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a b s t r a c t

Improved understanding of the influence of climate on agricultural production is needed to cope with
expected changes in temperature and precipitation, and an increasing number of undernourished peo-
ple in food insecure regions. Many studies have shown the importance of seasonal climatic means in
explaining crop yields. However, climate variability is expected to increase in some regions and have
significant consequences on food production beyond the impacts of changes in climatic means. Here,
we examined the relationship between seasonal climate and crop yields in Tanzania, focusing on maize,
sorghum and rice. The impacts of both seasonal means and variability on yields were measured at the
subnational scale using various statistical methods and climate data. The results indicate that both intra-
and interseasonal changes in temperature and precipitation influence cereal yields in Tanzania. Seasonal
temperature increases have the most important impact on yields. This study shows that in Tanzania, by
2050, projected seasonal temperature increases by 2 ◦C reduce average maize, sorghum, and rice yields by
13%, 8.8%, and 7.6% respectively. Potential changes in seasonal total precipitation as well as intra-seasonal
temperature and precipitation variability may also impact crop yields by 2050, albeit to a lesser extent. A

20% increase in intra-seasonal precipitation variability reduces agricultural yields by 4.2%, 7.2%, and 7.6%
respectively for maize, sorghum, and rice. Using our preferred model, we show that we underestimate
the climatic impacts by 2050 on crop yields in Tanzania by 3.6%, 8.9%, and 28.6% for maize, sorghum and
rice respectively if we focus only on climatic means and ignore climate variability. This study highlights
that, in addition to shifts in growing season means, changes in intra-seasonal variability of weather may
be important for future yields in Tanzania. Additionally, we argue for a need to invest in improving the

egion
climate records in these r

. Introduction

The well-being of large populations around the world depends
n access, stability and availability of food (Schmidhuber and
ubiello, 2007). This is especially true in the developing world
ith predominant small land holders and subsistence farmers for
hom the on-farm agriculture and off-farm agricultural labor pro-

ides the main source of food and income (Ito and Kurosaki, 2009).
esides a series of non-climate related factors, the vulnerability of
hese smallholder and subsistence farmers is greatly influenced by
hanges in climate (Morton, 2007). Changes in climate have already
ecreased crop yields in several regions and, for example, are esti-

ated to have reduced global maize production by 12 Mt a year

etween 1981 and 2002 (Lobell and Field, 2007).
It has been suggested that a larger percentage of the African

opulation will enter poverty as short-term changes in climate will

∗ Corresponding author. Tel.: +1 514 627 4217.
E-mail address: pedram.rowhani-ardekani@mcgill.ca (P. Rowhani).

168-1923/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.agrformet.2010.12.002
s to enhance our understanding of these relationships.
© 2010 Elsevier B.V. All rights reserved.

increase the stress on food production (Ahmed et al., 2009a). Sub-
Saharan Africa (SSA) relies heavily on weather-sensitive agriculture
(Stige et al., 2006). Moreover, hunger and poverty prevail in SSA
and it is crucial to prioritize investments and policy in this region
in order to prevent the destructive impacts of future changes in cli-
mate on food production (Lobell et al., 2008; Schlenker and Lobell,
2010).

So far, most studies have focused on measuring the impacts of
changes in climatic means on crop yields (Lobell and Field, 2007;
Kucharik and Serbin, 2008; Lobell and Burke, 2008; Lobell et al.,
2008; Tao et al., 2008). However, in addition to changes in cli-
mate means, climate variability is expected to increase in some
regions in the future, including the frequency and intensity of
extreme events (IPCC, 2007b). Some have proposed that changes in
extremes will have a more adverse impact on crop production than

changes in mean climate alone (Porter and Semenov, 2005; Morton,
2007; Tubiello et al., 2007). In 2003, unusually high tempera-
tures during the summer reduced food production (and killed over
50,000 people), with cereal and fruit harvests dropping drastically
in Europe, especially in Italy and France where maize produc-

dx.doi.org/10.1016/j.agrformet.2010.12.002
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:pedram.rowhani-ardekani@mcgill.ca
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ion fell by more than 30% (Ciais et al., 2005; Battisti and Naylor,
009).

However, little is known about the effects of current, observed
xtreme events (Easterling et al., 2000) on crop yields. In the
ast, some simulation studies investigated the impacts of pro-

ected changes in the frequency and severity of extreme climate
vents during the growing season on agricultural production
Rosenzweig et al., 2002; IPCC, 2007a). Other crop simulation mod-
ls have shown the negative impacts of climate variability on crop
rowth, especially if it happens at specific crop development stages
Semenov and Porter, 1995). Extreme daily temperatures above a
ertain threshold may have damaging consequences on crop yields
Wheeler et al., 2000; Challinor et al., 2005; Porter and Semenov,
005; Schlenker and Lobell, 2010; Welch et al., 2010). Recently,
abas et al. (2009) used statistical models to highlight the impor-
ance of intra-seasonal changes in temperature and precipitation
n crop production in southwestern Ontario, Canada. They showed
hat, although precipitation and temperature variability might have
negative impact on average yields, net crop yields will be higher

n the future due to a lengthening of the growing season.
The main impetus of this empirical study was to estimate the

mpacts of climate variability on crop yields in East Africa. More
pecifically, we analyzed the impacts of intra- and inter-seasonal
uctuation in temperature and precipitation on yields of maize,
orghum, and rice in Tanzania. For this purpose, climate and crop
ata at the subnational level from 1992 to 2005 were used in a
ixed model statistical approach to examine overall trends and

he differences between regions within the country.

. Tanzania

On the Indian Ocean, the United Republic of Tanzania possesses a
omplex landscape, formed by the western and eastern branches of
he East African Rift, resulting in substantial spatial variability in cli-

ate within the nation. The country’s climate varies from tropical at
he coast to temperate in the highlands. There are two predominant
recipitation regimes in Tanzania with an average annual rainfall
f 600–800 mm. In the northern parts, one finds a bi-modal pre-
ipitation regime with the long rains generally occurring between
arch and May and the short rains experienced from October to
ecember. The rest of the country generally experiences rain from
ecember to May (ICID, 2010).

Several studies (Nicholson, 2001; Stige et al., 2006; Giannini
t al., 2008) confirm the influence of large-scale climatic events
uch as the El Nino-Southern Oscillation (ENSO) or the North
tlantic Oscillation on Tanzanian climate. But the western part of
anzania seems to be in the transition region between the areas of
trong ENSO impact with above average rainfall over East Africa and
elow average rainfall over southern Africa during an El Nino event.

n Tanzania, temperatures are predicted to rise 2–4 ◦C by 2100,
arming more during the dry season and in the interior regions of

he country (Hulme et al., 2001; Paavola, 2008). The interior regions
re also expected to experience a reduction in precipitation up to
0%, prolonging the dry season and increasing the risk of drought,
hereas in Eastern Tanzania and the regions around Lake Victoria

ainfall is expected to increase by up to 50% during this time period
ncreasing the frequency and severity of floods (Hulme et al., 2001;
aavola, 2008).

Administratively, Tanzania is divided into 26 regions. In this
tudy, the islands Pemba and Zanzibar were not considered and, for

onformity reasons, we grouped Dar es Salaam with its surround-
ng Pwani region and grouped the Arusha and Manyara regions
Arusha was officially split in two in 2002). In the end, our study
onsidered 19 administrative units (Fig. 1). The country achieved
ts independence in 1962 and was ruled until the mid-1980s under
Fig. 1. Tanzania’s 19 regions used in this study and a Digital Elevation Model (DEM)
showing the complex topographical landscape. The spatial distribution of the 20
climate stations are also represented (triangle).

a communist, one-party dictatorship. Since 1985, liberalization
efforts and democratic reforms helped increase the nation’s GDP
and food production, and improved road infrastructure (Putterman,
1995). However, due to deficiencies in policy and implementa-
tion, Tanzanian agriculture witnessed only a very modest growth
in the early 1990s, with maize yields averaging 1.4 tons per hectare
(Putterman, 1995). Today, Tanzania relies strongly on its agricul-
tural production as it represents around 46% of its GDP. In the past
20 years, ∼38% of total land surface was used for agricultural activ-
ities. In Tanzania agriculture is dominated by smallholder farmers
and is the main work sector in the country. However, people active
in the agricultural sector also represent the vast majority of the 12.5
million people living below the national poverty line (Ahmed et al.,
2009b).

In Tanzania, only 15% of the total potential arable land (repre-
senting 6.3 Mha) is being used for crop production, with 1.5 Mha
used only for maize. Not only is Tanzanian agriculture underdevel-
oped, it is also mostly rain-fed and low in intensity using very little
chemical inputs. For maize, synthetic fertilizers were used only on
10% of cultivated land and represented 125 kg per fertilized culti-
vated hectare, around 60% less than in the USA (310 kg/ha) (FAO,
2007). Moreover, the irrigation infrastructure is not well developed,
using mainly traditional surface irrigation methods. With the sharp
increase in population and degradation of the infrastructure dating
from colonial times, the irrigation schemes have become inefficient
(ICID, 2010).

3. Methodology

3.1. Crop data

In Tanzania, maize production is the most important agricultural
activity and is considered as the main economic driver (Thurlow
and Wobst, 2003). Other major cereals planted in Tanzania are rice,

sorghum, millet, and wheat. In this study, we analyzed the rela-
tionship between crop yields and climate for three cereals which
are widely planted across Tanzania: maize, rice and sorghum. Data
on harvested area (ha) and production (tons) for these three cere-
als were acquired from the Tanzanian Ministry of Agriculture as
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Fig. 2. The temporal trends of cereal yield and

ell as from the Agro-MAPS dataset (Monfreda et al., 2008). The
ata covers the 19 regions of continental Tanzania and represent
he period from 1992 to 2005. These data were then converted to
ields (tons/ha). Obvious outliers related to poor data quality and
ypographical errors were removed.

.2. Cereal cultivation from 1992 to 2005

Of the three crops used in this study, maize is by far the most pro-
uced cereal in Tanzania, with a spike in production and harvested
rea in 2002. Prior to this year, maize production averaged around
.5 Mt, but rose to ∼4 Mt after 2002. Over the studied time period,
aize yields fluctuate around an average of 1.3 tons/ha (Fig. 2). For

orghum, production and harvested area remained relatively con-
tant during the 1992–2005 period, with more variability shown
uring the earlier part of this period. Rice yields were rather con-
tant until 2002 when yields more than doubled in 1 year. In 2005,
ields in rice reached 1.7 tons/ha, a value similar to the yields before
002. The shift in agricultural production around the year 2002 may
e the result of a switch in the method of collecting/estimating
gricultural production which was introduced for the agricultural
ensus that was carried out in 2002/3 in Tanzania (James Thurlow,
ersonal communication).

As expected (Bisanda et al., 1998), the regions of Iringa and
beya in the southern highlands were the highest producing maize

egion in Tanzania (Fig. 3). These two regions account for a quarter
f the national maize production, producing on average more than
00,000 tons each year. Other important maize producing regions
re, in order of production, Shinyanga, Rukwa, and Arusha. The
aize-deficit regions are Coast/Dar es Salaam, Mtwara, and Lindi,

ll three along the coast. The highest and lowest yields in maize are
sually found in the highest and lowest producing regions (Fig. 3),
xcept for Arusha and Shinyanga where yields of 1.24 tons/ha and
.07 tons/ha respectively, are in the middle and lower end in Tan-
ania.

Sorghum is mostly produced in the dryer central regions of
ingida and Dodoma, as well as in Mwanza and Shinyanga around
ake Victoria. These regions generated over 43% of the national
orghum production during the studied time period, around
50,000 tons each year. On the opposite end, the regions of Kiliman-

aro, Ruvuma, and Tanga produced the lowest amount of sorghum
n 1992–2005. Having the highest average yield in sorghum over
he 1992–2005 period (1.26 tons/ha), Ruvuma produced on average
nly 4400 tons/year. Rice was mostly produced in Mbeya, Moro-

oro, and Mwanza (>48% of national production) whereas Dodoma,
agera, and Mara were rice-deficit regions. The region with the
ighest yield in rice (Kilimanjaro with 3.6 tons/ha) produced only
4,000 tons, representing less than 3% of the national rice produc-
ion.
Maize Sorghum Rice

ction over the 1992–2005 period in Tanzania.

3.3. Climate data

Many studies have relied on temperature and precipitation
datasets, which were obtained by spatially interpolating data from
various climate stations, such as the global gridded datasets from
the Climate Research Unit (CRU; Lobell and Field, 2007; Lobell et al.,
2008; Schlenker and Lobell, 2010). However, the density of gauge
observations used to develop these products is very low in cer-
tain regions of the world. This is true for Tanzania, where CRU
only uses three climate stations across the country (Dar es Salaam,
Songea, and Tabora). As a consequence, the data developed over
large areas using a limited number of stations will be unreliable as
some local climatic heterogeneity will be averaged out (Fig. 4). We
therefore acquired climate data from the Tanzanian Meteorologi-
cal Agency. Monthly values of precipitation and mean temperature
were available from 20 different stations from 1991 to 2008 uni-
formly covering the country (Fig. 1). Including a Digital Elevation
Model, thin plate smoothing splines were used to extract grid-
ded precipitation and mean temperature maps using ANUSPLIN
v4.2 (Hutchinson, 1995). In order to relate the climate data to the
regional agricultural production, spatial averages of monthly total
precipitation (P) and monthly mean temperature (T) over each of
the 19 regions were calculated. In a comparison effort, monthly cli-
mate data from the CRU TS 3.0 (Mitchell and Jones, 2005) dataset
were processed using a similar approach.

Following the rainfall patterns and the specific planting and har-
vesting calendar for maize, rice, and sorghum in Tanzania, seasonal
mean temperature and mean monthly precipitation were com-
puted for the January-June period for each year. Planting usually
happens after the first rains, between December and February. The
three cereals studied here are harvested at the end of the rainy
season, in June or July (USDA, 2003). Furthermore, both seasonal
precipitation and temperature anomalies relative to the 1992–2005
average were used instead of the seasonal means to reduce skew-
ness in our statistical models.

This study is mainly focused on the impacts of climate vari-
ability on crop yields. Climate variability is a broad concept
and rarely defined clearly. Indeed, climate varies at various time
scales, from daily (Semenov and Porter, 1995), intra- (Cabas et al.,
2009; Rowhani et al., accepted for publication) and inter-seasonal
(Rosenzweig et al., 2002; Lobell et al., 2008) to decadal scales. Multi-
annual wet or dry periods impact food production (De Waal, 1997;
Mitchell, 2008). Here, we are analyzing the impact of intra- and
inter-seasonal climatic variability on crop yields. Thus, apart from

measuring the seasonal climate means, variables capturing intra-
seasonal variability in temperature and rainfall were also included
in the analysis. This variability was measured by the seasonal coef-
ficient of variation (CV) calculated as the seasonal ratio of the stan-
dard deviation to the mean of each climate variable (CVT and CVP).
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.4. Precipitation and temperature from 1992 to 2005

Some disparities were evident between the CRU dataset and the
patially interpolated station data (Figs. 4 and 5). While precipita-
ion is mostly overestimated in the CRU (Fig. 5c), national mean
emperature from January to June is most often underestimated
Fig. 5d), when compared to the spatially interpolated station data.
he CRU uses records from 3 climate stations in Tanzania to develop

heir gridded dataset. We gathered climate data from 20 stations
cross the country and spatially interpolate those using thin-plate
plines. The CRU applied the same interpolation method as we did
o develop their gridded dataset (New et al., 1999). With more
bservational data, we are able to better detect the spatio-temporal
of maize, sorghum and rice over the 1992–2005 time period.

variations in precipitation and temperature. The results given here
are based on our gridded climate dataset.

The central part of the country receives on average around
70–90 mm of precipitation each month between January and June
(Fig. 6a). This region is surrounded by a high precipitation zone
where the average monthly rainfall exceeds 100 mm, with a maxi-
mum of 129 mm in the Great Lakes region of Kagera. The temporal
profiles show a peak in precipitation around the turn of century for

most regions (temporal profiles are not shown here). This may be
due to important warm ENSO events (bringing more rain to East
Africa) during the last decade of the 20th century followed by a
2-year La Nina period which decreases precipitation in this region.
Precipitation variability during the growing season, as measured by
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ig. 4. Comparison between CRU TS 3.0 data and observed precipitation and tem-
erature in Mbeya. The CRU profile represents the 0.5◦ pixel covering the climate
tation in the region of Mbeya.

he coefficient of variation, is highest in the southern regions, while
he least variable regions are along the coast and in northwestern
anzania.

The coastal regions are warmest during the January–June time
eriod with average temperature above 23 ◦C (Fig. 6b). The cooler
egions are along the mountain ranges along the eastern and
estern branches of the Great Rift Valley. During the growing
eason, the average temperatures in the plateau region of Tan-
ania, which is in between these two branches, vary between
2 ◦C and 23 ◦C. In general, the temporal profiles also reveal a
teady increase in temperatures during the past 20 years, with
ertain regions experiencing a more pronounced increase than oth-

ig. 5. Comparison between CRU TS 3.0 data and observed precipitation and temperatu
eriod. The scatterplots between the climate anomalies (a and b) and annual national a
nomaly (a), the R2 = 0.53 and the RMSE = 26.66. The R2 between the CRU and observed tem
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ers (data not shown). Temperatures between January and June
are more stable in the plateau region and more variable in the
mountainous regions along the Eastern branch of the East African
Rift.

3.5. Statistics

In order to determine the effects of climate on agricultural
yields, and to exploit the cross-sectional and temporal attributes
of our dataset, we developed linear mixed models for each of the
three crops (maize, rice, and sorghum). This method is appropriate
for longitudinal data (Pinheiro and Bates, 2000; Zuur et al., 2009)
where observations within a group are often more similar than
would be predicted on a pooled-data basis. In this case, a simple
linear regression ignores grouping effects and violates the assump-
tion of independence of observations. A first-order autoregressive
(AR1) serial correlation structure was included in the models to
capture temporal trends related to non-climatic factors and other
technological progress. The full model included a fixed part com-
prised of P and T (and their interaction term), CVT and CVP (and
their interaction term), as well as P2, and random intercepts. The
squared temperature values were not used as it was clear from
scatterplots that the relationship between yield and temperature is
linear:

yij = ˇ0 + ˇ1Ti,j + ˇ2Pi,j + ˇ2P2
i,j + ˇ4CWT–i,j + ˇ5CVp–i,j + ai + εij

where y is yield, i represents the regions and j the observations
within a region, ˇ0−5 represent model parameters, ai represents
the random intercept term, and ε is an error term.
Analogous measures to the widely used R2 in linear regressions
have been developed for mixed models but are not widely used.
Here, goodness of fit was rather based on likelihood ratio test using
Akaike’s Information Criterion (AIC) and/or Bayesian Information
Criterion (BIC). A backward model selection was performed on the

re anomalies. Both variables were averaged over each region for the 1992–2005
verages of precipitation (c) and temperatures (d) are shown. For the precipitation

perature anomaly (b) equal 0.84 (RMSE = 0.61). The dashed line shows the 1:1 line.
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ig. 6. The spatial distribution of average precipitation (a) and temperature (b) ove
rom 20 stations across Tanzania.

xed terms following Zuur et al. (2009). Models with random slopes
using all potential independent variables) were also tested but
ever resulted in a better fit. We evaluated issues of heterogeneity
nd assessed the two distributional assumptions for mixed effect
odels (Pinheiro and Bates, 2000), i.e. the within-group errors are

ndependent and normally distributed and they are independent of
he random effects, and the random effects are normally distributed
nd are independent for different groups.

For comparison, the coefficients resulting from the mixed mod-
ls were compared to those obtained from simple linear regression
odels that included the different regions as a dummy variable to

ccount for fixed effects. Furthermore, a time variable (Year from
992) was also used in these linear models to capture yield changes
elated to non-climatic factors and other technological develop-
ent:

j = ˇ0 + ˇ1Tj + ˇ2Pj + ˇ2P2
j + ˇ4CVT–j + ˇ5CVp–j + ˇ6Regionj

+ ˇ7Yearj + εj.

These linear models were developed using stepwise model
election based on the AIC. In order to compare climate data effects
n yield estimates, both sets of models, the mixed and linear mod-
ls, were also developed using climate data extracted from the CRU
ataset.

Finally, we analyzed the climatic impacts on crop yields in
anzania in the year 2050 based on the historical relationships.
or this purpose, data from 22 Global Circulation Model (GCM)
xperiments (Meehl et al., 2007) from the Phase 3 Coupled Model
ntercomparison Project (CMIP3) were used at the national level
Ahmed et al., 2009b). We were not able to account for any poten-
ial shifts in the growing season as each GCM presents different
easonal shifts. Thus, growing season averages (January-June) of
recipitation and temperature were measured over the 1992–2005
eriod and compared to the January–June averages over the
040–2059 period, under the SRES A2 emissions scenario. This is
ne of the most fossil fuel intensive scenarios, with greenhouse
as emissions rising monotonically. Both intra-seasonal variability
etrics, CVT and CVP, were also compared between these two time

eriods.

All the statistical analyses here were also performed over the

992–2001 time period, as a consequence of the shift in the agri-
ultural dataset. However, the results did not change significantly
o alter our general conclusions, and thus, only the results from the
992 to 2005 period are presented here.
992–2005 period. These figures are based on our gridded dataset based on records

4. Results and discussions

4.1. Model results for maize

Changes in climate between and within seasons have a signif-
icant impact on crop yields in Tanzania (Fig. 7). The results from
the mixed model analysis using the spatially interpolated station
data (Table 1) show a significant relationship between yields in
maize and seasonal mean precipitation, with an increase in pre-
cipitation favoring yields. Furthermore, maize yields seem to level
off over 120 mm of monthly precipitation during the growing sea-
son (as shown by the significant squared precipitation variable).
Variability in precipitation within the growing season has a nega-
tive impact on yields, i.e. an increase in intra-seasonal precipitation
variability by 0.1 in CVP reduces yields by 0.036 ± 0.018 tons/ha.
The results of the mixed models also show that there is a small
variability in the intercepts between the regions. The variance of
the intercept term between plots was 0.06 while the within region
variance, measured by the error variance, was approximately 0.15.
Our model also shows a small, positive lag-1 serial autocorrelation
term of 0.11.

Using CRU data, the mixed models indicate similar results
for most of the coefficients (Table 1). The exception lies in the
intra-seasonal climate variability metrics where the CRU data
shows a positive relationship between CVT and CVP, and maize
yields. These results seem counterintuitive as increased temper-
ature and precipitation variability are anticipated to reduce crop
yields. The stepwise linear regressions using the station data
(Table 2) show very similar results to the mixed models. These
models show an additional non-significant and negative relation-
ship between intra-seasonal variability in temperature and maize
yields, as well as a stronger relationship between seasonal tem-
peratures and yields. Around 40% of the variance is explained by
these variables. The same linear models using CRU data (Table 2)
present a positive estimate for CVT and a weaker relationship
between precipitation and maize yields. These models show an R2

of 0.32.

4.2. Model results for sorghum

The model relating sorghum yields to climatic variables

extracted from the station data is very similar to the one char-
acterizing maize yields (Table 3). However, precipitation has only
a linear, yet still positive relationship with yields in sorghum.
Increases in temperature and intra-seasonal variability in precip-
itation have a negative impact on sorghum yields in Tanzania.
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ariability between and within the regions is low and there
s some serial autocorrelation with a positive lag-1 value of
.30.

The mixed models using CRU data present similar results
Table 3). However, the final selected model includes also intra-

easonal variability in temperature and P2, both with a negative
oefficient. Using linear regression models (Table 4), the negative
elationship between sorghum yields and mean seasonal temper-
tures is stronger (estimate of −0.16 compared to −0.06). The

able 1
esults of the mixed model analysis relating maize yields to climate variables. Two separ
0 stations in Tanzania and gridded climate data from the climatic research unit (CRU).

Maize Station

Estimate Std. e

Intercept 1.640 0.161
Precipitation 0.005 0.001
Temperature −0.126 0.035
CVP −0.361 0.179
CVT

Precipitation2 −8.65 × 10−05 2.57

Between region variability (�2
b

) 0.06
Within region variability (�2) 0.15
Correlation between observations from same region 0.27
AR1 parameter estimate (ϕ) 0.11
ate factors used in this study. Temperature is measured in mean seasonal ◦C and
a. Climate variability is measured using the coefficient of variation over the growing

stepwise model selection procedure based on the AIC also kept the
interaction term between precipitation and temperature (a mea-
sure of soil moisture) in the final model. This term is however
non significant. There are two major differences between the linear
models using CRU and station data (Table 4). Mean seasonal tem-

perature is not significant in the CRU model and P2 is negatively
associated to sorghum yields, just like the CRU mixed model results.
Another disparity is that the negative trend over the 1992–2005
period is marginally significant when CRU data is used.

ate climate datasets were used; spatially interpolated observed climate data from

CRU

rror p-Value Estimate Std. error p-Value

<0.0001 0.834 0.198 <0.0001
0.0001 0.003 0.001 0.0040
0.0004 −0.116 0.030 0.0001
0.0459 0.292 0.197 0.1385

5.131 2.393 0.033
× 10−05 0.0009 −3.40 × 10−05 1.41 × 10−05 0.0172

0.03
0.17
0.15
0.09
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Table 2
Results from the stepwise multiple linear regressions relating maize yields to climate variables. Two separate climate datasets were used; spatially interpolated observed
climate data from 20 stations in Tanzania and gridded climate data from the climatic research unit (CRU). Coefficient estimates for the significant dummy variable representing
the 19 regions are not shown.

Maize Station CRU

Estimate Std. error p-Value Estimate Std. error p-Value

Intercept 1.671 0.258 <0.0001 1.048 0.204 <0.0001
Precipitation 0.004 0.001 0.0016 0.002 0.001 0.0310
Temperature −0.205 0.076 0.0072
Precipitation2 −8.5 × 10−05 2.7 × 10−05 0.0016 −2.2 × 10−05 1.5 × 10−05 0.1305
CVP −0.475 0.193 0.0143 0.374 0.207 0.0721
CVT −2.529 1.605 0.1164
Year-1992 0.013 0.006 0.0381

Adjusted R2 0.395 0.3244

Table 3
Results of the mixed model analysis relating sorghum yields to climate variables. Two separate climate datasets were used; spatially interpolated observed climate data from
20 stations in Tanzania and gridded climate data from the climatic research unit (CRU).

Sorghum Station CRU

Estimate Std. error p-Value Estimate Std. error p-Value

Intercept 1.326 0.108 <0.0001 1.457 0.149 <0.0001
Precipitation 0.003 0.001 0.0011 0.003 0.001 0.0002
Precipitation2 −2.0 × 10−05 9.510−06 0.1103
Temperature −0.060 0.025 0.018 −0.050 0.025 0.0442
CVT −3.069 1.788 0.0873
CVP −0.431 0.122 0.0005 −0.374 0.137 0.0069
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Between region variability (�
b

) 0.02
Within region variability (�2) 0.09
Correlation between observations from same region 0.21
AR1 parameter estimate (ϕ) 0.29

.3. Model results for rice

For rice, our mixed model results show that climate variabil-
ty over the growing season is an important factor for yields in
anzania (Table 5). It has to be noted that some observations show-
ng very high yields were removed as outliers from this analysis
9 observations) as these probably indicate important irrigation
fforts. Increased precipitation variability between the months of
anuary and June has a negative impact on yields whereas, sur-
risingly, increasing temperature variability over the same period
eems to improve yields. Moreover, our model indicates that higher
emperatures reduce yields. There is still some variability within
nd between regions due to unobserved factors.

Compared to the model using station data, the results from the
ixed model using CRU climate data (Table 5) present the same
mportant positive association between intra-seasonal tempera-
ure variability and rice yields. However, this model also indicates
n effect of precipitation and P2. Furthermore, precipitation vari-
bility over the January–June season does not appear to have an
ffect on rice yields when CRU data is used.

able 4
esults from the stepwise multiple linear regressions relating sorghum yields to climate v
limate data from 20 stations in Tanzania and gridded climate data from the climatic resear
he 19 regions are not shown.

Sorghum Station

Estimate Std. error p-Va

Intercept 1.207 0.167 <0.0
Precipitation 0.002 0.001 0.0
Temperature −0.081 0.054 0.1
Precipitation2

CVP −0.424 0.140 0.0
Year-1992
Precip.:Temp. 8.2 × 10−04 5.510−04 0.1

Adjusted R2 0.3343
0.02
0.09
0.19
0.27

The stepwise simple linear regressions show comparable
results for rice (Table 6). One major difference compared to
the mixed model is that mean seasonal temperatures are not
related to rice yields, whether we use CRU or station climate
data. Dissimilarities between the linear models using differ-
ent climate data are analogous to the ones found using mixed
models.

4.4. Future impacts in 2050

To examine the relative importance of the coefficients derived
above, we estimated the yield impacts of changes in each climate
variable as predicted by the 22 GCMs analyzed in Ahmed et al.
(2009b). The average seasonal temperature in these models rise
between 1 ◦C and 2 ◦C by 2050 (with an average increase of 1.4 ◦C),

whereas, the changes in January-June total precipitation range
between −15.8% and +21.5% compared to the 1992–2005 average,
with a mean of +5%. The 22 GCM’s also show a −39% to +13% change
in intra-seasonal temperature variability in 2050 (with a mean of
−14%), as measured by the CVT. Finally, the intra-seasonal precip-

ariables. Two separate climate datasets were used; spatially interpolated observed
ch unit (CRU). Coefficient estimates for the significant dummy variable representing

CRU

lue Estimate Std. error p-Value

001 1.353 0.159 <0.0001
137 0.003 0.001 0.0006
317

−1.5 × 10−05 1.1 × 10−05 0.1484
027 −0.305 0.155 0.0501

−0.009 0.005 0.0655
404

0.3217
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Table 5
Results of the mixed model analysis relating rice yields to climate variables. Two separate climate datasets were used; spatially interpolated observed climate data from 20
stations in Tanzania and gridded climate data from the climatic research unit (CRU).

Rice Station CRU

Estimate Std. error p-Value Estimate Std. error p-Value

Intercept 1.639 0.227 <0.0001 1.190 0.222 <0.0001
Precipitation 0.003 0.001 0.0293
Precipitation2 −3.7 × 10−05 2.0E−05 0.0618
Temperature −0.129 0.048 0.0074 −0.098 0.054 0.0723
CVT 8.612 2.128 0.0001 7.415 3.734 0.0483
CVP −0.757 0.267 0.0051

Between region variability (�2
b

) 0.07 0.12
Within region variability (�2) 0.38 0.38
Correlation between observations from same region 0.15 0.24
AR1 parameter estimate (ϕ) 0.31 0.27

Table 6
Results from the stepwise multiple linear regressions relating rice yields to climate variables. Two separate climate datasets were used; spatially interpolated observed
climate data from 20 stations in Tanzania and gridded climate data from the climatic research unit (CRU). Coefficient estimates for the dummy variable representing the 19
regions are not shown.

Rice Station CRU

Estimate Std. error p-Value Estimate Std. error p-Value

Intercept 2.119 0.331 <0.0001 2.003 0.192 <0.0001
Precipitation 0.004 0.002 0.0060
Precipitation2 −3.3 × 10−05 2.1 × 10−05 0.1184
CVP −0.704 0.287 0.0149

0.1
0.0
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CVT 3.780 2.593
Year-1992 0.032 0.009

Adjusted R2 0.3709

tation variability (CVP) in 2050 changes between −11% and +20%
s compared to the current values (+2.1% on average).

For simplicity, we consider changes of 20% in precipitation, 2 ◦C
n temperature, and 20% in CVP and CVT. Fig. 8 presents the climatic
mpacts of each change on cereal yields in 2050. Our analysis shows
ittle variation in the results depending on the statistical method
hosen whereas choice of climate data appears to have significant
mpact on the model results for CVP. Depending on the dataset, the

elationship between intra-seasonal precipitation variability and
aize yields is positive or negative. Assuming the weather station

ata is more reliable, the results of the mixed model show that an
ncrease of 2 ◦C in temperature relative to the 1992–2005 grow-
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ing season average will reduce maize, sorghum, and rice yields
by 18.6 ± 5.2%, 12.6 ± 5.3%, and 16.3 ± 6.0% respectively. By con-
trast, an increase in precipitation has a positive impact on maize
and sorghum, where an increase of 20% in average monthly grow-
ing season precipitation (equivalent to around 20 mm) increases
yields by 6.7 ± 1.7% and 5.7 ± 1.7% respectively. An increase in the
coefficient of variation of precipitation by 20% (equivalent to an
increase of 0.16 compared to the historical CVP) during the same

time period reduces yields by 4.2 ± 2.1%, 7.2 ± 2.0%, and 7.6 ± 2.7%
respectively for maize, sorghum, and rice. Temperature variability
during the growing season, as measured by the coefficient of vari-
ation, was only significant for rice (using station data in a mixed
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density of climate stations used is very poor. Indeed, the global grid-
ver the January–June period whereas temperature and precipitation variability is
easure by the coefficient of variation over the same time period. Results from both

limate datasets (CRU and observed station data) are shown.

odel). An increase of 20% in CVT (equivalent to an increase of
.01 compared to the historical CVT) has an unexpected positive

mpact on rice yield, increasing yields by 5.4 ± 1.3%. Using CRU
ata, the models show that an increase by 0.01 in CVT increases
aize yields by 3.7 ± 1.8% and decreases sorghum yields by 3.2 ±

.9%.
If we assume no changes in planting and harvest dates, the

xpected changes in seasonal temperatures seem to have the
argest impacts on agricultural yields in 2050. However, the results
ere show that changes in seasonal precipitation as well as in intra-
easonal variability in temperature and precipitation may also have
significant impact on cereal production in Tanzania.

Additionally, we also compared the combined impacts of
hanges in climatic means on crop yields to those when both means
nd variability are accounted for (Fig. 9) using the average modeled
limate change for the year 2050 (i.e., increase of 1.4 ◦C and 5% in
recipitation as well as a decrease in temperature variability by 14%
nd an increase in precipitation variability by 2.1%). Whether we
se CRU data or detailed station data, we almost always under-
stimate the impacts on crop yields when we only concentrate
n changes in climatic means. The exception concerns sorghum
hen we use CRU data, which shows a reduced impact on yields
hen both means and variability are taken into account. Using

tation data, the models underestimate the climatic impacts on
rop yields by 3.6%, 8.9%, and 28.6% for maize, sorghum and rice

espectively, when focusing only on means. The differences are
ven more pronounced when CRU data is used (underestimation of
7.3% and 29.9% for maize and rice, and overestimation of 36.8% for
orghum).
Meteorology 151 (2011) 449–460

5. Conclusions

Our empirical study is among the first to document the effects
of intra-seasonal climate on crop yields (Cabas et al., 2009). Many
studies focused on the non-linear effects of temperature on crop
production (Wheeler et al., 2000; Challinor et al., 2005; Porter and
Semenov, 2005; Schlenker and Roberts, 2009). However, in water-
limited regions, moisture availability is key to crop development,
enhancing the role of precipitation variability. In Tanzania, both
inter- and intra-seasonal changes in precipitation and temperature
are associated with changes in maize, sorghum, and rice yields. Sim-
ilar to previous studies (Lobell and Field, 2007; Cabas et al., 2009),
this analysis shows that cereal yields increase with more seasonal
precipitation and decrease with higher temperatures. However, we
also show that increased precipitation variability during the grow-
ing season reduces yields for maize, rice, and sorghum.

Some of our results are also counter-intuitive. Believing that
increased exposure to extremes would lead to crop damages, we
anticipated increased temperature and precipitation variability to
reduce crop yields (Semenov and Porter, 1995; Wheeler et al.,
2000; Cabas et al., 2009). However, certain complex mechanisms
influencing the climate variability (as measured by the coefficient
of variation) may lead to better yields. Beside threshold effects
(Porter and Semenov, 2005; Schlenker and Roberts, 2009), changes
in phenology and in timing in temperature and in precipitation
can improve crop yields (Challinor et al., 2009; Welch et al., 2010).
To analyze these mechanisms in detail, higher temporal resolution
climatic data are needed.

In certain regions in Tanzania, a shortening of the rainy season
and more frequent dry spells have already reduced yields (Lema and
Majule, 2009) forcing the Tanzanian farmer to adapt their practices
(Paavola, 2008). These climate-related changes in agricultural pro-
ductivity may increase food insecurity (Rowhani et al., accepted
for publication) and poverty (Ahmed et al., 2009a), especially in
regions with low-input and rainfed agricultural systems.

Methodologically speaking, this study showed that yield
responses to climate were rather consistent throughout the coun-
try. When dealing with a longitudinal dataset, mixed model
analysis is the preferred statistical method to highlight within-
country heterogeneities related to a variety of factor such as soils,
technology, management, and political and economical initiatives.
However, there do not seem to be large regional differences in
these factors and the results from the linear regression models were
comparable to the mixed model coefficients. This suggests that our
conclusions are robust to the use of different statistical methods.

Furthermore, statistical methods for analyzing yield trends have
been criticized in the past (Gifford et al., 1998; Godden et al., 1998).
Indeed, these models are subject to a number of deficiencies (Lobell
et al., 2008). However, using subnational yield and climate data over
the growing season and by taking into account the technological
and area trends we are able to reduce the uncertainties related to
methodological aspects. Additionally, this study also relies on two
sets of climatic data as well as two statistical methods to measure
the robustness of our results.

A key factor in any model is the quality of the input data. The
results of our study show that intra-seasonal precipitation variabil-
ity has either a positive or negative relationship with maize yields,
depending on the climatic data used. This highlights the importance
of climate data – different data can yield different results. Most
global scale climate datasets are developed using observational
records from climate stations. In certain regions of the world, the
ded climate data from CRU uses only 3 stations over Tanzania. With
a total area of around 1 Mkm2 and a complex terrain, more obser-
vational data is required to capture the detailed spatio-temporal
variations in climate within this country. Unfortunately, such data
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s seldom available over many regions of the world. Most large scale
nalyses in these regions have to rely on CRU (Lobell et al., 2008) or
ther modeled datasets (Schlenker and Lobell, 2010). These stud-
es provide critical insight on the impacts of climate change on
ood production. However, in order to improve our understanding
f these relationships, we need to invest in improving the climate
ecords in these regions to enable better analysis.

Ranking 151st in the Human Development Index (0.53, 151st),
anzania will face greater challenges in the future if agricul-
ural production is reduced due to climate change. However,
nvestments in management practices and improved governmen-
al policies can certainly balance some adverse effects of climate
hange (Funk et al., 2008). Increased availability and utilization of
rganic and mineral fertilizers along with improved cultivars are
ikely required for African farmers to match the gains seen in other
egions (Sánchez, 2010). Nevertheless, it is clear that crop yield
nd food security are intimately linked to both intra-annual vari-
bility and interannual trends. Thus, simultaneous considerations
f technological improvements and the development of the overall
vailability and predictability of water resources are likely required
o see sustainable improvements in agriculture given projected cli-

ate trends and variability.
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