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Abstract  22 

The Indian Ocean Dipole (IOD) is one of the dominant modes of variability of the tropical 23 

Indian Ocean and it has been suggested to have a crucial role in the teleconnection between 24 

the Indian summer monsoon and El Niño Southern Oscillation (ENSO). The main ideas at 25 

the base of the influence of the IOD on the ENSO-monsoon teleconnection include the 26 

possibility that it may strengthen summer rainfall over India, as well as the opposite, and also 27 

that it may produce a remote forcing on ENSO itself. In the future, the IOD is projected to 28 

increase in frequency and amplitude with mean conditions mimicking the characteristics of 29 

its positive phase. Still, state-of-the-art global climate models have large biases in 30 

representing mean state and variability of both IOD and ISM, with potential consequences 31 

for their future projections. However, the characteristics of the IOD and ENSO are likely to 32 

continue in a future warmer world, with a persistence of their linkage. 33 

 34 
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8.1 Introduction  38 

The Indian summer monsoon (ISM) is one of the main components of the South Asian 39 

summer monsoon, representing the largest source of moisture and precipitation over the 40 

tropical sector (Webster et al., 1998). The ISM is highly variable and its variability is partly 41 

modulated by external factors, the El Niño Southern Oscillation (ENSO) being one of the 42 

most important. The remote connection between ENSO and ISM is known since the 43 

beginning of the nineteenth century and it has been largely investigated in the past (Walker, 44 

1924; Sikka, 1980; Rasmusson and Carpenter, 1983; Kirtman and Shukla, 2000, among 45 

others). Schematically, during warm ENSO episodes the rising limb of the Walker circulation 46 

over West Pacific shifts eastward in response to a warming of the eastern Pacific, causing 47 

descent of air to the west of it and aiding decreased monsoon rainfall over India (Goswami, 48 

1998; Lau and Wang, 2006). It has been natural also to explore the possible influence of the 49 

neighboring Indian Ocean on the ISM variability, with many studies pointing out significant 50 

connections (Rao and Goswami, 1988; Ashok et al., 2001, 2004; Gadgil et al., 2004, 2005, 51 

2007; Krishnan et al., 2003; Terray et al., 2005, 2007; Cherchi et al., 2007; Izumo et al., 52 

2008; Boschat et al., 2011, 2012; Cherchi and Navarra, 2013; Shukla and Huang, 2016, 53 

among many others). 54 

The Indian Ocean Dipole (IOD) was discovered at the end of the 90s (Saji et al., 55 

1999; Webster et al., 1999) and it is recognized as one of the dominant modes of variability 56 

of the tropical Indian Ocean Sea Surface Temperature (SST). Toward the end of the 20th 57 

century, weakening in the strength of the ENSO-monsoon relationship have been 58 

documented (Kumar et al., 1999; Kinter et al., 2002) and, since its discovery, the IOD has 59 

been identified as one potential element  that modulates the ENSO-monsoon connection 60 

(Ashok et al., 2001; Li et al., 2003). Contrasting literature about its active or passive role has 61 
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been produced since then and the debate is still open (Ashok et al., 2001; Li et al., 2003; 62 

Meehl et al., 2003; Ashok et al., 2004; Wu and Kirtman, 2004; Cherchi et al., 2007; Krishnan 63 

et al., 2011; Cherchi and Navarra, 2013; Krishnaswamy et al., 2015; Chowdary et al., 2015; 64 

Srivastava et al., 2019, to mention a few).  65 

This chapter intends to provide an updated review on the current understanding about 66 

the influence of the IOD on the ISM and its teleconnection with ENSO. In particular, the 67 

chapter is organized as follows: Section 8.2 is dedicated to the description of the IOD, while 68 

Section 8.3 is focused on the processes at work in IOD influencing the monsoon and its 69 

relationship with ENSO, also from a modelling point of view. Section 8.4 reviews the 70 

literature about past evidence, present case studies and future projections about the topic, and 71 

Section 8.5 is dedicated to the discussion of the results reviewed, highlighting some of the 72 

associated challenges and related future perspectives. Finally, Section 8.6 collects the main 73 

conclusion derived from the review. 74 

8.2 Some salient features of the Indian Ocean Dipole  75 

The IOD is characterized by a zonal dipole in the tropical Indian Ocean with positive SST 76 

anomalies in the western equatorial Indian Ocean (50°-70°E, 10°S-10°N) and negative SST 77 

anomalies toward Sumatra (90°-110°E, 10°S-EQ) in its positive phase (Fig. 8-1; Saji et al., 78 

1999). The formation of the IOD relies on the Bjerknes feedback, requiring background 79 

surface easterlies and thermocline shallowing in the eastern part along the Equator (Fig. 8-1; 80 

Schott et al., 2009). These conditions set in boreal spring and persist until autumn, explaining 81 

the IOD development in boreal summer, its peak toward autumn and its rapid termination 82 

before winter, because of the monsoon wind swing (Schott et al., 2009).  83 
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 84 

Fig. 8-1: Schematic of the Indian Ocean Dipole in its positive phase with warm SST anomalies on the 85 

west and cold SST anomalies toward the coast of Sumatra. The green arrows indicate the direction of the 86 

prevailing corresponding surface winds.  87 

 88 

Before the discovery of the IOD as one of the dominant modes of variability of the 89 

tropical Indian Ocean, earliest suggestions of inherent coupled dynamics in the basin 90 

identified periods of anomalous easterlies in the central Indian Ocean concurrent with 91 

anomalous cold (warm) SST in the eastern (western) part, that occurred during boreal fall in 92 

the absence of ENSO (Reverdin et al., 1986). Significant feedback mechanisms at play 93 

between zonal SST and pressure gradient, equatorial easterly wind anomalies and 94 

precipitation anomalies in the western equatorial Indian Ocean were later identified 95 

(Hastenrath et al., 1993). An east-west seesaw in sea level anomaly in the tropical Indian 96 

Ocean was noticed and correlated with thermocline depth changes (Murtugudde et al., 1995). 97 

This east-west sea level dipole has been associated with the east-west SST gradient and 98 

strongly correlated with the Indian summer monsoon rainfall (Murtugudde et al., 1998). The 99 

SST gradient was shown to be in phase with equatorial zonal wind anomalies (Murtugudde 100 

and Busalacchi, 1999). 101 
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Since its discovery there has been strong debate and controversy whether the IOD is 102 

an intrinsic mode of Indian Ocean coupled variability, or whether and how it is driven by 103 

external forcing, like ENSO (e.g., Hastenrath, 2002; Dommenget and Latif, 2002; Yamagata 104 

et al., 2003; Murtugudde et al., 2003; Behera et al., 2003). Many studies claim that most of 105 

the IOD variability is driven by ENSO (Allan et al., 2001; Baquero-Bernal et al., 2002; 106 

Huang and Kinter, 2002; Dommenget, 2011; Zhao and Nigam, 2015; Zhao et al., 2019), 107 

while others suggest that IOD is a self-sustained mode of oscillation (Ashok et al., 2003; 108 

Yamagata et al., 2004; Behera et al., 2006). About 20% of the IOD events seem to co-occur 109 

with ENSO (Fig. 8-2; Saji, 2018). IOD events that could be categorized as with or without 110 

the influence of ENSO have systematic differences in their temporal evolution and spatial 111 

distribution, including periodicity, strength and formation processes (Behera et al., 2006; 112 

Hong et al., 2008). Modeling studies confirm that IOD events are often triggered by ENSO, 113 

but they also demonstrate that IOD events can exist without ENSO by means of dedicated 114 

sensitivity experiments in which ENSO is removed by different nudging techniques (Lau and 115 

Nath, 2004; Fischer et al., 2005; Behera et al., 2006; Wang et al., 2016; 2019; Cretat et al., 116 

2017, 2018). In the absence of ENSO, the interannual IOD variability is mostly biennial 117 

(Behera et al., 2006; Cretat et al. 2018), while in years of co-occurrences ENSO affects the 118 

periodicity, strength, and formation processes of IODs (Cretat et al. 2018). 119 
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 120 

Fig. 8-2: Normalized monthly IOD index (Standard deviation) defined as anomalous SST 121 

gradient between the western equatorial Indian Ocean (50°E-70°E and 10°S-10°N) and the southeastern 122 

equatorial Indian Ocean (90°E-110°E and 10°S-0°N). Anomalies (with respect to 1981-2010 mean) have 123 

been downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/, but 2019 values have been 124 

integrated from JAMSTEC repository (http://www.jamstec.go.jp/virtualearth/general/en/index.html). Red 125 

and blue markers along 6 and -6 std correspond to NINO3.4 anomalies (1981-2010 mean removed) larger 126 

than 0.5°C. NINO3.4 anomalies have been downloaded from 127 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/. As indicated in the respective websites, both IOD and 128 

NINO3.4 values are computed from the HadISST1 dataset (Rayner et al., 2003). 129 

 130 

Through changes in the atmospheric circulation, the IOD exerts its influence on, 131 

among others, the Southern Oscillation (Behera and Yamagata, 2003), the summer climate 132 

condition in Europe (Behera et al., 2012), East Asia (Guan and Yamagata, 2003; Guan et al., 133 

2003; Chen et al., 2019) and streamflows in the western part of Indonesia (Sahu et al., 2012), 134 

as well as on rainfall over Africa (Black et al., 2003; Manatsa and Behera, 2013; Endris et al., 135 

2019), Sri Lanka (Zubair et al., 2003), Australia (Ashok et al., 2003; Ummenhofer et al., 136 

2013; Dey et al., 2019; Hossain et al., 2020), and Brazil (Chan et al., 2008; Taschetto and 137 
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Ambrizzi, 2012; Bazo et al., 2013). In the following we focus on the IOD influence on the 138 

summer monsoon rainfall over India and linkages with ENSO, which are both subject of 139 

important controversies in the literature. 140 

8.3 IOD and the ENSO-monsoon teleconnections: processes at work  141 

To influence the ISM and its ENSO teleconnection, IOD events should develop from boreal 142 

summer (June to August). As described by Schott et al. (2009), this is in fact the case for 143 

many IOD events. However, some IODs peak in the peak monsoon season (Du et al., 2013), 144 

though a few others develop later. According to that, strong interactions between IOD and 145 

ISM can be expected during boreal summer and the withdrawal phase of the monsoon. 146 

Some authors suggested a direct influence of the IOD on the ISM rainfall (ISMR) 147 

through moisture transport over the western Indian Ocean or modifications of the local 148 

Hadley cell, with enhanced ascendance and a northward shift of its uplift branch during 149 

positive IOD events, both enhancing ISM rainfall (Fig. 8-3a; Ashok et al., 2001, 2004; 150 

Gadgil et al., 2004; Behera et al., 2005; Ashok and Saji, 2007; Behera and Ratman, 2018). 151 

Recent investigations also reveal that early IODs (i.e., peaking in July) or prolonged IODs 152 

(i.e., lasting longer, more than 8 months) have excess of evaporation from the Arabian Sea 153 

and stronger cross-equatorial flow, leading to enhanced monsoon activity with decreased 154 

numbers of break spells (Anil et al., 2016). Others suggest that positive IOD events during 155 

boreal fall normally follow weak ISMs, and vice versa, as ISM circulation during boreal 156 

summer can also induce an equatorial anomalous SST gradient in the Indian Ocean during 157 

the following boreal fall (Loschnigg et al., 2003, Meehl et al., 2003; Terray et al., 2005, 158 

2007). In this framework, ENSO, ISM and IOD appear as strongly inter-related components 159 

of the Tropospheric Biennial Oscillation (TBO) in the tropics (Fig. 8-3b; Meehl and 160 

Arblaster, 2002; Meehl et al., 2003; Li et al., 2006; Drbohlav et al., 2007; Webster and 161 
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Hoyos, 2010). The development of the IOD during boreal summer and autumn can lead to 162 

SST warming in the tropical southwest Indian Ocean via ocean dynamics during the next 163 

boreal winter and spring (Xie et al., 2002; Chowdary and Gnanaseelan 2007; Du et al., 2009; 164 

Chowdary et al., 2009). This warming can further influence the ISM onset in the following 165 

year, especially for IOD events co-occurring with El Niño in the Pacific Ocean and followed 166 

by a basin-wide Indian Ocean warming (Annamalai et al., 2005; Yang et al. 2007; Hong et al. 167 

2010). 168 

The ISMR response is not necessarily spatially coherent to the IOD phases (Behera 169 

and Ratman, 2018). The anomalous moisture transports to India associated with a positive 170 

IOD strengthen the monsoon trough and rainfall through an intensified monsoon-171 

Hadley circulation (Behera et al., 1999; Ashok et al., 2001; Anil et al., 2016), with below 172 

normal rainfall to the south and to the north of the trough. During positive IODs, the north–173 

south precipitation (heating) gradient over the eastern Indian Ocean dominates over the one 174 

in the equatorial Indian Ocean, resulting in a regional meridional circulation with uplift over 175 

the monsoon trough and sinking in the eastern lobe (Annamalai et al., 2003). On the other 176 

hand, in a negative IOD event, a regional Walker circulation and the moisture distribution 177 

favor moisture divergence (convergence) in the eastern (western) part of India. This gives 178 

rise to a zonal dipole in the rainfall anomalies with abundant rainfall on the western part and 179 

scanty rainfall on the east. The resulted regional asymmetry is a unique feature associated 180 

with the ISMR response to IOD but it is not well simulated by coupled General Circulation 181 

Models (CGCMs), though regional model experiments with different physical 182 

parameterization schemes may provide few combinations able to realistically reproduce the 183 

asymmetric response to the two phases of the IOD (Behera and Ratman, 2018). 184 

IOD can influence the ENSO-ISM relationship indirectly (Ashok et al., 2001; Behera 185 
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and Yamagata, 2003; Cai et al., 2011; Weller and Cai, 2013), by modulating ENSO events in 186 

the tropical Pacific itself (Luo et al., 2010; Izumo et al., 2010; Cai et al., 2019). Considering 187 

IOD events as triggered by ENSO, they may counteract its simultaneous influence on ISM 188 

(Ashok et al., 2001, 2004; Ashok and Saji, 2007; Ummenhofer et al., 2011; Lau and Nath, 189 

2003, 2012; Krishnaswamy et al., 2015). More recently IOD has been suggested as potential 190 

trigger of ENSO, adding more complexity to the emerging picture (Luo et al., 2010; Izumo et 191 

al., 2010; Zhou et al., 2015; Jourdain et al., 2016; Wieners et al., 2017a,b; Wang et al., 2019; 192 

Cai et al., 2019). In fact, the Indian Ocean (either IOD and Indian Ocean Basin-wide 193 

Warming) has a highly significant impact on both the variability and predictability of ENSO, 194 

as evidenced by de-coupled experiments using different coupled climate models (Luo et al., 195 

2010; Izumo et al., 2010; Santoso et al., 2012; Terray et al., 2016; Kajtar et al., 2016; Wang 196 

et al., 2019). For example, IOD events co-occurring with ENSO may fasten its phase 197 

transition (Kug and Kang, 2006; Luo et al., 2010; Izumo et al., 2010; Kug and Ham, 2012). 198 

 199 

 200 

Fig. 8-3: (a) Positive IOD composite of specific humidity (mm, shaded) and moisture flux (integrated 201 

up to 300 hPa, kg/m/s, vectors) anomalies averaged in summer (JJAS). The figure is taken from Behera 202 
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and Ratnam (2018); (b) schematic of the IOD influence on ISM rainfall embedded in the TBO (adapted 203 

from the scheme in Webster and Hoyos (2010)). 204 

In the absence of ENSO, IOD still exists (usually known as “pure IOD”) and its 205 

variability is mainly driven by the eastern Indian Ocean in a suite of coupled climate model 206 

simulations nudging the tropical Pacific SSTs toward an SST climatology estimated from 207 

observations or a control simulation (Cretat et al., 2017, 2018), as consistently seen in other 208 

coupled model studies (Gualdi et al., 2003; Fischer et al., 2005; Behera et al., 2005, 2006; 209 

Luo et al., 2010; Izumo et al., 2010; Wang et al., 2016, 2019). In the nudged experiments, the 210 

strong diabatic heating associated with enhanced rainfall over the eastern IOD lobe 211 

modulates the local Hadley circulation and induces a negative (positive) rainfall anomaly in 212 

the northern Indian Ocean during boreal summer during negative (positive) IOD events, as 213 

suggested from observational studies (Fig. 8-4; Cretat et al., 2017). Such changes in the local 214 

Hadley circulation are attenuated in the presence of ENSO because ENSO-induced changes 215 

in the (zonal) Walker circulation dominate (Cretat et al., 2017). It has also been found that 216 

rainfall anomalies over India associated with these pure IODs are modest and not statistically 217 

significant, especially at the beginning of the monsoon, although the simulated SST 218 

variability in the eastern Indian Ocean is overestimated (Fischer et al., 2005; Terray et al., 219 

2012; Cretat et al., 2017, 2018). However, pure IODs promote a quadrupole rainfall pattern 220 

linking the tropical Indian Ocean and the Western North Pacific, and induce important zonal 221 

shifts of the Walker circulation in the absence of ENSO (Fig. 8-4), in agreement with earlier 222 

findings (Li et al., 2006; Chowdary et al., 2011).  The circulation patterns with and without 223 

ENSO largely differ, confirming potential opposite effects between IOD and ENSO (e.g., 224 

Ashok et al., 2001; Lau and Nath, 2012; Pepler et al., 2014).  225 

Pure IOD events may also help sustaining the TBO: a stronger-than-observed biennial 226 
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spectrum of the IOD is found after removing ENSO's impacts (Behera et al., 2006; Cretat et 227 

al., 2018). Moreover, coupled ocean-atmosphere interactions in the Indian Ocean can sustain 228 

its own TBO without ENSO (Cretat et al., 2018). First, subsurface ocean dynamics play a key 229 

role in the biennial anomalies during boreal winter (Rao et al., 2002, 2009; Schott et al., 230 

2009; McPhaden and Nagura, 2014; Delman et al., 2016) with a sudden reversal of 231 

thermocline anomalies in the eastern equatorial Indian Ocean forced by intra-seasonal 232 

disturbances reminiscent of the Madden-Julian Oscillation (MJO; Rao and Yamagata, 2004; 233 

Han et al., 2006). Second, tropical-extra-tropical interactions within the Indian Ocean appear 234 

to be the main trigger of IODs in the absence of ENSO (Cretat et al., 2018). In nudged 235 

experiments, both the power spectra of the ISMR and IOD indices during boreal summer 236 

shift toward increased biennial variability compared to the control simulation, which may be 237 

more consistent with a possible coupling of the IOD with ISM in the absence of ENSO, but 238 

in a regional TBO framework (Cretat et al., 2018). However, this TBO framework is again 239 

mainly based on the strong influence of the ISM circulation on the Indian Ocean SSTs 240 

despite the absence of ENSO in the nudged experiments.  241 

In synthesis, these recent modeling studies do suggest that IOD exists without ENSO, 242 

but the exact relationships between IOD and ISM remain elusive, even in the absence of 243 

ENSO. 244 

8.4 Past, present and future IOD influence on the ENSO-monsoon teleconnection  245 

At long time scales, the influence of IOD on ISM seems opposite to the effect of ENSO, and 246 

the IOD-ISM rainfall relationship seems to vary complementarily to that between ENSO and 247 

ISM (Ashok et al., 2001; Krishnaswamy et al., 2015). In fact, the IOD–ISM relationship has 248 

strengthened in the recent decades (Ashok et al., 2001, 2004; Ashok and Saji, 2007; Izumo et 249 
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al., 2010; Ummenhofer et al., 2011) due to non-uniform warming of the Indian Ocean (Ihara 250 

et al., 2007; Cai et al., 2009), while the ENSO–ISM relationship has weakened (Kumar et al., 251 

1999; Ashrit et al., 2001; Ihara et al., 2007).  252 

On longer IOD records, changes in frequency and teleconnections have been 253 

identified (e.g. Abram et al., 2008; Kayanne et al., 2006; Abram et al., 2020). Coral proxy 254 

records from Lake Victoria in Kenya suggest that the influence of ENSO has decreased over 255 

the western Indian Ocean in recent decades (Nakamura et al., 2009). A mode  shifts in IOD 256 

variability related to the warming trend in the western Indian Ocean has raised the mean SST 257 

to a threshold value that encourages tropical convections (Nakamura et al., 2009). A recent 258 

reconstruction of the last millennium indicates clustering of positive IOD events with 259 

extreme IOD variability and a persistent tropical Indo-Pacific climate coupling (Abram et al., 260 

2020). The frequency and strength of IOD events exceptionally increased during the 261 

twentieth century associated with enhanced upwelling in the eastern pole of the IOD, likely 262 

making more direct the influence of the IOD on the Asian monsoon (Abram et al., 2008). 263 

These processes and associated changes in the Walker circulation, linked to global warming, 264 

may precondition the mean state to trigger frequent positive IOD events, together with 265 

intense short rains in East Africa. 266 
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 267 

Fig. 8-4: June to September (a-d) rainfall (shading), 850-hPa wind (vectors), and (e-h) 200-hPa 268 

velocity potential anomalies regressed onto normalized boreal fall (i.e., SON) SST anomalies over the 269 

eastern IOD pole (90°E–110°E, 10°S–0°) when ENSO is removed. Significant anomalies at the 90% level 270 

are shown with black contours for rainfall and 200-hPa velocity potential anomalies, and with purple 271 

vectors for 850-hPa wind anomalies. Positive 200-hPa velocity potential anomalies correspond to 272 

abnormal upper-level mass flux convergence. Adapted from Cretat et al. (2017). 273 

 274 

In the 20th century, the ENSO-IOD correlation was strongly positive and significant 275 

since mid-60s (Cherchi and Navarra, 2013), with ENSO and IOD almost independent before 276 

1970 (Yuan and Li, 2008). A recent weakening of the coupling has been identified during 277 
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1999-2014 compared to the previous two decades (i.e., 1979-1998), associated with different 278 

spatial patterns in ENSO evolution during boreal spring and summer (Ham et al., 2017). The 279 

stronger/weaker correlation may correspond with either strong or weak ENSO-monsoon 280 

relationship and with strong or weak IOD-monsoon relationship, with differences arising 281 

from the relationship between Indian monsoon rainfall and SST in other ocean basins rather 282 

than the Indo-Pacific sector alone (Cherchi and Navarra, 2013).  283 

The IOD-ENSO-ISMR relationship appears to work differently with different seasons 284 

(Agrawal et al 2017). The connection between ISM and IOD is mostly confined in the 285 

summer and autumn, while that with ENSO is stronger and extends more in time (Cherchi 286 

and Navarra, 2013). In fact, the evolution of the correlation between ISMR and monthly 287 

NINO3.4 is maximum in August-November, remaining strong and stable until March of the 288 

following year (Gershunov et al., 2001).  289 

The 1997 El Niño was one of the strongest events occurred in the 20th century, but 290 

ISMR was slightly above normal (Srinivasan and Nanjundiah, 2002), and this has been 291 

attributed to the influence from the Indian Ocean (Slingo and Annamalai, 2000; Sreejith et 292 

al., 2015). Similarly, the influence of IOD helped nullify the effect of ENSO on the monsoon 293 

during 1997 (Saji et al., 1999; Webster et al., 1999). Positive IOD events, as those occurred 294 

during 2007-2008, co-existed with La Niña episodes (e.g. Ashok et al., 2003; Cai et al., 295 

2009). A very strong positive IOD event occurred in the summer of 1994, as a clear coupled 296 

ocean-atmosphere phenomenon of the Indian Ocean (Behera et al., 1999). The 1994 event 297 

lasted more than 8 months from March to October and positively influenced the ISMR that 298 

recorded 265 mm/month, a value 19% above the climatological mean (Guan and Yamagata, 299 

2003). 300 

In 2019 the monsoon onset was delayed by about 7 days over India with the June 301 
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rainfall recording a deficit of about 33% with respect to the climatological mean (Gadgil et 302 

al., 2019; http://www.imd.gov.in). According to the India Meteorology Department (IMD), 303 

subsequent to this monsoon onset, the further northward progression of the monsoon 304 

remained slow due to the formation of a very severe cyclone over central eastern Arabian Sea 305 

(i.e., the cyclone VAYU that formed during 10-17th June 2019, 306 

https://mausam.imd.gov.in/imd_latest/contents/season_report.php). El Niño weakened in July 307 

while a strong positive IOD started to develop (Fig. 8-5b) and rainfall picked up strength 308 

during the latter stages of the monsoon season (late July to September; Fig. 8-5b-d), 309 

remaining above normal. For that year, the seasonal rainfall recorded for India has been 310 

quantified at 110% of the long period average as defined by IMD, with the September 311 

rainfall beeing 152%. The positive IOD that occurred during late summer in 2019 was one of 312 

the strongest in the recent times (Fig. 8-2), with its predictability linked with the existence of 313 

the El Niño Modoki in the Equatorial Pacific (Doi et al., 2020) and to a strong pressure 314 

dipole between the Australian High and the South China Sea/Philippine Sea region (Lu and 315 

Ren, 2020). The exceptional intensity of the event remains even after the IOD index is 316 

detrended (not shown). This very recent case illustrates how the interactions between ISM, 317 

IOD, and ENSO are subtle and complex, and highly influenced by internal dynamical 318 

processes. 319 
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 320 

Fig. 8-5: 2019 case from (a) June to (d) September for SST (°C), 850 hPa winds (m/s), and 321 

precipitation (mm) anomalies with respect to 1980-2010 mean climatology. SST data is taken from 322 

ERSSTv5 (Huang et al. 2017), 850 hPa wind vectors are obtained from ECMWF ERA5 reanalysis 323 

(Hersbach and Dee, 2016) and precipitation from daily gridded rainfall dataset over India (Pai et al. 2014). 324 

 325 

In the Coupled Model Intercomparison Project Phase 5 (CMIP5) models a correct 326 

representation of the coupled processes (i.e., Bjerknes feedback) in the equatorial Indian 327 

Ocean is a necessary condition for realistic monsoon simulations (Annamalai et al., 2017). At 328 

the same time, a too weak rainfall over the Arabian Sea in model may generate a warm SST 329 

bias over the western equatorial Indian Ocean that in the following fall may amplify the error 330 

toward an IOD-like SST bias via the Bjerknes feedback (Li et al., 2015). The unrealistic 331 
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present-day IOD-ISMR correlation simulated by the majority of CMIP5 models may also be 332 

related to an overly strong control by ENSO (Li et al., 2017), likely leading to an 333 

underestimation of the projected future ISMR increase. Still, CMIP5 models project an 334 

increase in ISMR in a warmer climate with a reasonably strong consensus among models 335 

(Jayashankar et al., 2015). CMIP5 models’ projections tend to exhibit a positive IOD-like 336 

pattern in the tropical Indian Ocean with weaker (stronger) warming in the east (west) and an 337 

easterly wind trend (Zheng et al., 2010; 2013). The response is driven by the projected 338 

weakening of the Walker circulation in a warmer climate in the majority of models (Vecchi 339 

et al., 2006; Kociuba and Power, 2015).  340 

In future projections, surface moisture increase dominates the changes in rainfall 341 

associated with the IOD, while IOD related SST changes dominate the corresponding 342 

changes in the circulation, decreasing at a rate of 13.7%/°C (Huang et al., 2019). The 343 

ensemble spread in the IOD amplitude change is large (Ng et al., 2018), and it is related to 344 

that of the ENSO amplitude change (Hui and Zheng, 2018). The large spread in the IOD 345 

response to increasing Greenhouse Gases (GHGs) with significant variations in the amplitude 346 

and skewness of the dipole and in climatological zonal SST gradient is due to small 347 

differences in the mean thermocline depth induced by internal climate variability via the 348 

positive Bjerknes feedback (Ng et al 2018).  349 

The frequency of extreme IOD events is projected to increase under global warming 350 

conditions (Cai et al., 2014, also see Chapter-21), with a persistence of the ENSO-IOD 351 

linkage in a warmer future world (Stuecker et al., 2017). The characteristics of the ENSO-352 

IOD are likely to continue in the future, and given that ENSO and its predictability are 353 

modulated on decadal timescales (i.e., Wittenberg, 2009; Wittenberg et al., 2014; 354 
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Karamperidou et al., 2014), the same should be expected for the IOD (Stuecker et al., 2017). 355 

CMIP6 models largely improved in the simulation of the spatial and temporal pattern 356 

of the ISM (Gusain et al., 2020), especially over the Western Ghats and the foothills over the 357 

Himalayas, whereas a majority of the CMIP5 models underestimated rainfall over central and 358 

northern India (Jain et al., 2019). A subset of CMIP6 models (Table 1) confirms CMIP5 359 

results, with a tendency toward larger IOD amplitude at the end of the 20th century and in the 360 

future, at least under the most extreme CMIP6 scenario SSP5-8.5 (Fig. 8-6a). SSP stands for 361 

Shared Socioeconomic Pathways with 5 representing an economic vision of the future with 362 

relatively optimistic trends for human development but assuming an energy-intensive, fossil-363 

fuel economy, and 8.5 corresponding to the forcing (in W/m2) by 2100 (O’Neill et al., 2016). 364 

In summer (JJAS mean), SST regressed onto the IOD index project larger IOD-related 365 

anomalies over the Pacific and Indian Oceans (Fig. 8-6b,c). In the projection, precipitation 366 

and winds regressed onto the IOD index show modest positive anomalies over India and 367 

weaker easterlies along the Equator because of a weaker negative pole (Fig. 8-6d,e). This 368 

figure is just a flavor of the complex relationship as projected in the new generation of 369 

coupled climate models. For example, the methodology applied does not fully disentangle 370 

how the mean state changes and its role. A more systematic analysis and comparison of 371 

CMIP5 and CMIP6 experiments would be needed to fully understand differences and 372 

potential improvements. This is outside the scope of this chapter but it is under investigation 373 

in separated ongoing researches. 374 

 375 

Table 8.1: List and some characteristics of CMIP6 models used. More details about the 376 

models can be found at https://pcmdi.llnl.gov/CMIP6/ 377 

Model Name Institute/Country Atmosphere Ocean Resolution Earth System 
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Resolution (km) (km) Model 
ACCESS-CM2 CSIRO-

ARCCSS/Australia 
250 100 no 

ACCESS-ESM1-5 CSIRO-
ARCCSS/Australia 

250 100 yes 

BCC-CSM2-MR BCC/China 100 50 no 
CESM2 NCAR/US 100 100 yes 

CESM2-WACCM NCAR/US 100 100 yes 
CNRM-CM6-1 CNRM-CERFACS/France 250 100 no 

CNRM-CM6-1-HR CNRM-CERFACS/France 100 25 no 
CNRM-ESM2-1 CNRM-CERFACS/France 250 100 yes 

CanESM5 CCCma/Canada 500 100 yes 
EC-Earth3 EC-Earth-

Consortium/Europe 
100 100 no 

EC-Earth3-Veg EC-Earth-
Consortium/Europe 

100 100 no 

FGOALS-f3-L 
 

CAS/China 100 100 no 

FGOALS-g3 CAS/China 250 100 no 
GFDL-ESM4 NOAA-GFDL/US 100 50 yes 

HadGEM3-GC31-LL MOHC-NERC/UK 250 100 no 
INM-CM4-8 INM/Russia 100 100 no 
INM-CM5-0 INM/Russia 100 50 no 

IPSL-CM6A-LR IPSL/France 250 100 yes 
KACE-1-0-G NIMS-KMA/South Korea 250 100 no 
MCM-UA-1-0 UA/US 250 250 no 
MIROC-ES2L MIROC/Japan 500 100 yes 

MIROC6 MIROC/Japan 250 100 no 
MPI-ESM1-2-HR MPI-M DWD 

DKRZ/Germany 
100 50 yes 

MPI-ESM1-2-LR MPI-M AWI/Germany 250 250 yes 
MRI-ESM2-0 MRI/Japan 100 100 yes 

NESM3 NUIST/China 250 100 no 
NorESM2-LM NCC/Norway 250 100 yes 
NorESM2-MM NCC/Norway 100 100 yes 
UKESM1-0-LL MOHC NERC NIMS-

KMA NIWA/UK 
250 100 yes 

 378 

 379 

8.5 Challenges and future perspectives  380 

The main challenges in having a complete picture of the influence of IOD on the 381 

ENSO-ISM teleconnection remains related to a full understanding of the IOD itself and to a 382 

full and agreed understanding of how the IOD is related to ENSO on one side, and its pure 383 

(i.e., independent from ENSO) relationship with ISM on the other. While some progress have 384 

been made in recent decades in simulating ENSO variability (Bellenger et al., 2014), many 385 

important issues remain open due to the unavailability of long term observational record and 386 
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the biases in state-of-the-art climate models affecting ISM and the Indian Ocean 387 

simulations(Li et al., 2015; Annamalai et al., 2017). 388 

 389 

Fig. 8-6: (a) Monthly DMI index (anomalies, °C) for 20th and 21st centuries from a subset of CMIP6 390 

models (Table 8.1). The index has been computed as in Fig. 8-2 (same areas difference and anomalies with 391 

respect to the 1980-2010 mean climatology). The index has been computed for each model and then 392 

averaged to obtain the ensemble mean. (b,c) SST (°C, shaded) and (d,e) precipitation (mm/day, shaded) 393 

and 850 hPa wind (m/s, vectors) regressed on the DMI index (values for 1°C change in the index) for JJAS 394 

mean during the historical period and the future projection, respectively. One member for each model has 395 

been considered. For the 21st century, the SSP5-8.5 scenario has been used. In panels c and e, the time-396 

series have been detrended before computing the regression, to keep out the trend from the related 397 

variability. 398 

 399 
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 400 

An exhaustive analysis of the IOD recorded past events would allow a categorization 401 

of the main characteristics of the processes at play, but the observed record remains short to 402 

have a statistically robust assessment. On the other hand, in state-of-the-art coupled climate 403 

models the simulation of the IOD, ISM, and related characteristics (including mean state and 404 

variability) still has large biases thus precluding a complete understanding of the processes at 405 

work. For example, it is not clear whether the weak IOD-monsoon relationship simulated in 406 

the models (Fig. 8-6) is realistic or not, due to the exaggerated IOD variability or to the 407 

overly strong control of ENSO simulated by current global climate models. Moreover, it has 408 

to be clarified whether poor simulations of other factors, like IOD-induced cross-equatorial 409 

flows, may be important. Similarly, a complete understanding of the coupling and feedback 410 

processes between the developing phase of the IOD and the ISMR, including the possible 411 

feedback on the development of the IOD in the subsequent season, is still missing. As a 412 

consequence, much more in-depth observational and modeling studies (including model’s 413 

improvements) are clearly needed to understand the IOD effect on ISM and the relative roles 414 

of remote versus local forcing on the ISM-ENSO relationship as well as the role of internal 415 

atmospheric processes in modulating that relationship. In future climate projections, it would 416 

be useful to understand how changes in the simulated IOD properties contribute to the 417 

relative importance of thermodynamic and dynamic monsoon processes at play in global 418 

warming frameworks. 419 

For all the points above, crucial keys are the collection of as much as possible 420 

observations during known IOD events, and how IOD and related properties are simulated in 421 

state-of-the-art climate models. The need for more observations in the Indian Ocean is 422 

particularly important because of its changes within the last warm decades (Hermes et al., 423 
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2019). For the simulation of IOD and related models’ performance, more efforts should be 424 

dedicated to reducing systematic biases in coupled climate models and/or in performing ad-425 

hoc sensitivity experiments in a large set of different coupled models to clarify the dynamics 426 

involved in IOD formation and related teleconnections. One possibility is to design 427 

coordinated international efforts with specific common experiments, likely following current 428 

CMIP frameworks (Zhou et al., 2016) or the CORE-II experiments (Rahaman et al., 2020). 429 

8.6 Conclusions  430 

The IOD is one of the dominant modes of SST variability of the tropical Indian Ocean. It is 431 

recognized as having important teleconnections worldwide but here it has been considered in 432 

terms of its influence on the ISM and its relationship with ENSO. In particular, the literature 433 

focused on its active or passive role has been reviewed, evidencing how the influence of the 434 

IOD on the ISM rainfall can be interpreted as having a direct impact through moisture 435 

transport over the western Indian Ocean or modifications of the local Hadley cell, or 436 

alternatively in the framework of the tropospheric biennial oscillation. Recently, more 437 

literature is available on the role of the IOD independently from ENSO, or even as a trigger 438 

of ENSO itself. Still, combining modelling and observational studies, the precise relationship 439 

between IOD and ISM remains elusive, with or without ENSO. 440 

Considering major ENSO and/or IOD events, it has been recorded how in 1997 the 441 

failure of the negative relationship between ENSO and the ISM rainfall was associated with a 442 

positive IOD event developing that summer, or how the strong IOD of 1994 has been 443 

responsible for a stronger than normal monsoon that summer. Recently, the strongest IOD 444 

event recorded in 2019 and its evolution within the summer evidenced how the interactions 445 

between ISM, IOD, and ENSO are complex, and highly influenced by internal dynamical 446 

processes. 447 
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CMIP5 and CMIP6 models agree in projecting stronger IOD events in the future (also 448 

see Chapter 21), but how this project on atmospheric anomalies over the Indo-Pacific region 449 

may not be fully consistent. A systematic analysis of the two model intercomparisons sets is 450 

needed to fully understand the possible differences.  451 
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 955 

Figure captions: 956 

Fig. 8-1: Schematic of the Indian Ocean Dipole in its positive phase with warm SST anomalies on the 957 

west and cold SST anomalies toward the coast of Sumatra. The green arrows indicate the direction of the 958 

prevailing corresponding surface winds. 959 

Fig. 8-2: Normalized monthly IOD index (std) defined as anomalous SST gradient between the western 960 

equatorial Indian Ocean (50°E-70°E and 10°S-10°N) and the southeastern equatorial Indian Ocean (90°E-961 

110°E and 10°S-0°N). Anomalies have been downloaded from 962 

https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/, but 2019 values have been integrated from JAMSTEC 963 

repository (http://www.jamstec.go.jp/virtualearth/general/en/index.html). Red and blue markers along 6 964 

and -6 std correspond to NINO3.4 anomalies (1981-2010 mean removed) larger than 0.5°C. NINO3.4 965 

anomalies have been downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/. As indicated 966 

in the respective websites, both IOD and NINO3.4 values are computed from the HadISST1 dataset 967 

(Rayner et al., 2003). 968 

Fig. 8-3: (a) Positive IOD composite of specific humidity (mm, shaded) and moisture flux (integrated 969 

up to 300 hPa, kg/m/s, vectors) anomalies averaged in summer (JJAS). The figure is taken from Behera 970 

and Ratnam (2018); (b) schematic of the IOD influence on ISM rainfall embedded in the TBO (adapted 971 
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from the scheme in Webster and Hoyos (2010).  972 

Fig. 8-4: June to September (a-d) rainfall (shading), 850-hPa wind (vectors), and (e-h) 200-hPa 973 

velocity potential anomalies regressed onto normalized boreal fall (i.e., SON) SST anomalies over the 974 

eastern IOD pole (domain: 90°E–110°E, 10°S–0°) when ENSO is removed. Significant anomalies at the 975 

90% level are shown with black contours for rainfall and 200-hPa velocity potential anomalies, and with 976 

purple vectors for 850-hPa wind anomalies. Positive 200-hPa velocity potential anomalies correspond to 977 

abnormal upper-level mass flux convergence. Adapted from Cretat et al. (2017). 978 

Fig. 8-5: 2019 case from (a) June to (d) September for SST (°C), 850 hPa winds (m/s) and precipitation 979 

(mm) anomalies with respect to 1980-2010 mean climatology. SST data is taken from ERSSTv5 (Huang et 980 

al. 2017), 850 hPa wind vectors are obtained from ECMWF ERA5 reanalysis (Hersbach and Dee, 2016) 981 

and precipitation from daily gridded rainfall dataset over India (Pai et al. 2014). 982 

Fig. 8-6: (a) Monthly DMI index (anomalies, °C) for 20th and 21st centuries from a subset of CMIP6 983 

models (Table 1). The index has been computed as in Fig. 2 (same areas difference and anomalies with 984 

respect to the 1980-2010 mean climatology). The index has been computed for each model and then 985 

averaged to obtain the ensemble mean. (b,c) SST (°C, shaded) and (d,e) precipitation (mm/day, shaded) 986 

and 850 hPa wind (m/s, vectors) regressed on the DMI index (values for 1°C change in the index) for JJAS 987 

mean during the historical period and the future projection, respectively. One member for each model has 988 

been considered. For the 21st century, the SSP5-8.5 scenario has been used. In panels c and e, the 989 

timeseries have been detrended before computing the regression, to keep out the trend from the related 990 

variability. 991 


