010) Proximal alternating minimization and
projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz
inequality, Mathematics of Operations Research, 35(2):438-457.

[5] A. Ben-Israel (1965) A modified Newton-Raphson method for the solution of systems of equa-
tions, Israel Journal of Mathematics, 3:94-98

[6] A. Ben-Israel (1966) A Newton-Raphson method for the solution of systems of equations,
Journal of Mathematical Analysis and Applications, 15:243-252

[7] D.P. Bertsekas (1999) Nonlinear Programming, 2nd Edition, Athena Scientific, Belmont,
Massachusetts.

[8] A. Bjorck (2015) Numerical Methods in Matrix Computations, Series: Texts in Applied
Mathematics, Vol. 59, Springer, 800 p.

[9] P.T. Boggs (1976) The convergence of the Ben-Israel iteration for nonlinear least-squares
problems, Mathematics of Computation, 30(135):512-522

[10] C.F. Borges (2009) A full-newton approach to separable nonlinear least-squares problems
and its application to discrete least-squares rational approximation, Electronic Transactions
on Numerical Analysis, 35:57-68.

[11] N. Boumal (2023) An introduction to optimization on smooth manifolds, Cambridge Univer-
sity Press. Also available at https://www.nicolasboumal.net/book.

[12] G.E. Bredon (1993) Topology and Geometry, 2nd Edition, Graduate texts in mathematics,
Springer-Verlag, New York.

[13] N. Boumal, P.-A. Absil (2011) RTRMC: a Riemannian trust-region method for low-rank ma-
trix completion, in: J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, K.Q. Weinberger
(Eds.), Advances in Neural Information Processing Systems24, NIPS, 2011, pp.406-414.

[14] N. Boumal, P.-A. Absil (2015) Low-rank matrix completion via preconditioned optimization
on the Grassmann manifold, Linear Algebra and its Applications, 475:200-239.

[15] A.M. Buchanan, A.W. Fitzgibbon (2005) Damped Newton algorithms for matrix factoriza-
tion with missing data, in Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2:316-322.

[16] S. Bhojanapalli, P. Jain (2014) Universal matrix completion, in Proceedings of the 31st Inter-
national Conference on Machine Learning (ICML-14), pages 1881-1889, 2014.

[17] D. Bertsimas, M.L. Li (2020) Fast Exact Matrix Completion: A Unifed Optimization Frame-
work for Matrix Completion, Journal of Machine Learning Research, 21:1-43.

[18] S. Burer, R.D.C. Monteiro (2003) A nonlinear programming algorithm for solving semidefi-
nite programs via low-rank factorization, Mathematical Programming, 95(2):329-357.

[19] S. Bellavia, B. Morini (2015) Strong local convergence properties of adaptive regularized
methods for nonlinear least squares. IMA J. Numer. Anal. 35(2):947-968.

210

https://www.nicolasboumal.net/book

[20] J.M. Beckers, M. Rixen (2003) EOF calculations and data filling from incomplete oceano-
graphic datasets, J. Atoms. Ocean. Tech., 20(12):1839-1856.

[21] A. Beck, L. Tetruashvili (2013) On the convergence of block coordinate descent type methods,
SIAM J. Optim., 23(4):2037-2060.

[22] . W. Bruns and U. Vetter (1988) Determinantal rings, Lecture Notes in Math. 1327, Springer-
Verlag, Berlin.

[23] F. Ban, D. Woodruff, Q. Zhang (2019) Regularized Weighted Low Rank Approximation, 33rd
Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

[24] T. Bendokat, R. Zimmermann, P.A. Absil (2023) A Grassmann manifold handbook: Basic
Geometry and Computational Aspects, arXiv:2011.13699v3. See https://arxiv.org/abs/2011.
13699v3.

[25] A. Bhaskara, A.K. Ruwanpathirana, M. Wijewardena (2021) Additive Error Guarantees for
Weighted Low Rank Approximation, in Proceedings of the 38th International Conference on
Machine Learning, PMLR 139, 2021.

[26] H. Cartan (2017) Differential calculus on normed spaces: A course in Analysis, 2nd Edition,
217 pp.

[27] P. Chen (2008a) Heteroscedastic Low-Rank Matrix Approximation by the Wiberg Algorithm,
IEEE Transactions on signal processing, 56(4):1429-1439.

[28] P. Chen (2008b) Optimization algorithms on subspaces: Revisiting missing data problem in
low-rank matrix, Int. J. Comput. Vis., 80:125-142.

[29] S.L. Campbell, C.D. Meyer (2009) Generalized Inverses of Linear Transformations, Classics
in Applied Mathematics, SIAM, Philadelphia.

[30] E.J. Candes, B. Recht (2009) Exact matrix completion via convex optimization, Found. Com-
put. Math. 9(6):717-772.

[31] T.P. Cason,P.A. Absil, P.V. Dooren (2013) Iterative methods for low rank approximation of
graph similarity matrices, Linear Algebra Appl. 438(4):1863-1882.

[32] J.F. Cai, E.J. Candes, Z. Shen (2010) A singular value thresholding algorithm for matrix
completion, SIAM J. Optim., 20(4):1956-1982.

[33] M.T. Chu, R.E. Funderlic, R.J. Plemmons (2003) Structured low rank approximation, Linear
Algebra and its Applications, 366:157-172.

[34] S.L. Campbell, P. Kunkel, K. Bobinyec (2012) A minimal norm corrected underdetermined
Gauss-Newton procedure, Appl. Numer. Math. 62:592-605.

[35] E.J. Candès, X. Li, Y. Ma, J. Wright (2011) Robust principal component analysis?, Journal
of the ACM, 58(3):11.

[36] X. Chen, Z. Nashed, L. Qi (1997) Convergence of Newton’s method for singular smooth and
nonsmooth equations using adaptive outer inverses, SIAM J. Optim. 7:445-462.

[37] B.N. Daskalov (2011) Iterative methods for matrix factorization with missing data, Mas-
ter Thesis, ETH, Zurich. See https://www.research-collection.ethz.ch/handle/20.500.11850/
152839.

[38] H.P. Decell (1974) On the derivative of the generalized inverse of a matrix, Linear and Mul-
tilinear Algebra 1(4):357.

[39] F.R. Deutsch (2012) Best Approximation in Inner Product Spaces. Springer.

211

https://arxiv.org/abs/2011.13699v3
https://arxiv.org/abs/2011.13699v3
https://www.research-collection.ethz.ch/handle/20.500.11850/152839
https://www.research-collection.ethz.ch/handle/20.500.11850/152839

[40] D.W. Decker, C.T. Kelley (1980) Newton’s method for singular points, I, Siam J. Numer.
Anal., 17:66-70.

[41] D.W. Decker, C.T. Kelley (1980) Newton’s method for singular points, II, Siam J. Numer.
Anal., 17(3):465-471.

[42] J.P. Dedieu, M.H. Kim (2002) Newton’s method for analytic systems of equations with con-
stant rank derivatives, J. Complexity 18:187-209.

[43] D. Duan, H. Liu (2024) A fast and efficient randomized quasi-Newton method, OPT 2024:
Optimization for Machine Learning. See https://openreview.net/forum?id=laJUMr2p3l.

[44] M.A. Davenport, J. Romberg (2016) An Overview of Low-Rank Matrix Recovery From In-
complete Observations, IEEE Journal of Selected Topics in Signal Processing, 10(4):608-
622.

[45] J.E. Dennis, R.B. Schnabel (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice Hall.

[46] W. Dai, O. Milenkovic, E. Kerman (2011) Subspace evolution and transfer (SET) for low-
rank matrix completion, IEEE Trans. Signal Process.59(7):3120-3132.

[47] W. Dai, E. Kerman, O. Milenkovic (2012) A geometric approach to low-rank matrix comple-
tion, IEEE Trans. Inform. Theory 58(1):237-247.

[48] J. Demmel, L. Grigori, M. Hoemmen, J. Langou (2012) Communication-optimal parallel
and sequential QR and LU factorizations, SIAM J. Sci. Comp., 34:A206-A239.

[49] J.E. Dennis, D.M. Gay, R.E. Welsch (1981) Algorithm 573 - NL2SOL, An adaptive nonlinear
least-squares algorithm, ACM Transactions on Mathematical Software, 7, pp. 348-368.

[50] A. Dutta, J. Liang, X. Li (2022) A fast and adaptive svd-free algorithm for general weighted
low-rank recovery, arXiv:2101.00749v2. See https://arxiv.org/abs/2101.00749v2.

[51] A. Edelman, T.A. Arias, S.T. Smith (1998) The geometry of algorithms with orthogonality
constraints, SIAM J. Matrix Anal. Applicat. 20(2):303-353.

[52] J. Eriksson (1996) Optimization and Regularization of Nonlinear Least Squares Problems,
Ph.D. Thesis, Umea University, Sweden.

[53] J. Eriksson, P.-A. Wedin (1996) Regularization Methods for Nonlinear Least Squares. Part
1: Exactly Rank-deficient Problems, Technical Report UMINF-96.03, Department of Com-
puting Science, Umea University, Umea, Sweden.

[54] J. Eriksson, P.-A. Wedin, M.E. Gulliksson, I. Soderkvist (2005) Regularization methods
for uniformly rank-deficient nonlinear least-squares problems, J. Optimi. Theory and Appl.
127:1-26.

[55] A. Fletcher (1968) Generalized inverse methods for the best least-squares solution of systems
of non-linear equations, Comput. J., 10:392-399.

[56] J. Fan, Y. Yuan On the quadratic convergence of the Levenberg–Marquardt method without
non-singularity assumption. Computing 74(1):23-39.

[57] K. Gabriel (1978) Least Squares Approximation of Matrices by Additive and Multiplicative
Models, Journal of the Royal Statistical Society, Series B (Methodological), 40(2):186-196.

[58] M. Goldberg (2017) Continuity of seminorms on finite-dimensional vector spaces, Linear
Algebra and its Applications, 515:175-179.

[59] A. Griewank (1985) On solving nonlinear equations with simple singularities or nearly sin-
gular solutions, SIAM Review, 27(4):537-563.

212

https://openreview.net/forum?id=laJUMr2p3l
https://arxiv.org/abs/2101.00749v2

[60] M. Guignard (1969) Generalized Kuhn–Tucker conditions for mathematical programming
problems in a Banach space, SIAM Journal on Control, 7:232-241.

[61] D.M. Gay, L. Kaufman (1991) Tradeoffs in Algorithms for Separable Nonlinear Least
Squares, IMACS ’91, Proceedings of the 13th World Congress on Computational and Ap-
plied Mathematics, edited by R. Vichnevetsky and J. J. H. Miller, Criterion Press, Dublin,
1991.

[62] N. Gillis, F. Glineur (2011) Low-rank matrix approximation with weights or missing data is
NP-hard, SIAM J. Matrix Anal. Appl., 32(4):1149-1165.

[63] G.H. Golub, V. Pereyra (1973) The differentiation of pseudo-inverses and nonlinear
least squares problems whose variables separate, SIAM Journal on Numerical Analysis,
10(2):413-432.

[64] G.H. Golub, V. Pereyra (1976) Differentiation of pseudo-inverses, separable nonlinear least
squares problems and other tales, Proceedings of an Advanced Seminar Sponsored by the
Mathematics Research Center, the University of Wisconsin-Madison, October 8-10, 1973,
pages 303-324.

[65] G.H. Golub, V. Pereyra (2003) Separable nonlinear least squares: the variable projection
method and its applications, Inverse Problems, 19:R1-R26.

[66] P.F. Gotardo, A.M. Martinez (2011) Computing smooth time trajectories for camera and
deformable shape in structure from motion with occlusion, IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 33(10):2051-2065.

[67] A. Griewank, M.R. Osborne (1981) Newton’s method for singular problems when the dimen-
sion of the null space is > 1, SIAM J. Numer. Anal., 18(1):145-149.

[68] L. Grippo, M. Sciandrone (1999) Globally convergent block-coordinate techniques for un-
constrained optimization, Optim. Methods Soft., 10: 587-637.

[69] L. Grippo, M. Sciandrone (2000) On the convergence of the block nonlinear Gauss–Seidel
method under convex constraints, Operations research letters, 26(3):127-136.

[70] M.E. Gulliksson, P.A. Wedin (2000) The Use and Properties of Tikhonov Filter Matrices,
SIAM Journal on Matrix Analysis and Applications 22:276-281.

[71] G.H. Golub, C. Van Loan (1996) Matrix Computation, 3rd Edition, The Johns Hopkins Uni-
versity Press, Baltimore, MD.

[72] K. Gabriel, S. Zamir (1979) Lower rank approximation of matrices by least squares with any
choice of weights, Technometrics, 21:489-498.

[73] W.M. Haussler (1986) A Kantorovich-type convergence analysis for the Gauss-Newton
method, Numer. Math., 48:119-125.

[74] J. Harris(1992) Algebraic Geometry, volume 133 of Graduate Texts in Mathematics.
Springer- Verlag New York.

[75] N.D. Ho (2010) Nonnegative Matrix Factorization - Algorithms and Applications, Ph.D. the-
sis, Universite catholique de Louvain, Louvain-la-Neuve, Belgium.

[76] M. Hardt (2014) Understanding alternating minimization for matrix completion, in: IEEE
55th Annual Symposium on Foundations of Computer Science, FOCS, 2014, IEEE, Oct
2014, 651-660.

[77] U. Helmke, J.B. Moore (1996) Optimization and Dynamical Systems, Communications and
Control Engineering Series, Springer-Verlag London Ltd., London.

213

[78] U. Helmke, M.A. Shayman (1995) Critical points of matrix least squares distance functions,
Linear Algebra Appl., 215:1-19.

[79] J.B. Hiriart-Urruty, C. Le Marechal (2004) Fundamentals of convex analysis, Springer.

[80] J.B. Hiriart-Urruty, H.Y. Le (2013) A variational approach of the rank function, TOP 21:207-
240.

[81] J.H. Hong, A.W. Fitzgibbon (2015a) Secrets of Matrix Factorization: Approximations, Nu-
merics, Manifold Optimization and Random Restarts, in Proceedings of the 2015 IEEE In-
ternational Conference on Computer Vision (ICCV), pages 4130-4138.

[82] J.H. Hong, A.W. Fitzgibbon (2015b) Secrets of Matrix Factorization: Further Derivations
and Comparisons, Supplementary material to [81] in Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV).

[83] W. Ha, H. Liu, R.F. Barber (2020) An equivalence between critical points for rank constraints
versus low-rank factorizations, SIAM Journal on Optimization, 30(4):2927-2955.

[84] S. Hosseini, D.R. Luke, A. Uschmajew (2019) Tangent and Normal Cones for Low-Rank
Matrices, in: Hosseini, S., Mordukhovich, B., Uschmajew, A. (eds) Nonsmooth Optimization
and Its Applications. International Series of Numerical Mathematics, vol 170. Birkhäuser,
Cham. See https://doi.org/10.1007/978-3-030-11370-4 3.

[85] N. Halko, P.-G. Martinsson, J. Tropp (2011) Finding structure with randomness: probabilis-
tic algorithms for constructing approximate matrix decompositions, SIAM Review, 53:217-
288.

[86] T. Hastie, R. Mazumder, J.D. Lee, R. Zadeh (2015) Matrix Completion and Low-Rank SVD
via Fast Alternating Least Squares, Journal of Machine Learning Research (JMLR), 16:3367-
3402.

[87] P.C. Hansen, V. Pereyra, G. Scherer (2012) Least Squares Data Fitting with Applications,
The Johns Hopkins University Press, Baltimore.

[88] J.H. Hong, C. Zach, A.W. Fitzgibbon (2017) Revisiting the Variable Projection Method for
Separable Nonlinear Least Squares Problems, in Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5939-5947.

[89] J. Hu, X. Liu, Z.W. Wen, Y.X. Yuan(2020) A Brief Introduction to Manifold Optimization, in
Journal of the Operations Research Society of China, 8:199-248.

[90] I.C.F. Ipsen, C.T. Kelley, S.R. Pope (2011) Rank-deficient nonlinear least squares problems
and subset selection, SIAM J. Numer. Anal., 49(3):1244-1266.

[91] A. Ilin, T. Raiko (2010) Practical Approaches to Principal Component Analysis in the Pres-
ence of Missing Values, Journal of Machine Learning Research (JMLR), 11:1957-2000.

[92] I.T. Joliffe (2002) Principal Component Analysis, Springer Series in Statistics.

[93] J. Josse, F. Husson, J. Pages (2009) Gestion des donnees manquantes en Analyse en Com-
posantes Principales, Journal de la Societe Francaise de Statistique, 150(2):28-51.

[94] P. Jain, P. Netrapalli, S. Sanghavi (2013) Low-rank matrix completion using alternating min-
imization, in Proc. 45th Symposium on Theory of Computing (STOC). ACM, 2013, pp. 665-
674.

[95] F.T. Krogh (1974) Efficient implementation of a variable projection algorithm for nonlinear
least squares problems, Commun. ACM 17(3):167-169.

[96] L. Kaufman (1975) A variable projection method for solving separable nonlinear least
squares problems, BIT Numer. Math. 15(1):49-57.

214

https://doi.org/10.1007/978-3-030-11370-4_3

[97] L. Kaufman (2010) Solving separable nonlinear least squares problems with multiple data
sets, Exponential Data Fitting and its Applications, Bentham e-books.

[98] H.A.L. Kiers (1997) Weighted least squares fitting using iterative ordinary least squares
algorithms, Psychometrika 62:251:266.

[99] H.A.L. Kiers (2002) Setting up alternating least squares and iterative majorization algo-
rithms for solving various matrix optimization problems, Computational Statistics and Data
Analysis 41:157-170.

[100] R.H. Keshavan, A. Montanari (2010) Regularization for matrix completion, in: IEEE Inter-
national Symposium on Information Theory Proceedings, ISIT, 2010, IEEE, 2010, pp.1503-
1507.

[101] R.H. Keshavan, A. Montanari, S. Oh (2010) Matrix completion from noisy entries, J.Mach.
Learn. Res., 99:2057-2078.

[102] L. Kaufman, G.S. Silvester (1992) Separable nonlinear least squares with multiple right-
hand sides, SIAM journal on matrix analysis and applications, 13(1):68-89.

[103] L. Kaufman, G.S. Silvester, M.H. Wright (1994) Structured linear least-squares problems in
system identification and separable nonlinear data fitting, SIAM Journal on Optimization,
4(4):847-871.

[104] Y. Koren, R. Bell, C. Volinsky (2009) Matrix factorization techniques for recommender sys-
tems, IEEE Comput. 42(8):30-37.

[105] L.A. Lyusternick(1934) Conditional extrema of functionals, Matem. Sb., 41(3):390-401.

[106] J.M. Lee (2003) Introduction to Smooth Manifolds, Grad. Texts in Math. 218, Springer-
Verlag, New York.

[107] K. Levenberg (1944) A method for the solution of certain non-linear problems in least
squares, Quart. Appl. Math., 2:164-168.

[108] D.G. Luenberger (1973) Introduction to Linear and Nonlinear Programming, Addison-
Wesley, Reading, MA.

[109] G.G. Lukeman (2009) Separable overdetermined nonlinear systems: an application of the
Shen-Ypma Algorithm. VDM Verlag Dr. Muller, Saarbrucken.

[110] E. Levin (2020) Towards optimization on varieties, Undergraduate senior thesis, Princeton
University.

[111] C.L. Lawson, R.J. Hanson (1974) Solving Least Squares Problems, Prentice-Hall, Englewood
Cliffs, NJ.

[112] E. Levin, J. Kileel, N. Boumal (2023) Finding stationary points on bounded-rank matrices:
a geometric hurdle and a smooth remedy. Mathematical Programming, 199:831-864.

[113] E. Levin, J. Kileel, N. Boumal (2025) The effect of smooth parametrizations on nonconvex
optimization landscapes. Mathematical Programming, 209:63-111.

[114] Y. Li, Y. Liang, A. Risteski (2016) Recovery guarantee of weighted low rank approximation
via alternating minimization, In International Conference on Machine Learning, pages 2358-
2367, 2016.

[115] Y. Luo, X. Li, A.R. Zhang (2024) Nonconvex Factorization and Manifold Formulations Are
Almost Equivalent in Low-Rank Matrix Optimization, INFORMS Journal on Optimization
0(0). See https://doi.org/10.1287/ijoo.2022.0030.

215

https://doi.org/10.1287/ijoo.2022.0030

[116] X. Li, W. Song, N. Xiu (2019) Optimality conditions for rank-constrained matrix op-
timization, Journal of the Operations Research Society of China, 7:285-301. See https:
//doi.org/10.1007/s40305-019-00245-0.

[117] Q. Li, Z. Zhu, G. Tang (2019) The non-convex geometry of low-rank matrix optimization,
Information and Inference: A Journal of the IMA, 8:51-96.

[118] Q. Li, Z. Zhu, G. Tang (2019) Alternating minimizations converge to second-order optimal
solutions, in Proc. Int. Conf. Mach. Learn., 2019, pp. 3935-3943.

[119] H. Li, G.C. Linderman, A. Szlam, K.P. Stanton, Y. Kluger, M. Tygert (2017) Algorithm
971: An implementation of a randomized algorithm for principal component analysis, ACM
Transactions on Mathematical Software (TOMS), 43:3, Article 28.

[120] D.W. Marquardt(1963) An algorithm for least-squares estimation of nonlinear parameters,
Journal of the Society for Industrial and Applied Mathematics, 11:431-441.

[121] R. Menzel (1985) On Solving Nonlinear Least-Squares Problems in case of Rank deficient
Jacobians, Computing, 34:63-72.

[122] J.J. More (1985) The Levenberg-Marquardt algorithm: Implementation and theory, in Lec-
ture Notes in Mathematics, No. 630 - Numerical Analysis, G.Watson, ed., Springer-Verlag,
pp. 105-116.

[123] K. Madsen, H. B. Nielsen (2010) Introduction to Optimization and Data Fitting, Lecture
notes, Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby.

[124] J.R. Magnus, H. Neudecker (2019) Matrix Differential Calculus with Applications in Statis-
tics and Econometrics, 3rd edition.

[125] J.H. Manton, R. Mahony, Y. Hua (2003) The geometry of weighted low-rank approximations,
IEEE Transactions on Signal Processing, 51(2):500-514.

[126] G. Marsaglia, G.P.H. Styan (1974) Equalities and Inequalities for Ranks of Matrices, Linear
and Multilinear Algebra, 2(3):269-292.

[127] I. Markovsky, K. Usevich (2013) Structured low-rank approximation with missing data,
SIAM J. Matrix Anal. Appl. 34(2):814-830.

[128] R. Murray, J. Demmel, M.W.. Mahoney, N.B. Erichson, M. Melnichenko, O.A. Malik,
L. Grigori, P. Luszczek, M. Derezinski, M.E.. Lopes, T. Liang, H. Luo, J. Dongarra (2023)
Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software,
arXiv:2302.11474v2. See https://arxiv.org/abs/2302.11474.

[129] R. Mazumder, T. Hastie, R. Tibshirani (2010) Spectral regularization algorithms for learning
large incomplete matrices, Journal of Machine Learning Research (JMLR), 11:2287-2322.

[130] B. Mishra, K.A. Apuroop, R. Sepulchre (2012) A Riemannian geometry for low-rank matrix
completion, arXiv preprint arXiv:1211.1550.

[131] B. Mishra, G. Meyer, F. Bach, R. Sepulchre (2013) Low-rank optimization with trace norm
penalty, SIAM J. Optim. 23(4):2124-2149.

[132] B. Mishra, G. Meyer, S. Bonnabel, R. Sepulchre (2014) Fixed-rank matrix factorizations and
Riemannian low-rank optimization, Comput Stat 29:591-621.

[133] B. Mishra, R. Sepulchre (2016) Riemannian preconditioning, SIAM J. Optim. 26(1):635-660.

[134] K. Madsen, H.B. Nielsen, O. Tingleff (2004) Methods for non-linear least-squares problems,
2nd Edition, IMM, DTU, Lecture note IMM3215, 60 pp.

216

https://doi.org/10.1007/s40305-019-00245-0
https://doi.org/10.1007/s40305-019-00245-0
https://arxiv.org/abs/2302.11474

[135] C. Musco, C. Musco, D.P. Woodruff (2021) Simple heuristics yield provable algorithms for
masked low-rank approximation, in 12th Innovations in Theoretical Computer Science Con-
ference (ITCS 2021).

[136] H.B. Nielsen (2000) Separable Nonlinear Least Squares, IMM, DTU, Report MM-REP-
2000-01, 2000.

[137] M.Z. Nashed, X. Chen (1993) Convergence of Newton-like methods for singular operator
equations using outer inverses, Numerische Mathematik, 66:235-257.

[138] P. Netrapalli, U.N.. Niranjan, S. Sanghavi, A. Anandkumar, P. Jain (2014) Non-convex ro-
bust PCA, in Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 1107–1115. See http://papers.nips.cc/paper/5430-non-convex-robust-pca.

[139] J. Nocedal, S.J. Wright (2006) Numerical Optimization, second edition, Springer-Verlag,
Berlin.

[140] L.T. Nguyen, J. Kim, B. Shim (2019) Low-rank matrix completion: A contemporary survey,
IEEE Access, 7:94215-94237.

[141] M.R. Osborne (1976) Nonlinear least squares - the Levenberg algorithm revisited, J. Austral.
Math. Soc. (Series B), 19:343-357.

[142] G. Olikier, P.A. Absil (2022) On the Continuity of the Tangent Cone to the Determinantal
Variety, Set-Valued Var. Anal 30:769-788.

[143] G. Olikier, P.A. Absil (2024) Computing Bouligand stationary points efficiently in low-rank
optimization, arXiv:2409.12298v1. See https://doi.org/10.48550/arXiv.2409.12298.

[144] G. Olikier, I. Waldspurger (2024) Projected gradient descent accumulates at Bouligand sta-
tionary points, arXiv:2403.02530v2. See https://doi.org/10.48550/arXiv.2403.02530.

[145] G. Olikier, K.A. Gallivan, P.A. Absil (2024) Low-rank optimization methods based
on projected-projected gradient descent that accumulate at Bouligand stationary points,
arXiv:2201.03962v2. See https://arxiv.org/abs/2201.03962v2.

[146] G. Olikier, A. Uschmajew, B. Vandereycken (2023) Gauss–Southwell type descent methods
for low-rank matrix optimization, arXiv:2306.00897v2. See https://doi.org/10.48550/arXiv.
2306.00897.

[147] T. Okatani, K. Deguchi (2007) On the Wiberg algorithm for matrix factorization in the pres-
ence of missing components, International Journal of Computer Vision (IJCV), 72(3):329-
337.

[148] J.M. Ortega, W.C. Rheinboldt (1970) Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, San Diego.

[149] D.P. O Leary, B.W. Rust (2013) Variable projection for nonlinear least squares problems,
Computational Optimization and Applications, 54(3):579-593.

[150] T. Okatani, T. Yoshida, K. Deguchi (2011) Efficient algorithm for low-rank matrix factoriza-
tion with missing components and performance comparison of latest algorithms, In Proceed-
ings of the 2011 IEEE International Conference on Computer Vision (ICCV), 842-849.

[151] E. Pauwels (2013) Generic Frechet stationarity in constrained optimization,
arXiv:2402.09831v2. See https://arxiv.org/abs/2402.09831v2.

[152] M.J.D. Powell (1973) On search directions for minimization algorithms, Math. Program-
ming, 4:193-201.

217

http://papers.nips.cc/paper/ 5430-non-convex-robust-pca
https://doi.org/10.48550/arXiv.2409.12298
https://doi.org/10.48550/arXiv.2403.02530
https://arxiv.org/abs/2201.03962v2
https://doi.org/10.48550/arXiv.2306.00897
https://doi.org/10.48550/arXiv.2306.00897
https://arxiv.org/abs/2402.09831v2

[153] F. Pes, G. Rodriguez (2020) The minimal-norm Gauss-Newton method and some of its regu-
larized variants, Electron. Trans. Numer. Anal. 53:459-480.

[154] F. Pes, G. Rodriguez (2022) A doubly relaxed minimal-norm Gauss-Newton method for un-
derdetermined nonlinear least-squares problems, Applied Numerical Mathematics 171:233-
248.

[155] P. Paatero, U. Tapper (1994) Positive matrix factorization: a non-negative factor model with
optimal utilization of error estimates of data values, Environmetrics, 5:111-126.

[156] D. Park, A. Kyrillidis, C. Carmanis, S. Sanghavi (2017) Non-square matrix sensing without
spurious local minima via the Burer-Monteiro approach, in Proc. Artif. Intell. Statist., 2017,
pp. 65-74.

[157] J. Rennie, N. Srebro (2005) Fast maximum margin matrix factorization for collaborative
prediction, in Proceedings of the 22nd International Conference on Machine Learning, pages
713-719. ACM, 2005.

[158] A. Ruhe (1974) Numerical computation of principal components when several observations
are missing, Technical report, UMINF-48, Umea, Sweden.

[159] G.W. Reddien (1980) Newton’s method and high order singularities, Comput. Math. Appl.,
5:79-86.

[160] A. Ruszczynski (2006) Nonlinear Optimization. Princeton University Press.

[161] P.J. Rabier, G.W. Reddien (1986) Characterization and computation of singular points with
maximum rank deficiency, SIAM J. Numer. Anal. 23:1040-1051.

[162] Q. Rebjock, N. Boumal (2024) Fast convergence of trust-regions for non-isolated minima via
analysis of CG on indefinite matrices. Math. Program., online.

[163] Q. Rebjock, N. Boumal (2024) Fast convergence to non-isolated minima: four equivalent
conditions for C2 functions. Math. Program., online.

[164] J.W. Robbin, D.A. Salomon (2022) Introduction to differential geometry, Springer Spektrum
Berlin, Heidelberg, 418 pp.

[165] R.T. Rockafellar, R.J.B. Wets (1998) Variational Analysis, vol. 317 of Grundlehren der math-
ematischen Wissenschaften, Springer-Verlag Berlin Heidelberg. Corrected 3rd printing 2009.

[166] A. Ruhe, P.-A. Wedin (1980) Algorithms for Separable Nonlinear Least Squares Problems,
SIAM Review, 22(3):318-337.

[167] I. Razenshteyn, Z. Song, D.P. Woodruff (2016) Weighted Low Rank Approximations with
Provable Guarantees, STOC’16, June 19-21, 2016, Cambridge, MA, USA.

[168] M.F. Sukhinin (1973) Conditional extrema of functionals in topological linear spaces, Math-
ematical Notes of the Academy of Sciences of the USSR 14:775-779.

[169] L. Simonsson, L. Elden (2010) Grassmann algorithms for low rank approximation of matri-
ces with missing values, BIT Numer. Math., 50:173-191.

[170] R. Sun, Z.Q. Luo (2016) Guaranteed Matrix Completion via Non-Convex Factorization, in
IEEE Transactions on Information Theory, vol. 62, no. 11, pp. 6535-6579, Nov. 2016.

[171] N. Srebro, T. Jaakkola (2004) Weighted low-rank approximations, in Proceedings of the 20th
International Conference on Machine Learning, pp. 720-727.

[172] G.W. Stewart, J. Sun (1990) Matrix perturbation Theory, Academic Press, INC, New York.

218

[173] S. Schneider, A. Uschmajew (2015) Convergence results for projected line-search methods
on varieties of low-rank matrices via Lojasiewicz inequality, SIAM Journal on Optimization,
25:622-646.

[174] T. Schramm, B. Weitz (2015) Low-rank matrix completion with adversarial missing entries,
arXiv:1506.03137v1. See https://arxiv.org/abs/1506.03137v1.

[175] Y. Shen, T.J. Ypma (2019) Solving separable nonlinear least squares problems using the QR
factorization. J. Comput. Appl. Math. 345:48-58.

[176] H. Shum, K. Ikeuchi, R. Reddy (1995) Principal component analysis with missing data and
its application to polyhedral object modeling, IEEE Transaction on Pattern Analysis and
Machine Intelligence, 17(9):855-867.

[177] N. Srebro, J. Rennie, T. Jaakkola (2005) Maximum-margin matrix factorization, in Advances
in Neural Information Processing Systems 17 (NIPS 2004) pp. 1329-1336. MIT Press.

[178] A. Szlam, A. Tulloch, M. Tygert (2017) Accurate low-rank approximations via a few it-
erations of alternating least squares, SIAM Journal on Matrix Analysis and Applications,
38(2):425-433.

[179] P. Terray (1995) Space/Time structure of monsoons interannual variability, Journal of Cli-
mate, 8:2595-2619.

[180] P. Terray (2002) Application of Weighted Empirical Orthogonal Function Analysis to ship’s
datasets, Compte-Rendu de la IVème journée Statistique IPSL (Classification et Analyse
spatiale), NAI no 23. pp. 11-28. ISSN 1626-8334.

[181] E. Tuzhilina, T. Hastie (2021) Weighted Low Rank Matrix Approximation and Acceleration,
arXiv:2109.11057v1. See https://arxiv.org/abs/2109.11057v1.

[182] K. Usevich, I. Markovsky (2014) Variable projection methods for affinely structured low-
rank approximation in weighted 2-norms, Journal of Computational and Applied Mathemat-
ics, 272:430-448.

[183] A. Uschmajew, R. Vandereycken (2014) Line-search methods and rank increase on low-rank
matrix varieties, in: 2014 International Symposium on Nonlinear Theory and its Applications
(NOLTA2014), Luzern, Switzerland, September 14-18, 2014, 52-55 (IEICE: Luzern, 2014)

[184] A. Uschmajew, R. Vandereycken (2015) Greedy rank updates combined with Riemannian
descent methods for low-rank optimization, in: 2015 International Conference on Sampling
Theory and Applications (SampTA), 25-29 May 2015, Washington, DC, USA, ed. by Stephen
Casey, Kevin Duke, Michael Robinson, 420-424 (IEEE: Piscataway, NJ, 2015)

[185] R. Vandereycken (2013) Low-rank matrix completion by Riemannian optimization-extended
version, arXiv:1209.3834v1. See https://arxiv.org/abs/1209.3834v1.

[186] R. Vandereycken (2013) Low-rank matrix completion by Riemannian optimization, SIAM J.
Optim. 23(2):1214-1236.

[187] R. Vidal, Y. Ma, S.S. Sastry (2016) Generalized Principal Component Analysis, New York,
NY: Springer New York, DOI: 10.1007/978-0-387-87811-9. ISSN: 21969973: 09396047.

[188] Z. Wen, W. Yin, Y. Zhang (2012) Solving a low-rank factorization model for matrix comple-
tion by a nonlinear successive over-relaxation algorithm, Math. Program. Comput. 4(4):333-
361.

[189] P.A. Wedin (1973) Perturbation Theory for Pseudo-Inverses, BIT, 13:217-232.

[190] T. Wiberg (1976) Computation of principal components when data are missing, in Proceed-
ings of the 2nd Symposium of Computational Statistics, pages 229-326, 1976.

219

https://arxiv.org/abs/1506.03137v1
https://arxiv.org/abs/2109.11057v1
https://arxiv.org/abs/1209.3834v1

[191] H. Wold (1966) Nonlinear estimation by iterative least squares procedures, Research Papers
in Statistics (F. N. David Ed.), pp. 411-444, New York: Wiley.

[192] H. Wold, E. Lyttkens (1969) Nonlinear Iterative Partial Least Squares (NIPALS) Estimation
Procedures, Bulletin of the International Statistical Institute, 43:29-51.

[193] L. Wang, X. Zhang, Q. Gu (2017) A unified computational and statistical framework for
nonconvex low-rank matrix estimation, in Proc. Artif. Intell. Statist., 2017, pp. 981-990.

[194] Y. Xu, W. Yin (2013) A block coordinate descent method for regularized multiconvex opti-
mization with applications to nonnegative tensor factorization and completion, SIAM Journal
on imaging sciences, 6(3):1758-1789.

[195] Y. Yamamoto (1989) Uniqueness of the Solution in a Kantorovich-Type Theorem of Hausler
for the Gauss-Newton Method, Japan J. Appl. Math., 6:77-81.

[196] N. Yamashita, M. Fukushima (2001) On the rate of convergence of the Levenberg–Marquardt
method. In: Topics in Numerical Analysis, pp 239-249. Springer.

[197] W.H. Yang, L.H. Zhang, R. Song (2014) Optimality conditions for the nonlinear program-
ming problems on riemannian manifolds, Pacific Journal of Optimization, 10(2):415-434.

[198] G. Zhou (2015) Rank-contrained optimization: A Riemannian manifold approach, Ph.D.
thesis, Florida State University.

[199] Z. Zeng (2024) A Newton’s Iteration Converges Quadratically to Non-isolated Solutions Too,
arXiv:2101.09180v4. See https://arxiv.org/abs/2101.09180v4.

[200] Z. Zhu, Q. Li, G. Tang, M.B. Wakin (2018) Global optimality in low-rank matrix optimiza-
tion, IEEE Transactions on Signal Processing, 66(13):3614-3628.

[201] Z. Zhu, Q. Li, G. Tang, M.B. Wakin (2021) The Global Optimization Geometry of low-rank
matrix optimization, IEEE Transactions on Information Theory, 67(2):1308-1331.

220

https://arxiv.org/abs/2101.09180v4

	Introduction
	Definitions and preliminaries
	Linear algebra
	Multilinear algebra
	Topology of Euclidean vector or Frobenius matrix spaces
	Differential calculus, variational geometry and optimization

	Alternative and separable forms of the weighted low-rank approximation problem
	Nonconvex formulations of the WLRA problem
	Landscape connections of formulations P0 and P1 of the WLRA problem
	Approximate and regularized forms of the WLRA problem
	Variable projection formulation of the WLRA problem

	The block alternating least-squares method and its variants
	The variable projection framework
	Second-order NLLS optimization methods
	Computation and properties of the Jacobian matrix
	Computations and properties of the gradient vector and Hessian matrix

	Implementation of variable projection NLLS methods for solving the WLRA problem
	Variable projection Gauss-Newton algorithms
	Variable projection Levenberg-Marquardt algorithms
	Variable projection Newton and quasi-Newton algorithms
	Variable projection hybrid algorithms

	Conclusions and discussion

