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Abstract 19 

We have examined the skill of the two French state-of-the-art Coupled General ocean-20 

atmosphere Circulation Models (CGCMs) in simulating the Indian Summer Monsoon (ISM) 21 

and its variability. For this purpose, we have considered the extensive integrations submitted 22 

to the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project 23 

phase 5 (CMIP5), with ten historical coupled simulations for the Centre National de 24 

Recherches Météorologiques (CNRM) CGCM and four coupled simulations for the Institut 25 

Pierre-Simon Laplace (IPSL) CGCM both driven by natural and anthropogenic forcings. The 26 

ability of the CGCMs in simulating the seasonal mean monsoon rainfall and its relationship 27 

with El Niño-Southern Oscillation (ENSO) phenomenon at interannual and decadal 28 

timescales is studied and compared with observations and former CMIP3 simulations.  29 

Despite improvements in the physics and/or an increase in the spatial resolution of the 30 

CGCMs, the results are not up to mark with progresses in simulating some aspects of the 31 

tropical climate variability, but also degradations of some others. In the new version of the 32 

CNRM model, the large cold SST bias found in the Tropics and Subtropics in the CMIP3 33 

version has been largely corrected and ENSO characteristics have largely improved, but the 34 

simulation of ISM rainfall climatology is poor as compared with CMIP3 simulations. 35 

However, as a result of the significant improvements in the simulation of ENSO evolution, 36 

the CNRM model is now able to capture many aspects of the observed lead-lag relationships 37 

between ISM rainfall and El Niño events in the Pacific, but the strength of the ENSO 38 

teleconnection during boreal summer is significantly reduced compared to observations. 39 

Surprisingly, the results are opposite for the IPSL model with improvements in the ISM 40 

rainfall climatology, but a poor simulation of ENSO variability, despite of the fact that the 41 

two CGCMs share the same ocean component (but not the same sea ice model). In the case of 42 

IPSL model, the ISM rainfall climatology is far better than in previous version, but both 43 

ENSO and ENSO-ISM teleconnections have been degraded due to an incorrect phase locking 44 

of ENSO variability to the annual cycle. The amplitude of the ENSO teleconnection in the 45 

IPSL model is comparable to the observations, but the timing of this teleconnection is 46 

incorrect, peaking before the ISM onset rather than during and after ISM as observed. 47 

Overall, these results suggest that progresses or changes in the simulation of the ISM-48 

ENSO relationships in the two CGCMs can be traced back to modifications of ENSO 49 

characteristics in the new simulations and that the ISM rainfall climatology only plays a 50 

secondary role. 51 

52 
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 53 

1. Introduction 54 

The climate of South Asia is dominated by the monsoon, which returns with remarkable 55 

regularity each summer and provides the rainfall needed to sustain over 60% of the world’s 56 

population. More than 80% of the annual rainfall in India is received during a short time span 57 

of four monsoon months, from June through September (JJAS hereafter). The Asian Summer 58 

Monsoon is a one of the most dominant tropical atmospheric circulation, and the economies 59 

and livelihood of the populations of India and southeast Asia depend heavily on the rainfall.  60 

Because of the dynamically interactive nature of the tropical Indo-Pacific ocean-atmosphere 61 

system and the near-global patterns of the teleconnections associated with the Indian Summer 62 

Monsoon (ISM), one of the best tools to study ISM variability is a global Coupled General 63 

Circulation Model (CGCM). In order to provide reliable seasonal predictions and climate 64 

projections of monsoon rainfall, it is nethertheless essential that CGCMs are able to produce a 65 

reasonable simulation of the mean summer monsoon circulation and rainfall distribution, as 66 

well as its variability at different time scales. 67 

Since the pioneering work on coupled models (e.g., Manabe and Bryan, 1969; Meehl, 68 

1995), more and more CGCMs have been developed and are currently in use worldwide 69 

(Meehl and Bony, 2011). The successive Intergovernmental Panel on Climate Change (IPCC) 70 

scientific Assessment Reports (AR) have documented the rapid growth in the skills of 71 

CGCMs, whose current versions provide state-of-the-art simulations of the present-day 72 

climate on continental and global scales (Cubasch et al., 2001; Meehl et al., 2007a). 73 

Nevertheless, this is still an area under rapid development, and CGCMs are still in a relatively 74 

early stage (Shukla et al., 2009). Furthermore, most of the models exhibit problems and 75 

deficiencies and some of them are common to many CGCMs (Mechoso et al., 1995; Dai, 76 

2006; Lin, 2007a). As an illustration, the poor representation of rainfall in orographic regions 77 

due to coarse atmospheric resolution, the tendency to produce a double Inter Tropical 78 

Convergence Zone (ITCZ) in the Pacific and Atlantic basins, a poor representation of the 79 

annual cycle of the Sea Surface Temperature (SST) in the Tropics, particularly in the Pacific 80 

and a substantial underestimation of El Niño-Southern Oscillation (ENSO) variability are 81 

biases shared by many CGCMs in the past (Mechoso et al., 1995; Delecluse et al., 1998; 82 

AchutaRao and Sperber, 2002, 2006). Moreover, simulation of the ISM system and its 83 

variability still remains a significant challenge for many state-of-the-art CGCMs (Annamalai 84 

et al., 2007; Terray et al., 2005a, 2011; Ashrit et al. 2003). 85 
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In order to identify the reasons for these common errors, and to improve our understanding 86 

of the climate system, it is important to have a variety of different models 87 

(coupled/atmosphere-only/ocean-only), and to quantify inter-model differences. In particular, 88 

it is interesting to have CGCMs sharing some components, for example the ocean model, but 89 

differing by others (e.g. the atmospheric model) as it is the case for the two French CGCMs 90 

developed, respectively, by the Centre National de Recherches Météorologiques (CNRM) and 91 

the Institut Pierre-Simon Laplace (IPSL), and submitted to the World Climate Research 92 

Programme’s (WCRP) Coupled Model Intercomparison Project phase 5 (CMIP5; Meehl and 93 

Bony, 2011). It is also important to trace back the evolution of the CGCMs and to check if the 94 

quality of the simulations has steadily improved over time with changes in the physics or 95 

resolution of the models (Meehl et al., 1997). Therefore, model evaluations have been 96 

conducted over last decades in the form of multi-model inter-comparisons. The multi-model 97 

inter-comparison has began in the late 1980s for atmospheric GCMs and continued with the 98 

Atmospheric Model Intercomparison Project (AMIP; Gates et al. 1992; Gadgil and Sajani 99 

1998). Several other projects are now conducted specifically dedicated to CGCMs, e.g. the 100 

CLIVAR (Climate Variability and Predictability) Monsoon CGCM Intercomparison Project 101 

(Kucharski et al., 2009) and the successive phases of CMIP (Meehl et al., 2000, 2007; Covey 102 

et al 2003; Meehl and Bony, 2011). 103 

Based upon simulation results from such state-of-the-art multi-model databases, several 104 

studies have analyzed the skill of CGCMs in simulating the mean monsoon over India and its 105 

variability. Studies focusing on the previous IPCC simulations have also noted the important 106 

distinction between changes in the monsoon circulation and rainfall anomalies (Ashrit et al., 107 

2003; Ueda et al., 2006; Meehl et al., 2007a; Sun et al., 2010). In line with the early study by 108 

Ashrit et al. (2003), the latest IPCC AR4 indeed indicates that ISM rainfall is projected to 109 

increase due to a combination of increased moisture-holding capacity of the warmer air and 110 

the increased evaporation over the warmer Indian Ocean even while ISM circulation is likely 111 

to decrease in the future (Ueda et al., 2006; Meehl et al., 2007a; Krishna Kumar et al. 2010). 112 

Sun et al. (2010) have further analyzed the origin of the possible weakening of the monsoon 113 

circulation despite of the projected increase in near-surface land-sea thermal contrasts during 114 

the 21th century in IPCC AR4 CGCMs. Such projections must however be interpreted with 115 

caution as both the observed and simulated (by the IPCC AR4 CGCMs in the 20C3M 116 

simulations) ISM rainfall time series do not exhibit a significant (increasing/decreasing) trend 117 

over the 20
th
 century as illustrated in Figure 1. The large spread and difficulties of the IPCC 118 

AR4 CGCMs in simulating even the mean ISM rainfall during the 20
th
 century add further 119 
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doubts about the quality of the ISM rainfall projections by the current CGCMs. Kripalani et 120 

al. (2007) have examined the climate projection over south Asia under the doubling CO2 121 

scenario. Out of the 22 IPCC AR4 CGCMs considered, they found that only six models 122 

generate realistic 20
th
 century monsoon climate. Climate projections using this restricted set 123 

of CGCMs reveal a significant increase in mean monsoon rainfall of 8% and a possible 124 

extension of the monsoon period. They attributed the projected increase in rainfall to the 125 

projected intensification of the heat low over northwest India, the trough of low pressure over 126 

the Indo-Gangetic plains and the land-ocean pressure gradient. Annamalai et al. (2007) have 127 

studied the monsoon-ENSO relationship in the IPCC AR4 simulations. They have also found 128 

that only six out of 18 CGCMs have a realistic representation of the present day monsoon 129 

precipitation climatology. Their study revealed that the ENSO-monsoon relationship will not 130 

weaken as the global climate warms up contrary to earlier claims (Krishna Kumar et al., 131 

1999). The strength of the monsoon-ENSO relationship in the coupled model simulations 132 

waxes and wanes to some degree on decadal timescales, but this modulation seems intimately 133 

related to stochastic fluctuations of the climate system, which are not due to the 134 

anthropogenic signal (Gershunov et al., 2001). Furthermore, the overall magnitude and 135 

timescale for this decadal modulation is similar in the coupled model simulations and 136 

observations during the 20
th
 century. 137 

As a first step toward the accurate projection of monsoon rainfall, we have examined the 138 

ability of the two French CGCMs submitted to CMIP5 to simulate the ISM and its variability 139 

over the 20
th
 century. More precisely, we have tried to document the improvements in these 140 

two models in terms of simulating the mean monsoon, its interannual variability and its 141 

relation to ENSO from CMIP3 to CMIP5. This paper is organized as follows. The models and 142 

validation datasets used in this study are described in section 2. We present the performance 143 

of the new versions of the coupled models in simulating the mean summer climate in the 144 

Indo-Pacific areas with a special emphasis on ISM and ENSO in section 3. In section 4, we 145 

analyze ISM variability and its relationship with ENSO as simulated in each model and 146 

discuss possible causes of differences in the simulation ability. The final section summarizes 147 

the main results of the present work. 148 

 149 

2. Model and Data description 150 

A complete and detailed description of the CMIP5 versions of the CNRM and IPSL 151 

models (CNRM-CM5 and IPSL-CM5 hereafter) can be found in reference papers in this 152 
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issue, such as Voldoire et al. (this issue) and Dufresne et al. (this issue) (see also the web site 153 

http://forge.ipsl.jussieu.fr/igcmg/wiki/IPSLCMIP5 for the IPSL model) and is not repeated 154 

here. This is the lower resolution configuration of the IPSL model, which is analyzed here 155 

(Dufresne et al., 2012). The CMIP3 versions of the two models (CNRM-CM3 and IPSL-CM3 156 

hereafter) are described in Marti et al. (2006) and Salas et al. (2005), respectively. 157 

The main differences between the IPSL-CM3 and IPSL-CM5 are the implementation of 158 

NEMO (Madec, 2008) instead of OPA8 as oceanic component, the increase of the spatial and 159 

vertical resolutions in the atmospheric component and the inclusion of the carbon cycle in 160 

continental and oceanographic compartments of the CGCM. At CNRM, the main 161 

improvements since CMIP3 are the following. Horizontal resolution has been increased both 162 

in the atmosphere (from 2.8° to 1.4°) and the ocean (from 2° to 1°). The dynamical core of the 163 

atmospheric component has been revised. A new radiation scheme has been introduced and 164 

the treatment of tropospheric and stratospheric aerosols has been improved. The land surface 165 

scheme ISBA has been externalised from the atmospheric model through the SURFEX 166 

platform and includes new developments such as sub-grid hydrology and a new freezing 167 

scheme. The ocean model is based on the state-of-the art version of NEMO, which has greatly 168 

progressed since the OPA8.0 version used in CNRM-CM3. Finally, the coupling between the 169 

different components has also received a particular attention to ensure mass and water 170 

conservation, avoid energy loss and spurious drifts. These developments have led to a more 171 

realistic representation of the mean recent climate and to reduced drifts in a preindustrial 172 

integration (Voldoire et al., this issue). 173 

In the present study, the focus is on historical simulations driven by both natural and 174 

anthropogenic forcings. At CNRM, a 10-member ensemble of 1850-2005 simulations has 175 

been achieved, differing only by their initial states taken at 50-yr intervals from a 176 

preindustrial run. A similar procedure has been followed at IPSL, but only a 4-member 177 

ensemble (taken at 10-yr intervals from a preindustrial run) was available at the time of 178 

writing. All simulations are forced with time-evolving historic reconstruction of observed 179 

GHGs concentrations and solar incident radiation as specified by CMIP5. The evolution of 180 

the optical depth of sulfate, organic and black carbon aerosols are taken from an LMDZ-181 

INCA simulation forced with CMIP5 prescribed emissions in both models (Szopa et al., this 182 

issue). A decadal smoothing is applied on raw data to retain the low frequency evolution of 183 

the aerosols fluctuations. Volcanic eruptions are also taken into account by prescribing the 184 

zonal mean optical thicknesses of the related stratospheric aerosols as diagnosed from 185 

Amman et al. (2007). 186 
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The model results have been compared with observations and re-analyses (which often in 187 

the text of this paper will also be referred to as “observations”). Specifically, we used the 188 

global analyses of Sea Surface Temperature (SST) and sea-ice HadISST (Rayner et al., 2003), 189 

the global monthly precipitation dataset from the Global Precipitation Climatology Project 190 

(GPCP), which combines measures of precipitation gauges and satellite data (Huffman et al. 191 

2001), whereas the atmospheric fields have been compared with the European Centre for 192 

Medium-Range Weather Forecasts (ECMWF) reanalysis ERA-40 (Uppala et al. 2005). The 193 

GPCP precipitation dataset has the advantage of covering the continents and oceans, but is 194 

only available since 1979, giving a too short time record for a robust assessment of the ISM 195 

interannual to decadal variability in the CGCMs. Consequently, in discussing and validating 196 

the ISM interannual variability and the ISM-ENSO relationships, we used a land-based 197 

precipitation dataset produced by the Global Precipitation Climatology Centre (GPCC) which 198 

covers the longer period 1901-2009 (Rudolf et al., 2005). 199 

In computing climatological means (and standard-deviations) discussed in section 3, we 200 

use the last 26 (30) yr of the CMIP5 (CMIP3) model integrations (the selected periods are, 201 

respectively, 1979-2005 and 1970-2000). Furthermore, since there are different runs (10 for 202 

CNRM-CM5 and 4 for IPSL-CM5) for the historical integrations in the CMIP5 versions of 203 

the models, we have presented the ensemble mean (and standard-deviations) of the different 204 

members for the CMIP5 results in sections 3 and 4. 205 

In order to perform a detailed and robust evaluation of the ISM variability, both in the 206 

simulations and the observations, note that all the time series used in the analysis of section 4 207 

have been detrended with a linear least square fit before any subsequent statistical analysis. 208 

Here, we concentrated on the seasonal to interannual variability of ISM and its links with 209 

ENSO phenomenon (Annamalai et al. 2007, Kripalani et al. 2007, Krishna Kumar et al. 210 

2010), longer time variations of ENSO (Wang, 1995) make such validation somewhat 211 

uncertain. However, model errors are currently larger than decadal natural variability, so that 212 

uncertainties in observations do not prevent the identification of model deficiencies in current 213 

CGCMs. 214 

3. Boreal summer climatology and annual cycle 215 

Modeling systems must be evaluated for their basic performance in terms of their 216 

capability to correctly reproduce the main features of the climate system. As a first step, we 217 

examine in this section the systematic errors that characterize the simulated rainfall and SST 218 

boreal summer climatologies. Annual cycles of ISM (rainfall and dynamical) indices and 219 
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equatorial Pacific SSTs as simulated by the CNRM and IPSL models are also briefly 220 

discussed. 221 

a. Coupled model simulation of boreal summer precipitation and SST climatologies 222 

Figure 2 shows the differences between the observed and simulated rainfall and SST 223 

climatologies in order to document the evolution of the CGCMs performance from CMIP3 to 224 

CMIP5. The simulation of boreal summer precipitation climatology is proved to be a difficult 225 

task for current CGCMs and is a primary requirement that a model should possess for 226 

monsoon studies. 227 

In the tropical Pacific, all versions of the two models are too dry over the equatorial region 228 

and tend to produce an unrealistic double rainfall ITCZ structure associated with stronger 229 

easterly trade winds over the tropical Pacific. These systematic errors are typical of many 230 

coupled models without flux adjustment (Mechoso et al., 1995; Dai, 2006; Lin, 2007a; 231 

Guilyardi et al., 2009). In all versions of the two CGCMs, there is also too much precipitation 232 

over the Maritime continent while they exhibit a dry bias over the Indian subcontinent 233 

compared to GPCP observations (excepted perhaps for CNRM-CM3). This dry bias over land 234 

is particularly evident for the IPSL-CM3 and is only partly corrected in IPSL-CM5. A lack of 235 

simulated rainfall is also visible in the eastern part of the tropical Indian Ocean (south of the 236 

equator) and over the Bay of Bengal, whereas in the western part of the Indian basin the 237 

models tend to overestimate the precipitation field. 238 

However, from Figs. 2ab, it is evident that there is a significant reduction of the systematic 239 

errors in the tropical belt from CNRM-CM3 to CNRM-CM5 as far as the boreal summer 240 

rainfall climatology is concerned, particularly in the Pacific. Such improvements from CMIP3 241 

to CMIP5 are not evident for the IPSL model, especially in the tropical Pacific where the 242 

double ITCZ is more prominent in IPSL-CM5 (Figs. 2cd). This is somewhat surprising taking 243 

into account that the physics in IPSL-CM3 and IPSL-CM5 are essentially the same (see 244 

section 2); these two versions differing essentially only by the latitudinal and vertical 245 

resolutions of the atmospheric model. 246 

We now focus on the boreal summer SST climatology as simulated by the two models 247 

(Figs. 2e-h). The mean SSTs simulated by the models exhibit some substantial differences 248 

compared to the observations, both for the CMIP3 and CMIP5 versions. Starting with the 249 

CMIP3 versions, it is readily observed that, in the tropical belt, CNRM-CM3 tends in general 250 

to be much too cold, particularly along the equatorial Pacific (Fig. 2e). Overall, SSTs 251 

simulated by IPSL-CM3 are characterized by a general warm bias in the tropics with main 252 
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discrepancies found at eastern boundary oceanic current areas (Fig. 2g). Superimposed over 253 

this global warm error, there is a cold tongue bias in the central and eastern equatorial Pacific 254 

associated with the double ITCZ rainfall structure and a westward extension of the easterly 255 

trade winds in IPSL-CM3 (not shown). These features suggest an overactive upwelling of 256 

cold water in the eastern and central equatorial Pacific associated with the stronger easterly 257 

trade winds via Ekman divergence as in many others coupled models without flux adjustment 258 

(Guilyardi et al., 2009). Focusing now on the CMIP5 versions of the models, the most 259 

important evolutions are the large reduction of the cold bias for the CNRM-CM5 and the 260 

substantial cooling for IPSL-CM5 in the tropical belt, but the cold tongue bias in the 261 

equatorial Pacific is still present in the current versions of the two models. Finally, the 262 

tropical warm bias in the CMIP5 versions of the models remains too strong in the upwelling 263 

regions of the three oceanic basins (during boreal summer), particularly in the southeast 264 

Pacific and to a lesser extent in the southeast Atlantic. Poor representation of coastal regions 265 

and upwelling processes in coarse ocean models and/or a lack of proper air-sea interactions, 266 

with the consequence of well-known biases in marine stratus and stratocumulus clouds, have 267 

been suggested as plausible causes for these large SST biases in the Pacific and Atlantic 268 

oceans which are recurrent and common biases to many state-of-the-art CGCMs (Lin, 2007a; 269 

Manganello and Huang, 2009). 270 

Thus, in all versions, the models produce a too strong equatorial cold tongue which 271 

extends westward and, at the same time, tend to overestimate the SST in the south-eastern 272 

tropical Pacific giving rise to an erroneous SST gradient along the equatorial Pacific and 273 

excessive precipitation over the maritime continent. Dai (2006) suggested that the rainfall 274 

double ITCZ is related to this westward expansion of the cold tongue of SST that is observed 275 

only over the equatorial eastern Pacific, but extends to the central Pacific in the CGCMs, 276 

because models without flux corrections may have errors in heat, fresh-water and momentum 277 

exchanges. Associated positive feedbacks may amplify SST and rainfall biases and contribute 278 

also to the cold tongue and double-ITCZ problems. 279 

b. Annual cycle of rainfall and dynamical indices over the Indian region 280 

To asses the monsoon annual cycle in the different versions of the two GCCMs, Figure 3 281 

displays the observed and simulated mean annual cycle of rainfall averaged over land for an 282 

Indian domain (5°N–30°N/70°E–95°E) and of the monsoon dynamical index proposed by 283 

Wang et al. (2001). 284 
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All the configurations of the models underestimate the total amount of rainfall during the 285 

ISM season (Figs. 3ab). A more detailed examination of the annual cycle of mean 286 

precipitation also reveals a significant evolution from CMIP3 to CMIP5 for the two models as 287 

far as the monsoon rainfall annual cycle is concerned. Focusing first on the IPSL model, we 288 

observe that, in IPSL-CM3, the monsoon rainfall annual cycle over the continent is very poor, 289 

to say the best, with only 2 mm/day in the months from June to September over land, (Fig. 290 

3b) and the rainfall band is staying over the ocean (see Fig. 2c). This important systematic 291 

error has been partly corrected in IPSL-CM5 which exhibits more realistic ISM precipitation, 292 

though still with a weaker than observed amplitude (Fig. 3b). However, the ISM rainfall in 293 

IPSL-CM5 suddenly starts picking up only at the end of June, then it peaks towards the end of 294 

August (contrary to July in observations) and decreases towards the end of October (similar to 295 

observations). This problem of shifting of about one month, the monsoon seasonal cycle is 296 

also found in other CGCMs (Terray et al., 2011) and is probably related to delay in the ISM 297 

onset over the Indian subcontinent, as we will demonstrate below when discussing the annual 298 

cycle of dynamical indices of the monsoon. 299 

The CNRM model is able to capture the annual cycle of monsoon rainfall averaged over 300 

Indian region reasonably well in both the CMIP3 and CMIP5 versions, although the timing 301 

and evolution of onset and withdraw differ slightly between the two versions (Fig. 3a). 302 

CNRM-CM5 is able to capture these two phases of the ISM much better than CNRM-CM3 303 

when compared to the GPCC observations. Moreover, there is too much precipitation before 304 

and after the monsoon season in CNRM-CM3. However, CNRM-CM5 clearly underestimates 305 

the observed rainfall amount during the peak phase of the monsoon while the monsoon peak 306 

rainfall is reasonably simulated by CNRM-CM3. 307 

Dynamical indices have also been developed for quantifying the seasonal cycle and 308 

interannual variability of the ISM (Webster and Yang, 1992; Wang et al., 2001). These 309 

dynamical indices can also be used to objectively assess the capability of the models in 310 

reproducing monsoon variability. One classical dynamical index has been used here: the 311 

Indian Monsoon dynamical Index (IMDI) proposed by Wang et al. (2001). The IMDI is 312 

computed as the difference in 850 hPa zonal winds averaged over 5-15°N/40-80°E and 20-313 

30°N/70-90°E, respectively, which are the regions that undergo major shifts in wind 314 

associated with the ISM. This wind index represents the dominant mode of interannual 315 

variability in the Indian areas during boreal summer (Wang et al., 2001). Also, the large-scale 316 

monsoon and its teleconnections with other remote modes of variability such as ENSO, are 317 
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expected to be well captured by these wind indices, while the rainfall over the Indian region is 318 

more closely related to regional features. 319 

A particular strength of the CMIP5 versions of the two models is that they perform a much 320 

more realistic simulation of the annual cycle of the IMDI than their CMIP3 counterparts, with 321 

a reversal of the low-level wind shear over the North Indian Ocean from winter to summer 322 

which matches reasonably the observations (Figs. 3cd). This is somewhat surprising as far as 323 

the IPSL model is concerned since the ISM rainfall amplitude is still very weak compared to 324 

observations in the CMIP5 version (Fig. 3b). However, the IMDI annual cycle in IPSL-CM5 325 

confirms that the onset and peak phases of ISM are delayed by one month in the current 326 

version of this model, even though the slower withdrawal phase of the monsoon is now fairly 327 

well reproduced. The simulated annual cycle of IMDI in CNRM-CM5 is in relatively good 328 

agreement with the observations in all months even if the amplitude of this simulated annual 329 

cycle is now slightly weaker than observed (Fig. 3c). However, improvements are again 330 

clearly evident from CNRM-CM3, which exhibits an IMDI amplitude much too strong during 331 

boreal summer (nearly double compared to observations) and much too weak during boreal 332 

winter. 333 

 334 

In summary, the results presented in this paragraph stress again the importance of making a 335 

clear distinction between the dynamical and rainfall aspects of the ISM, when we will analyze 336 

CGCM’s simulations in the context of the next IPCC report, since the new versions of the two 337 

CGCMs analyzed here capture reasonably well the amplitude of the Indian monsoon annual 338 

cycle from a dynamical point of view, but still show important deficiencies in terms of the 339 

rainfall annual cycle. This confirms that the ISM rainfall response cannot be inferred directly 340 

from the circulation changes over the North Indian Ocean (e.g Ashrit et al. 2003) and that, for 341 

example, fluctuations in atmospheric moisture transport play also a key role in the model’s 342 

rainfall response. 343 

c. Annual cycle of SST over the equatorial Pacific 344 

Before presenting the interannual variability in the various configurations of the two 345 

coupled models in the next section, it is instructive to investigate how these models are able to 346 

reproduce the SST annual cycle in the equatorial Pacific because the ENSO phenomenon is 347 

strongly phased-locked to the annual cycle. 348 

In Figure 4, we show the climatological mean annual cycle of the Niño-34 (5°S-5°N, 170°-349 

120°W) SST from HADISST, CNRM and IPSL model simulations, respectively. The 350 



12 

observations show a distinct asymmetric annual cycle over the Niño-34 region with the 351 

warmest (coldest) SST occurring in March–April (December–January). The Niño-34 SST 352 

annual cycle in CNRM-CM5 is entirely different from CNRM-CM3 (Fig. 4a). CNRM-CM3 353 

is affected by a constant cold bias (-1.5 to -2°C) throughout the annual cycle and exhibits an 354 

unrealistic semi-annual cycle. Both problems are significantly alleviated in CNRM-CM5, but 355 

the coldest SSTs are still found in August-September instead of December–January. On the 356 

other hand, the Niño-34 SST annual cycle in the two versions of the IPSL model have roughly 357 

the same shape, but the current version is slightly colder in all months of about 0.5 to 1°C 358 

(Fig. 4b; this constant cold bias is corrected in the medium resolution version of the IPSL 359 

model, not shown). The main point to keep in mind is that the current versions of both the 360 

CNRM and IPSL models have a stronger than observed annual cycle in the central-eastern 361 

Pacific, with an important shift in coldest SST, both in amplitude and timing: the SST minima 362 

occurring in September in the simulations instead of December-January in observations. 363 

Moreover, in both models there is a strong cold bias of around 2°C in the month of 364 

September, already present in the CMIP3 versions. 365 

 366 

Coupled models show a strong sensitivity to parameters tuning (Meehl et al., 2001). It is 367 

therefore difficult to know if large-scale improvements (or degradations) simulated in the 368 

tropical Pacific in the upgraded versions of the two CGCMs are due to a significant impact of 369 

changes in the physics, the resolution used or to a better (or worse) choice in the set of tuning 370 

parameters. 371 

 372 

4. Interannual variability 373 

a. Rainfall and SST boreal summer variability 374 

A large fraction of the interannual variability of ISM is linked to the SST and rainfall 375 

anomalies over the Indian and Pacific oceans through atmospheric bridges (Wang, 2006). 376 

Hence, better representation of global rainfall and SST variability in the coupled models are 377 

also very important for simulating ISM variability realistically. Figure 5 shows the differences 378 

between the mean boreal summer (JJAS) precipitation and SST standard-deviations as 379 

simulated by the different versions of the two models and observations. 380 

CNRM-CM3 produces excessive SST variability all along the equatorial Pacific (but with 381 

two particularly important nodes, in the western and eastern equatorial Pacific), and to a lesser 382 
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extent in the western Indian Ocean, the North Pacific and the tropical Atlantic, e.g. in regions 383 

which are known to be largely affected by ENSO through fast atmospheric teleconnections 384 

(Alexander et al., 2002). This suggests that the simulated ENSO variability extends too far 385 

west and is exaggerated compared to the observations in CNRM-CM3 (Fig. 5e). The monthly 386 

standard-deviations of the Niño-3.4 SST is in excess of 1 to 1.5 °C during nearly all months in 387 

CNRM-CM3 as compared to observed data (see Figure 7 below). This is in contrast with 388 

most other IPCC AR4 coupled models without flux adjustment which exhibit reduced Niño-389 

3.4 SST interannual variability (Achutarao and Sperber, 2006). Consistently, the biases in 390 

rainfall variability have also a longitudinal distribution in the tropical Pacific, but with 391 

excessive variability in the west and reduced variability in the eastern equatorial Pacific (Fig. 392 

5a). These problems are probably linked to the cold tongue bias and associated atmospheric 393 

errors affecting CNRM-CM3 as described in section 3. Moreover, this exaggerated and 394 

mislocated ENSO mode leads to disastrous model errors in the ISM-ENSO relationships, as 395 

we will illustrate below. However, it is noteworthy, that all the above systematic errors 396 

affecting the precipitation and SST variability have been successfully reduced in CNRM-397 

CM5 (Figs. 5bf). In this respect, the evolution of the CNRM model from CMIP3 to CMIP5 is 398 

quite impressive. 399 

On the other hand, the systematic errors concerning the boreal summer precipitation and 400 

SST variability in the two versions of the IPSL model have nearly the same geographical 401 

distributions (Figs. 5cd and 5gh). This is consistent with the fact that the physics are exactly 402 

the same in the two versions. However, the amplitude of both the rainfall and SST 403 

variability’s biases has increased in the tropical Pacific, which is an unexpected feature, 404 

probably in relation with the increased spatial and vertical resolutions in IPSL-CM5 and the 405 

related tuning of the model (see section 2). Moreover, the systematic errors concerning the 406 

rainfall variability in the tropical Pacific have a clear symmetric distribution with respect to 407 

the equator, which is reminiscent of the double ITCZ and cold tongue problems affecting the 408 

Pacific mean state in IPSL-CM5. 409 

b. ENSO variability 410 

Though considerable improvements in the simulation of ENSO have been made during the 411 

past twenty years, current coupled models still need to be improved with regard to 412 

realistically representing ENSO (Guilyardi et al., 2009). Here, the ENSO characteristics 413 

simulated by the two coupled GCMs and improvements made from CMIP3 to CMIP5 will be 414 

evaluated in more details. 415 
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The observed ENSO is a broadband phenomenon with a wide spectral peak between period 416 

3–6 years. This feature has been often validated in models by examining the power spectrum 417 

of the Niño-3.4 SSTs (Achutarao and Sperber, 2002, 2006). In Figure 6, we show the Niño-418 

3.4 SSTs power spectrum estimated from the observations (HADISST) and all the CMIP5 to 419 

CMIP3 historical simulations available from the two coupled models. The spectral density is 420 

estimated for the period 1900-2000, after removal of the seasonal cycle and linear trend for 421 

both the HadISST1.1 dataset or the simulations, by using a “classic” Fast Fourier Transform 422 

algorithm on overlapping segments (Welch, 1967). Thus, computations are exactly similar for 423 

the experiments and the observations. Note, finally, that the dashed curves in Fig. 6 show the 424 

point-wise 99% confidence limits for the Niño-34 SST spectrum estimated from the 425 

observations. These confidence limits will be used to assess how realistic are the different 426 

spectra estimated from the simulations. For additional technical details on spectral analysis, 427 

the reader is referred to von Storch and Zwiers (1999). As expected, observed Niño-34 SSTs 428 

display a broad peak from 3 to 5 yr, but is also affected by decadal variability (An and Wang, 429 

2000). The Niño-34 SST spectra in the CMIP3 versions of the two models fall above the 430 

point-wise 99% confidence limits computed from the observed spectrum in the interannual 431 

range and are thus not realistic (Figs. 6ab). The power on quasi-triennial (i.e. between 3 and 4 432 

years) and quasi-biennial (i.e. around 2 years) time scales is significantly enhanced for, 433 

respectively, the CNRM-CM3 and IPSL-CM3 spectral densities compared to the 434 

observations. This suggests that ENSO is too regular, with a too short periodicity of 30-50 435 

and 20-40 months for, respectively, the CNRM-CM3 and IPSL-CM3. Interestingly, the 436 

CMIP5 versions of the models perform much better in their representation of ENSO 437 

frequency. The spectral peak in CNRM-CM5 still falls above the point-wise 99% confidence 438 

limits computed from the observed spectrum, but the magnitude of this spectral peak is 439 

largely reduced compared to the one in the CMIP3 spectrum (Fig. 6a). This suggests that the 440 

simulated ENSO mode in CNRM-CM5 is still too regular with improper representation of the 441 

pre-El Niño (before the onset of warm/cold events) atmospheric and SST patterns (see 442 

below).  The IPSL model has now a much weakest peak in the Niño-34 SSTs spectrum and 443 

the shape of the spectrum now matches roughly the observed spectrum for all periods greater 444 

than one year, despite some significant loss of power around 50-60 months (Fig. 6b). 445 

Furthermore, IPSL-CM5 spectral density estimates remain within the 99% confidence interval 446 

derived from the observations for periods ranging from annual to interannual time-scales. 447 

This is a distinctive advantage of the IPSL model compared to other state-of-the-art CGCMs 448 

as far as ENSO is concerned (AchutaRao and Sperber, 2006). Another remarkable property of 449 



15 

both CNRM and IPSL models is that the spectral characteristics of ENSO are somewhat 450 

stable across the different members of the historical simulations in CMIP5. This is in contrast 451 

to other CGCMs such as the GFDL model, which exhibits a large internal low-frequency 452 

modulation of ENSO variability and frequency at least in preindustrial integrations (Lin, 453 

2007b; Wittenberg, 2009). 454 

The apparent phase locking of ENSO events to the mean annual cycle with a tendency to 455 

peak at the end of the calendar year is perhaps one of ENSO’s most distinctive characteristics 456 

(Rasmusson and Carpenter, 1983). In Figure 7, we show the monthly standard deviations of 457 

the Niño-34 SST anomalies from the observations and the two models, for both their CMIP3 458 

and CMIP5 versions. Observed ENSO variability typically peaks in boreal winter and 459 

diminishes in boreal spring with relatively weak variability in boreal summer and early fall 460 

(Fig. 7). This is partly explained by the fact that the onset of El Niño events frequently occurs 461 

in boreal spring. It is apparent that the CNRM coupled model is correctly phase-locked to the 462 

annual cycle and has a preference for relatively high SST variability in the Niño-34 region 463 

during the winter season, as observed (Fig. 7a). However, the standard deviations in the 464 

CNRM-CM3 simulations are much higher than observed, suggesting again an exaggerated 465 

ENSO variability, but this bias has been eliminated in CNRM-CM5. The situation is, 466 

however, radically different for the IPSL model (Fig. 7b). The CMIP3 version has a 467 

reasonable phase locking of Niño-34 SST variability to the annual cycle, though with a 468 

weaker than observed variability during boreal winter. However, this feature has been 469 

completely destroyed in IPSL-CM5 in which the Niño-34 SST variability is higher during 470 

May to July and much less in the remaining months. This feature is due to the erroneous SST 471 

and rainfall annual cycles found in the central to eastern tropical Pacific in the current version 472 

of the IPSL model (not shown). As we will illustrate later, this bias is particularly detrimental 473 

to the simulation of the ISM-ENSO lead-lag relationships in the IPSL model. 474 

In order to illustrate that both models have also problems in the simulation of the space-475 

time evolution of SST anomalies associated with ENSO, we show the correlations of the DJF 476 

Niño-34 SST time series with bi-monthly Indo-Pacific SSTs in Figure 8. For the sake of 477 

brevity, we only show the results for the CMIP5 versions and observations. The too periodic 478 

nature of ENSO in the CNRM model is manifested by the existence of significant negative 479 

correlations in the eastern Pacific during the late boreal winter and spring (from February to 480 

May) before ENSO’s onset, which are not seen in the observations (Figs. 8ab). The observed 481 

patterns from the onset to the peak of ENSO events show the emergence of a broad band of 482 

positive correlations across the central and east Pacific and of negative correlations in a 483 
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typical “horseshoe” pattern from the subtropics through the tropical western Pacific (Fig. 8a). 484 

On the other hand, the positive correlations extend too much westward and are confined to the 485 

Tropics, while the horseshoe SST pattern in the extra-tropical Pacific is not realistic in 486 

CNRM-CM5, particularly in the North Pacific (Fig. 8b). The narrow equatorial confinement 487 

of the positive SST anomalies is consistent with the unrealistic high ENSO frequency in 488 

CNRM-CM5 (see Fig. 6a; Kirtman, 1997; Davey et al., 2002). In the Indian Ocean, CNRM-489 

CM5 simulates a too strong Indian Ocean Dipole variability during fall season (Saji et al., 490 

1999) in response to El Niño events, with the negative correlations extending too far west into 491 

the equatorial Indian Ocean, confining the positive teleconnection signal to the far west of 492 

that basin. Due to the incorrect phase locking of ENSO variability to the annual cycle in 493 

IPSL-CM5, the corresponding seasonal evolution of the SST correlation patterns is unrealistic 494 

with positive correlations in the tropical Indian and Pacific oceans observed from February-495 

March to December-January seasons (Fig. 8c). 496 

c. ISM variability 497 

As a first basic assessment of ISM variability, the monthly standard-deviations of ISM 498 

rainfall area-averaged over India (70°-95°E, 5°-30°N) for the GPCC, GPCP datasets and all 499 

configurations of the two coupled models are shown in Figure 9. In the observations (both 500 

GPCC and GPCP), the rainfall variability is low outside the summer monsoon season and 501 

peaks during the onset and withdrawal phases of the monsoon. On the other hand, ISM 502 

rainfall standard deviations are quite higher in CNRM-CM3 during pre- and post-monsoon 503 

seasons with also a wider spread inside boreal summer (Fig. 9a). Both problems have been 504 

partly corrected in the CMIP5 version. Similar improvements from CMIP3 to CMIP5 are also 505 

observed for the IPSL model, since the rainfall standard deviations have now the correct 506 

amplitude during ISM, even though the delay of the ISM onset already observed over the ISM 507 

rainfall annual cycle is also seen here on the cycle of ISM rainfall variability (Fig. 9b). Such 508 

improvements from CMIP3 to CMIP5 are consistent with the patterns of ISM rainfall 509 

variability illustrated in Fig. 5 in which the biases over the Indian subcontinent have been 510 

reduced in the current versions of both models. 511 

To further elucidate the ISM rainfall variability, Figure 10 shows the power spectra of ISM 512 

rainfall time series during boreal summer (JJAS average over land) in the observations and 513 

the different available simulations from the two models. Interestingly, the observed ISM 514 

rainfall time series is not basically biennial as it is assumed by many studies (Yasunari, 1990; 515 

Meehl and Arblaster, 2002), but rather exhibits a triennial oscillation as many monsoon 516 

indicators (Bhalme and Jadhav, 1984). Focusing now on the model’s outputs, we first 517 
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observed that the dominant time scales of ISM rainfall variability varied considerably and 518 

significantly between the different members of the CMIP5 historical simulations of the two 519 

models, while such “internal” variability of frequency is not observed in the spectra of the 520 

simulated Niño-34 SST time series in both models (compare Figs. 6 and 10). Focusing now 521 

on the comparison between CMIP3 and CMIP5 versions, the results highlight that the current 522 

versions of the models are in better agreement with observations as far as the dominant time 523 

scales of ISM rainfall interannual variability is concerned. Taking into account the strong 524 

relationship between ISM rainfall variability and ENSO (see below), this result is consistent 525 

with the improvement of the spectral signature of Niño-34 SSTs in the current versions of the 526 

two models as discussed in the previous paragraph. 527 

d. ISM and ENSO relationships 528 

Numerous studies have shown that El Niño/La Niña is associated with a 529 

weakening/strengthening of the Indian monsoon with an over-all reduction/increase in rainfall 530 

(Webster et al., 1998; Wang, 2006; among many others). The monsoon circulation anomalies 531 

associated with ENSO are either driven remotely by teleconnections through changes in the 532 

Walker circulation, or locally by anomalous heating or air-sea interactions. Such 533 

teleconnections between ISM and ENSO are indeed responsible for the main modes of 534 

rainfall interannual variability observed over India and the tropical Indian Ocean. It is 535 

therefore extremely important to examine if the ENSO-ISM relationships are well simulated 536 

in state-of-the art CGCMs (Annamalai et al., 2007; Terray et al., 2005a, 2011). Here, we are 537 

evaluating the relationship between ENSO and ISM in both the CMIP3 and CMIP5 versions 538 

of the CNRM and IPSL models. 539 

In order to see if the two models represent the timing of the relationship correctly, Figure 540 

11 shows the lead-lag relationships between the two phenomena in an extended window, e.g. 541 

the 36-month evolution of the correlation between ISM rainfall/dynamical indices and 542 

monthly Niño-3.4 SSTs for observations (black line), the CMIP3 (blue line) and CMIP5 (red 543 

line), configurations of the two coupled models, starting from the beginning of the previous 544 

year (e.g. year -1) to the end of the following year of the monsoon (e.g. year +1). The Niño-545 

3.4 domain is chosen since in observations the strongest correlations between ISM rainfall 546 

and SSTs occur over this region of the Pacific (see Fig. 12). X-axis indicates calendar month 547 

for a 36 months period starting one year before the developing year of ISM and Y-axis is the 548 

amplitude of the correlation. The dashed lines indicate the 99% significance level according 549 

to a two-tailed student t-test. 550 
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Two distant significant correlation peaks are noted in the observations (Fig. 11). Weak 551 

positive correlations are evident a year before the monsoon. Theses positive correlations 552 

preceding the monsoon have largely amplified during recent decades (e.g. after the 1976/77 553 

climate shift) and have been the subject of several recent publications (Yang et al., 2007; 554 

Boschat et al., 2010, 2011; among others). The correlations switch sign around February-555 

March and become significant only in April-May as a manifestation of the ENSO spring 556 

predictability barrier (Webster and Yang, 1992; Webster et al., 1998). These significant 557 

negative correlations between Niño-3.4 SSTs and ISM rainfall and dynamical indices grow 558 

steadily during the summer monsoon and fade away progressively after the boreal summer, 559 

during the peaking and decaying phases of El Niño, to cross the zero line at the onset of the 560 

monsoon the next year. The strong and significant negative correlation between ISM rainfall 561 

and SSTs over eastern and central Pacific during summer of year 0 implies that warmer 562 

(cooler) SSTs over these regions will suppress (enhance) monsoon rainfall over India during 563 

boreal summer (e.g. Webster et al., 1998). The observed maximum correlation after the 564 

monsoon season has also led to suggestions that variations in the intensity of the monsoon can 565 

potentially influence the surface wind-stress over the equatorial Pacific and thereby modify 566 

the statistical properties of ENSO (e.g., Kirtman and Shukla 2000; Wu and Kirtman, 2003). 567 

Nearly all the versions of the models are able to reproduce the synchronous negative 568 

correlation (during boreal summer) between ISM and ENSO, though with varying amplitude. 569 

However, before and after the monsoon season, nearly all the versions of the coupled models 570 

show large discrepancies from observations, excepted perhaps the CMIP5 version of the 571 

CNRM model. Consistent with the less energetic ENSO in CNRM-CM5 (Figs. 6 and 7), the 572 

amplitude of the synchronous correlation between monthly Niño-3.4 SST and ISM rainfall is 573 

reduced compared to the CNRM-CM3 (Figs. 11a). However, the timing of the relationship 574 

between the two phenomena is also completely dissimilar from CNRM-CM3 to CNRM-CM5, 575 

with large improvements in CMIP5 configuration. In CNRM-CM3, ISM is linked to ENSO 576 

before ISM onset rather during and after ISM, the maximum negative correlation occurring 577 

the year before ISM and just before ISM onset for both the ISM rainfall and dynamical 578 

indices (Figs.11ab). Moreover, after ISM onset, the amplitude of the negative correlation 579 

quickly fades away in complete disagreement with the observed correlations. On the other 580 

hand, despite of a reduced amplitude for the ISM rainfall and Niño-3.4 SST correlations, the 581 

shape of the lead-lag correlations simulated by CNRM-CM5 perfectly matches the 582 

observational estimates with the maximum negative correlations for zero or slightly positive 583 

lags (i.e. for the ISM rainfall and dynamical indices leading the Niño-3.4 SST time series). 584 
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Furthermore, CNRM-CM5 is also able to recover the seasonal modulation of the monsoon-585 

ENSO relationship with the slow change of sign of the correlations from positive to negative 586 

from year -1 to year 0 as observed. Focusing now on the IPSL model, both the CMIP3 and 587 

CMIP5 versions show the same deficiencies with significant negative correlations with the 588 

Niño-3.4 SSTs before rather than synchronous and after the ISM (Figs. 11bd). Obviously, the 589 

incorrect annual phase locking of the ENSO’s variability (Fig. 7b) is a plausible candidate for 590 

explaining the current failure of IPSL-CM5 with respect to the simulation of the ISM-ENSO 591 

lead-lag relationships. However, even IPSL-CM3, that has a quite better representation of the 592 

tropical Pacific and the associated ENSO variability, failed to reproduce the lead-lag 593 

relationships between ISM and ENSO (Figs. 11bd). This suggests that many factors may be 594 

necessary to faithfully reproduce the ISM-ENSO relationship in CGCMs. 595 

In order to provide a broader perspective of the performance of the two CGCMs with 596 

respect to the ISM-SST relationships, Figure 12  shows the lead-lag correlations between 2-597 

month averaged Indo-Pacific SSTs and ISM rainfall for observations and the two models. For 598 

the sake of brevity we show again these diagnostics only for the CMIP5 model’s 599 

configurations. The correlations are calculated beginning in February-March prior to the 600 

monsoon season and ending in December-January after the monsoon. As can be seen, the two 601 

coupled models exhibit a robust teleconnection pattern over the equatorial Pacific similar to 602 

observations during boreal summer. 603 

The correspondence between the IPSL model and the observations is surprisingly overall 604 

very good during the development stage of El Niño events despite significant differences in 605 

the simulated and observed early evolution of ENSO in the equatorial Pacific (errors which 606 

are consistent with the lead-lag correlations between Niño-3.4 SSTs and ISM rainfall 607 

displayed in Fig. 11). The observed correlation patterns before the El Niño onset suggests the 608 

importance of extratropical latitudes, with possible precursory SST signals stemming from the 609 

North Pacific and South Indian regions during February-March (Fig. 12a; Terray et al., 610 

2005b; Peings et al., 2009). Interestingly, the IPSL model is able to recover the SST 611 

precursory pattern found in the North Pacific region, which takes the form of a warm C-612 

shaped ‘footprint’ during AM both in observations and IPSL-CM5 (Fig. 12c; Vimont et al., 613 

2003). Consistent with the Tropospheric Biennial Oscillation pattern documented by Meehl 614 

and Arblaster (2002), negative correlations are simulated in the western Indian Ocean and 615 

positive correlations in the eastern Indian Ocean by both IPSL-CM5 and observations during 616 

the late boreal summer and fall. However, these regional signals are much stronger in 617 



20 

observations. Moreover, a weak (strong) monsoon is followed by the peak phase of the El 618 

Niño (La Niña) event with the development of the traditional “horseshoe” pattern 619 

characteristic of ENSO in the Pacific and a large warm (cold) SST anomaly over the Indian 620 

Ocean associated with the weaker monsoon flow both in observations and IPSL simulations 621 

(Figs. 12ac). Thus, IPSL-CM5 captures the main SST-ISM teleconnections even though the 622 

negative correlations in the equatorial Pacific are too meridionally confined and the positive 623 

correlations in the subtropical Pacific are much too weak and not well-simulated during ISM 624 

and the following boreal fall and winter. This is rather surprising taking into account the 625 

incorrect phase-locking of ENSO variability to the annual cycle in IPSL-CM5 (Fig. 7b). 626 

Despite of the fact the CNRM-CM5 captures the observed phase-locking of Niño-3.4 627 

SST anomalies with the seasonal cycle (Fig. 7a) and the seasonal evolution of the correlations 628 

between monthly Niño-3.4 SST and ISM rainfall (Figs. 11ac), CNRM-CM5 does not 629 

represent the magnitude of the association between Indo-Pacific SSTs and ISM rainfall 630 

anomalies correctly (Fig. 12b). The shortcomings of CNRM-CM5 are particularly evident 631 

during boreal spring and summer since the significant correlations are only restricted to the 632 

central equatorial Pacific in the CNRM simulations during these seasons. From boreal fall to 633 

winter after the monsoon, the positive correlations forming the two branches of the traditional 634 

ENSO horseshoe pattern in the Pacific are also much less intense and not properly simulated 635 

in CNRM-CM5. These problems related to the CNRM model are evident in the mean 636 

correlation patterns displayed in Fig. 12b as well as in the correlation maps computed from 637 

each of the ten simulation members separately (not shown, there is some inter-member 638 

variability in the correlations and therefore a smoothing effect of the ensemble averaging but 639 

all members underestimate the magnitude of the observed correlations). Furthermore, the 640 

same deficiency is found if we use the ISM dynamical index instead of the ISM rainfall time 641 

series in the correlation analysis (not shown). 642 

To further elucidate the relationships between ENSO and ISM rainfall, we finally assess 643 

the changes in correlation between ISM rainfall and JJAS Niño-3.4 SST time series by 644 

computing them in 21-yr sliding window for the CMIP5 experiments of the two models 645 

whose length is exactly comparable to the observed record and which include both the 646 

anthropogenic and natural forcings as in the observed climate (Fig. 13). 647 

There are clear decadal changes in ENSO-monsoon teleconnections in observations 648 

during the 20
th
 century (e.g., Webster et al. 1998, Torrence and Webster, 1999; 649 

Krishnamurthy and Goswami, 2000). ENSO-monsoon teleconnections are weak at the early 650 
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(before 1930) and end of 20
th
 century and strong between the two periods, during 1935 to 651 

1970. Moreover, the drop in synchronous correlations between ENSO and ISM rainfall 652 

observed during recent decades is still a matter of intense debate and there have been attempts 653 

to understand the plausible reasons for this recent low-frequency modulation of the monsoon-654 

ENSO relationship (Krishna Kumar et al., 1999; Krishnamurthy and Goswami, 2000; Chang 655 

et al., 2001; Gershunov et al., 2001; Kinter et al., 2002; Annamalai et al., 2007; Kucharski et 656 

al., 2007). Especially, Krishna Kumar et al. (1999) suggested that the mid-latitude continental 657 

warming (in relation to the global warming) favors the enhanced land–ocean thermal gradient 658 

conducive to a strong monsoon and, thus, helps to sustain the ISM rainfall at a normal level 659 

despite strong ENSO events during recent decades. 660 

Epochs with a highly significant out-of-phase ISM-ENSO correlation (-0.8) alternate 661 

with periods in which these correlations are very modest (-0.2) in both the observations and 662 

individual members of the model’s outputs (Fig. 13). Interestingly, there is also a larger 663 

spread in CNRM-CM5 within the different members as compared to IPSL-CM5. However, 664 

these epochal/decadal changes in teleconnections are not reproduced in the ensemble mean 665 

response of the two models, which suggests a stationary relationship between ISM and ENSO 666 

in the global warming context of the 20
th
 century. Especially during the recent decades when 667 

the anthropogenic forcing is the strongest and the observed ISM-ENSO relationship is the 668 

weakest in the observed record, there are no significant changes of the ISM-ENSO 669 

relationships in the ensemble mean of the two models. Furthermore the same results are 670 

obtained if an ISM dynamical index is used in the sliding correlation analysis (not shown). 671 

These results are consistent with the conclusions of Gershunov et al. (2001) and Annamalai et 672 

al. (2007) and suggest that the recent weakening of the ISM-ENSO correlation is probably 673 

related the intrinsic stochastic nature of the link between ISM and ENSO and not to the global 674 

warming forcing as first suggested by Krishna Kumar et al. (1999). 675 

5. Conclusions and discussion 676 

The present study is aimed at evaluating the CMIP5 simulations made by the two French 677 

state-of-the-art CGCMs with ten and four historical coupled simulations for, respectively, the 678 

CNRM and IPSL CGCMs, both driven by natural and anthropogenic forcings. The focus is to 679 

document the evolution of these coupled models from CMIP3 to CMIP5 and to compare the 680 

performance of these models in their ability to simulate ISM rainfall, its variability and its 681 

relationship with ENSO. Despite of the fact that the two CGCMs share the same ocean 682 

component, they display a wide range of skill in simulating the tropical mean state, ISM, 683 

ENSO and their reciprocal relationships. 684 
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Even after improving the physics (for CNRM) or increasing the spatial and vertical 685 

resolutions (for CNRM and IPSL) in the CGCMs, the results are not up to mark with 686 

progresses in simulating some aspects of the tropical climate variability, but also degradations 687 

on some others. The large systematic errors affecting the rainfall and SST boreal summer 688 

climatologies in CNRM-CM3 have been largely reduced in CNRM-CM5. In particular, the 689 

large cold SST bias found in the Tropics and Subtropics in CNRM-CM3 has been largely 690 

corrected in CNRM-CM5 by changes in the atmosphere and ocean parameterized physics.  691 

Surprisingly and despite of the fact that the physics of the CMIP3 and CMIP5 versions of the 692 

IPSL model (in the atmosphere) are identical, this model in its current version exhibits a more 693 

pronounced double ITCZ in rainfall and a colder tongue in equatorial SSTs over the tropical 694 

Pacific with an erroneous annual cycle in the eastern tropical Pacific. However, both models 695 

now capture the broad features of the monsoon over the India with respect to the annual cycle 696 

of rainfall and dynamical indices. Especially, the monsoon rainfall climatology is far better in 697 

IPSL-CM5 than in IPSL-CM3 simulations despite of the fact that ISM onset and peak are 698 

delayed by one month in the current version. 699 

The periodicity of the simulated ENSO is now fairly realistic in the IPSL model, thanks to 700 

the increased spatial and vertical atmospheric resolutions (Guilyardi et al., 2004), but IPSL-701 

CM5 fails to simulate the phase-locking of ENSO with respect to the annual cycle, with El 702 

Niño events peaking in boreal spring instead of boreal winter. This error is probably related to 703 

the erroneous annual cycle generated in the eastern tropical Pacific, which is also an 704 

unexpected outcome from the increased spatial and vertical resolutions of the atmospheric 705 

component in IPSL-CM5. Changes in atmosphere and ocean parameterized physics have also 706 

improved the simulated spectral characteristics and the amplitude of ENSO variability in 707 

CNRM-CM5. The simulated ENSO in the CNRM model has now the correct amplitude, but 708 

is still too regular, with a too short time scale compared to the observations. Moreover, this 709 

model faithfully reproduces the phase locking of ENSO with respect to the annual cycle, 710 

which is of paramount importance for a realistic simulation of the lead-lag relationships 711 

between ISM rainfall and ENSO. Both IPSL-CM5 and CNRM-CM5 fail however to capture 712 

all the details of ENSO-related SST variability such as the meridian extent of the SST 713 

anomalies in the eastern Pacific or the observed SST horseshoe pattern in the extra-tropical 714 

Pacific and tend to produce SST anomalies that extend too far into the western tropical Pacific 715 

as many other CGCMs (AchutaRao and Sperber, 2006). 716 

 717 
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Nearly all versions of the models are able to reproduce the synchronous negative 718 

correlation (during boreal summer) between ISM and ENSO, though with varying amplitude. 719 

However, before and after the monsoon season, nearly all the versions of the coupled models 720 

show large discrepancies from observations, excepted perhaps CNRM-CM5. In particular, 721 

CNRM-CM3 and the two versions of the IPSL model show significant and large negative 722 

correlations before the monsoon which are completely absent in the observational estimates. 723 

In a similar fashion, the simulated correlations fade away quickly after the ISM onset and are 724 

much weaker than observed suggesting that the two CGCMs are not able to reproduce the 725 

impact of anomalous monsoons on La Niña or El Niño events in the Pacific (Kirtman and 726 

Shukla 2000; Wu and Kirtman, 2003). 727 

Thus, the CMIP3 CGCMs, including the two CGCMs considered here, show large 728 

discrepancies from the observations with respect to the simulation of the complex leag-lag 729 

relationships between ISM and ENSO which is central to seasonal prediction for South Asia 730 

(Annamalai et al., 2007; Terray et al., 2011). Taking into account the overall improvement of 731 

the mean state, seasonal cycle and interannual variability in the tropical Pacific simulated by 732 

the CMIP3 models (AchutaRao and Sperber, 2006), the reasons for this general failure of 733 

current CGCMs in simulating the monson-ENSO teleconnections are not clear. One plausible 734 

reason is that, despite a large diversity of simulated ENSO, most coupled models still have 735 

difficulty to reproduce the phase-locking of east Pacific SST variability to the annual cycle 736 

which is central in capturing the monsoon-ENSO relationship (Turner et al., 2005). However, 737 

it is worth noting that even CGCMs performing well in their representation of the annual 738 

cycle of Niño-34 SST variability do not perform significantly better in recovering the 739 

monsoon-ENSO relationship. This is well illustrated in the present study by the case of the 740 

CMIP3 and CMIP5 versions of the IPSL model which exhibit similar lead-lag correlations 741 

between ISM rainfall and ENSO despite significant differences in the phase-locking of ENSO 742 

to the annual cycle. 743 

In IPSL-CM5, the amplitude of the ENSO teleconnection is comparable to the 744 

observations, but the timing of this teleconnection is still incorrect, peaking before the ISM 745 

onset rather than during and after ISM as observed, despite of significant improvements in 746 

monsoon climatology. As a result of significant improvements in the simulation of ENSO 747 

characteristics, CNRM-CM5 is now able to capture many aspects of the observed lead-lag 748 

relationships between ISM rainfall and El Niño events. However, the strength of the ENSO 749 

teleconnection during the boreal summer is significantly reduced in CNRM-CM5 compared 750 

to observations and is restricted to the central equatorial Pacific. This suggests that this model 751 
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is not able to simulate realistic SST-ISM teleconnections in the Indo-Pacific areas. Overall, 752 

the results from CMIP5 simulations suggest that progresses or changes in the simulation of 753 

the ISM-ENSO relationships in the two CGCMs can be traced back to modifications of 754 

ENSO characteristics in the new simulations and that the monsoon rainfall climatology only 755 

plays a secondary role. 756 

Generally speaking, it is however very difficult to attribute differences between the CMIP3 757 

and CMIP5 model versions without a systematic assessment of each individual modification. 758 

In this respect, the present study is somewhat frustrating, but is probably another good 759 

illustration of the increasing gap between simulation and understanding in climate modeling 760 

(Held, 2005). Model development should probably be even more central in CMIP and each 761 

model component (atmosphere and ocean, but also land, sea-ice, etc…) should be also 762 

evaluated in off-line mode in order to better understand the reasons behind the improvements 763 

(or degradations) between successive CMIP exercises. One suggestion would be that 764 

intercomparison projects for individual components should be linked (or even embedded) to 765 

(in) CMIP. In this respect, CMIP5 has made a step forward since AMIP-type atmospheric 766 

simulations driven by observed SST have been required from each modeling center. Such 767 

simulations have not been analyzed in the present study since ENSO is fundamentally a 768 

coupled ocean-atmosphere phenomenon. Nevertheless, preliminary analyses conducted at 769 

CNRM indicate that some features of the Indian monsoon are better simulated in CMIP 770 

versus AMIP runs. Such a result raises another crucial issue, indeed the possibility of error 771 

cancellation in coupled models and/or the fact that most modeling centers still develop and 772 

tune their atmospheric component in AMIP mode (e.g. Hazeleger et al. 2010) while climate 773 

variability, especially in the tropics, is dominated by coupled ocean-atmosphere processes.  774 

Finally, coming back to the ENSO-monsoon relationship and in line with former modeling 775 

studies, both CNRM and IPSL CMIP5 models show a strong multi-decadal modulation of the 776 

20
th
 century ISM rainfall-ENSO correlations in individual members of the historical 777 

simulations of both models, but no systematic (i.e. ensemble mean) change with increasing 778 

amounts of greenhouse gases, thereby suggesting a stationary ISM-ENSO relationship during 779 

the last century. The CMIP5 projections of CNRM and IPSL are beyond the scope of the 780 

present study, but preliminary analyses confirm the stationnarity of the simulated relationship 781 

over the 21
st
 century. 782 
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Figure captions 998 

Figure 1: ISM rainfall trend during the 20
th
 century observed and simulated by the historical 999 

(20c3m) coupled simulations in the framework of CMIP3. The trends have been estimated 1000 

with the help of the STL (Seasonal-Trend decomposition procedure based on Loess) additive 1001 

scheme developed by Cleveland et al. (1990). 1002 

Figure 2: Differences between rainfall boreal summer climatology estimated from the GPCP 1003 

dataset and (a) CNRM-CM3, (b) CNRM-CM5, (c) IPSL-CM3 and (d) IPSL-CM5. (e), (f), (g) 1004 

and (h), same as (a), (b), (c) and (d), but for SST boreal summer climatology as observed 1005 

from the HadISST dataset and simulated by the CGCMs (ensemble-mean climatologies are 1006 

used for CNRM-CM5 and IPSL-CM5 when computing the differences). 1007 

Figure 3: Observed and simulated mean annual cycle of monthly rainfall averaged over land 1008 

for an Indian domain (5°N–30°N/70°E–95°E) for (a) CNRM-CM3 and CNRM-CM5, (b) 1009 

IPSL-CM3 and IPSL-CM5, and of the monsoon dynamical index proposed by Wang et al. 1010 

(2001) for (c) CNRM-CM3 and CNRM-CM5, (d) IPSL-CM3 and IPSL-CM5. On each panel, 1011 

the thick red line and red shading show, respectively, the ensemble-mean and the spread 1012 

among the individual members of the historical simulations for the CMIP5 version of the 1013 

models. 1014 

Figure 4: SST seasonal cycle in the Niño-34 (5°S-5°N, 170°-120°W) region derived from the 1015 

HadISST dataset and the models both from the 20c3m (CMIP3) and historical (CMIP5) 1016 

simulations. (a) CNRM-CM3 and CNRM-CM5, (b) IPSL-CM3 and IPSL-CM5. On each 1017 

panel, the thick red line and red shading show, respectively, the ensemble-mean and the 1018 

spread among the individual members of the historical simulations for the CMIP5 version of 1019 

the models. 1020 

Figure 5: Differences between boreal summer rainfall standard deviations estimated from the 1021 

GPCP dataset and (a) CNRM-CM3, (b) CNRM-CM5, (c) IPSL-CM3 and (d) IPSL-CM5. (e), 1022 

(f), (g) and (h), same as (a), (b), (c) and (d), but for boreal summer SST standard deviations as 1023 

observed from the HadISST dataset and simulated by the CGCMs (ensemble-mean standard 1024 

deviations are used for CNRM-CM5 and IPSL-CM5 when computing the differences). 1025 

Figure 6: Power spectra of detrended monthly Niño-34 SST time series estimated from the 1026 

observations (HadISST) and the different simulations. (a) HadISST (black line), CNRM-CM3 1027 

(blue line), CNRM-CM5 individual simulations (red line) and CNRM-CM5 ensemble-mean 1028 

spectrum (green line). (b) Same as (a), but for IPSL-CM3 and IPSL-CM5. The bottom axis of 1029 
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each panel is the period (unit: month), the left axis is variance (unit: °C
2
) and both axes are in 1030 

logarithm scale. The power spectrum is estimated using a FFT algorithm on overlapping 1031 

segments (Welch, 1967) and the point-wise 99% confidence interval for the spectrum 1032 

estimated from the observations is plotted in black dashed lines in each panel. 1033 

Figure 7: Monthly standard deviations of the Niño-34 SST time series from HadISST dataset 1034 

and the different configurations of the two models. (a) HadISST (black line), CNRM-CM3 1035 

(blue line) and CNRM-CM5 (red line). (b) Same as (a), but for IPSL-CM3 (blue line) and 1036 

IPSL-CM5 (red line). On each panel, the thick red line and red shading show, respectively, 1037 

the ensemble-mean standard-deviation and the spread among the individual members of the 1038 

historical simulations for the CMIP5 version of the models. 1039 

Figure 8: (a) Lagged correlations between bi-monthly averaged Indo-Pacific SSTs and the 1040 

December-January Niño-3.4 SST for the HadISST dataset. The correlations are calculated 1041 

beginning in February-March, prior to the El Niño onset, and ending in December-January at 1042 

the peak season of El Niño events. Correlations that are above the 90% significance 1043 

confidence level according to a phase-scramble bootstrap test (Ebisuzaki, 1997) are 1044 

underlined. (b) Same as (a), but for CNRM-CM5. (c) Same as (a), but for IPSL-CM5. In (b) 1045 

and (c), the ensemble-mean correlation patterns and critical probabilities are plotted. 1046 

Figure 9: Monthly standard deviations of ISM rainfall time series from GPCC dataset and the 1047 

different configurations of the two models. (a) GPCC (black line), CNRM-CM3 (blue line) 1048 

and CNRM-CM5 (red line). (b) same as (a), but for IPSL-CM3 (blue line) and IPSL-CM5 1049 

(red line). On each panel, the thick red line and red shading show, respectively, the ensemble-1050 

mean standard-deviation and the spread among the individual members of the historical 1051 

simulations for the CMIP5 version of the models. 1052 

Figure 10: Power spectra of detrended JJAS Indian rainfall time series estimated from the 1053 

observations (GPCC) and the different simulations. (a) GPCC (black line), CNRM-CM3 (blue 1054 

line), CNRM-CM5 individual simulations (red line) and CNRM-CM5 ensemble-mean 1055 

spectrum (green line). (b) Same as (a), but for IPSL-CM3 and IPSL-CM5. The bottom axis of 1056 

each panel is the period (unit: month), the left axis is variance (unit: (mm/day)
2
) and both axes 1057 

are in logarithm scale. The power spectrum is estimated using a FFT algorithm on 1058 

overlapping segments (Welch, 1967) and the point-wise 99% confidence interval for the 1059 

spectrum estimated from the observations is plotted in black dashed lines in each panel. 1060 

Figure 11: (a) Lead-lag correlations between ISM rainfall and monthly Niño-3.4 SSTs for 1061 

observations (black line), CNRM-CM3 (blue line), and CNRM-CM5 (red line) 1062 
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configurations, starting from the beginning of the previous year (e.g. year -1) to the end of the 1063 

following year of the monsoon (e.g. year +1). GPCP rainfall and HadISST datasets are used 1064 

for the observations and the period 1900-2000 are used to estimate the correlation coefficients 1065 

in all cases. X-axis indicates calendar month for a 36 months period starting one year before 1066 

the developing year of ISM and Y-axis is the amplitude of the correlation. The dashed lines 1067 

indicate the 99% significance level according to a two-tailed student t-test. (b) Same as (a), 1068 

but for IPSL-CM3 and IPSL-CM5. (c) Lead-lag correlations between the ISM dynamical 1069 

index and monthly Niño-3.4 SSTs for the observations (black line), CNRM-CM3 (blue line) 1070 

and CNRM-CM5 (red line); ERA40 and HadISST datasets are used for the observations. (d), 1071 

Same as (c), but for IPSL-CM3 and IPSL-CM5. 1072 

Figure 12: (a) Lead and lag correlations between bi-monthly averaged Indo-Pacific SSTs and 1073 

ISM rainfall estimated from the GPCC and HadISST datasets for the period 1900-2000. The 1074 

correlations are calculated beginning in February-March, prior to the ISM, and ending in 1075 

December-January after ISM. Correlations that are above the 90% significance confidence 1076 

level according to a phase-scramble bootstrap test (Ebisuzaki, 1997) are underlined. (b) Same 1077 

as (a), but for CNRM-CM5. (c) Same as (a), but for IPSL-CM5. In (b) and (c), the ensemble-1078 

mean correlation patterns and critical probabilities are plotted. 1079 

Figure 13: (a) 21-years sliding correlations between ISM rainfall and boreal summer (JJAS) 1080 

Niño-3.4 SST time series in observations (black line; GPCC and HadISST datasets are used) 1081 

and CNRM-CM5. The thick red line and red shading show, respectively, the ensemble-mean 1082 

sliding correlations and the spread among the individual members of the historical 1083 

simulations for CNRM-CM5. (b) Same as (a), but for IPSL-CM5. The thick red line and the 1084 

thin red lines show, respectively, the ensemble-mean sliding correlations and the spread 1085 

among the individual members of the historical simulations for IPSL-CM5 1086 
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a) Correlations between Detrended Bi-Monthly SST vs Nino34 DJF SST
HADISST (1901-2000) 
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b) Correlations between Detrended Bi-Monthly SST vs Nino34 DJF SST 
CNRM HIST ENS (1901-2000) 
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c) Correlations between Detrended Bi-Monthly SST vs Nino34 DJF SST
IPSL HIST ENS (1901-2000) 
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a) Correlations between Detrended Bi-Monthly SST vs JJAS Precip over India
HADISST and GPCC (1901-2000) 
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b) Correlations between Detrended Bi-Monthly SST vs JJAS Precip over India
CNRM HIST ENS (1901-2000) 
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c) Correlations between Detrended Bi-Monthly SST vs JJAS Precip over India
IPSL HIST ENS (1901-2000) 
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