Marine microbes over fronts

Marina Lévy LOCEAN-IPSL, Sorbonne Université, Paris, France

Gordon conference on Marine Microbes, Les Diablerets, Switzerland, 29 mai – 3 june 2022

Transition front

Peak front

Liu and Levine, GRL, 2016

Enhanced phytoplankton biomass over SST fronts

First quantitative estimate of the impact of fronts North Pacific subtropical gyre

Liu and Levine, GRL, 2016

Why do we even bother about fronts ?

Sea-surface temperature fronts

2018-02-15

Gulf of Gascogne

Gulf of Finland

100 km

Evolution over 8 days

©Adrian Martin, NOC

© M.G. Keerthi

Why is there a peak at the front?

Stirring by ocean mesoscale eddies

Sea-level Anomaly

Strong vertical circulation over fronts

Do these Passive and Active processes equality affect the microbial community or are there Winners and Losers ?

Challenge of resolution

 \checkmark

 \checkmark

 \checkmark

- Horizontal resolution
- Vertical resolution
- Time resolution
- Taxonomic resolution

Increase the satellite taxonomic resolution

8 Phytoplankton functional groups

Diatoms

Green Algae

Haptophytes

Prokaryotes

10

0

20

%

30

50

40

Cryptophytes

Pelagophytes

© Roy El Hourany

7 (92)

Responses of phytoplankton groups to fronts in the Gulf stream region

© Clement Haeck

© Clement Haeck

© Clement Haeck

Meta-analysis of CalCOFI data

Responses of phytoplankton and zooplankton groups to fronts in the California Current region

CalCOFI Data from 8 transects of ~20 km length between 2008-2017 with ~3-5 km resolution 10 fronts in total

Functional group

Dissimilarity between the front and both sides of the front

Increase/decrease at the front compared to both sides of the front

© Ines Mangolte 33

Model study

Identification of eddies and fronts in the model flow

DARWIN model from MIT

© Stephanie Diutkiewicz et al

Winners

Why are picoplankton loosers ? Community shading

Why are Coccolithophores loosers ? Shared predation

How does the physical 'noise' interact with the ecological 'noise'?

Shape of Phytoplankton response

More variability frequencies than the addition of the two !

© Ben Mayersohn

Winners and losers

- > Marine microbes evolve in a very dynamic environment
- > Fronts are physical environment which are generally favorable to ocean life
- > But not all plankton types can benefit, they are winners and losers
- > Challenging to observe because need of resolution in multiple dimensions
- \succ Fronts are local oasis that seed the ocean

Merci

ECR

M. G. Keerthi, IPSL Clement Haeck, IPSL Ines Mangolte, IPSL Roy El Hourany, IPSL Ben Mayersohn, NYU

Collaborators

Stephanie Dutkiewicz, MIT Oliver Jahn, MIT Mark Ohman, SCRIPPS Shafer Smith, NYU Chris Bowler, IBENS Olivier Aumont, IPSL Laurent Bopp, IPSL

