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A B S T R A C T

Seasonal forecasts have potential value as tools for the management of risks due to inter-annual climate

variability and iterative adaptation to climate change. Despite their potential, forecasts are not widely used,

in part due to poor performance and lack of relevance to specific users’ decision problems, and in part due to

a variety of economic and behavioural factors. In this paper a theoretical model of perceived forecast value

is proposed and applied to a stylized portfolio-type decision problem with wide applicability to actual

forecast users, with a view to obtaining a more complete picture of the determinants of perceived value. The

effects of user wealth, risk aversion, and perceived forecast trustworthiness, and presentational

parameters, such as the position of forecast parameter categories, and the size of probability categories,

on perceived value is investigated. Analysis of the model provides several strong qualitative predictions of

how perceived forecast value depends on these factors. These predictions may be used to generate

empirical hypotheses which offer the chance of evaluating the model’s assumptions, and suggest several

means of improving understanding of perceived value based on qualitative features of the results.
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1. Introduction

It has been widely argued that an ability to cope with current
climate variability is a necessary though not sufficient step for
adaptation to climate change (Washington et al., 2006; Cooper
et al., 2008). Managing risks due to inter-annual climate variability
is especially important in developing countries, due to the
importance of rain-fed agriculture to their economies, the relative
scarcity of risk distribution institutions and coping mechanisms
such as insurance and irrigation, and the greater human costs of
adverse climatic conditions on their vulnerable populations.
Seasonal predictions – forecasts of climatic conditions 3–9 months
into the future – are a promising tool for informing ex-ante coping
strategies. Farmers who have access to reliable and accurate
forecasts can plant drought resistant crops in times of water-stress,
and high yield varieties in good years. In general, advance warning
of what to expect from the coming growing season provides
opportunities for livelihood diversification, and the maximization
of returns from productive activities.

As an example of the current operational efficacy of seasonal
climate predictions, consider the case of the African continent.
Climate change projections for Africa point to plausible, extreme
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futures with substantial reduction in streamflow (de Wit and
Stankiewicz, 2006), possible mobilization of vast dunefields which
have been stable since the mid Holocene (Thomas et al., 2005) and
attendant undermining of food security (Lobell et al., 2008).
Attention is understandably being increasingly focused on how
Africa can meet the challenges of coping with a changed climate. At
the same time, Africa has served as a forerunner in the degree of
formalized organization surrounding seasonal climate prediction.
Climate Outlook forums, which aim to generate consensual regional
predictions, have been running longer in Africa than anywhere else
and have recently celebrated their 10 year anniversary (Patt et al.,
2007). Taken together, it might seem that Africa is making good
progress towards attaining this first, necessary step towards dealing
with climate change. But inspection of the World Climate Research
Program’s White Paper on Seasonal Prediction (Kirtman and Pirani,
2007) which reviews the status of prediction quality and value,
makes for disconcerting reading. While Africa may have the longest
running climate outlook forums in the world, there are few examples
of the actual uptake of seasonal prediction information on the
continent (Tarhule and Lamb, 2003).

Understanding the root causes of the lack of uptake and low
perceived value of seasonal prediction information is a vital
task, given the overwhelming importance of these timescales of
climate information and adaptive responses. A growing literature
investigates the determinants of forecast uptake and forecast value
(e.g. Stern and Easterling, 1999; Patt and Gwata, 2002; Roncoli,
2006). Several research methodologies, with disciplinary origins in
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meteorology, psychology, anthropology, and economics, have been
brought to bear on the problem. Amongst the meteorological
community, attention has naturally been on prediction quality, or
more specifically improving prediction quality through increasing
skill (Palmer and Anderson, 1994), with several promising
approaches having been evaluated in Africa (e.g. Shongwe et al.,
2008). Psychological approaches (National Research Council, 2006;
Nicholls, 1999) emphasize the role of heuristics and biases in
explaining human decision making under uncertainty, and shed light
on the difficult problem of understanding how decision makers
interpret probabilistic forecast information (Gigerenzer et al., 2005;
Roulston and Kaplan, 2008), and what can be done to communicate
such information effectively (Patt and Dessai, 2005). Anthropologists
and human geographers widen the scope of the inquiry from the
individual to the cultural and institutional context in which forecasts
are produced and received. Emphasis has been placed on the
importance of achieving a ‘fit’ between the intrinsic scientific
properties of forecasts, prevailing local environmental conditions,
and the needs of, and constraints on, human actors (Orlove and
Tosteson, 1998). Others have shown how political, institutional, and
cultural contexts can affect users’ flexibility to make use of forecasts
(Rayner et al., 2005; Koch et al., 2007; Lemos and Dilling, 2007;
Ziervogel, 2004).

Given the scientific and human complexity of the forecast
valuation problem, what can the idealized models of economic
theory contribute to our understanding of the determinants of value
and forecast uptake? Quantitative analytical models that link
economic decision theory with metrics of forecast performance have
been extensively used to derive normative estimates of forecast
value (see e.g. Katz and Murphy, 1997; Nelson and Winter, 1964;
Adams et al., 1995; Jones et al., 2000). These models yield insights
into how decision structure interacts with forecast quality to
determine value in the idealized case in which human decision
behaviour conforms to the stringent rationality assumptions of
standard economic models. They benefit from a powerful analytical
framework that is able to produce clean theoretical results. Yet there
are few examples of direct empirical tests of the positive predictive
power of these models (see Stewart, 1997 for a summary of
empirical work that focusses mainly on short-term weather
forecasts). Empirical studies (e.g. Luseno et al., 2003; Patt et al.,
2005) have thus far found it difficult to make direct value estimates
owing largely to the complexity of real-world decision environ-
ments, and are thus of limited use for ascertaining the veracity of
economic models. Thus these models currently occupy an uneasy
space in our theoretical arsenal. While their value as tools for
defining normative benchmarks against which reality may be
compared is clear, we must as yet remain equivocal on their utility as
tools for informing policies designed for real forecast users.

In this paper we explore the predictions of a new model of
forecast value based on economic decision theory. Given the
argument in the previous paragraph this may seem like a misguided
contribution – perhaps if we do not know the epistemic status of
extant models adding another to the pot will be of limited value? In
the remainder of the paper we argue that the model we offer serves
three valuable purposes. First, since it incorporates a diverse set of
behavioural, economic, and forecast parameters into a coherent
analytical framework it is more likely to be applicable (and thus
testable) in real decision contexts than the existing, somewhat too
stylized, set of models.1 Second, it allows the interactions between
1 While these factors have been addressed individually by several authors (e.g.

risk aversion is accounted for in the analysis of Jones et al. (2000), and perceived

accuracy in the framework employed by Adams et al. (1995), we are unaware of any

framework that accounts for them all at once. In addition, we are not aware of any

theoretical frameworks that address the effect of forecast presentation on perceived

value.
the determinants of forecast value to be assessed, thereby
suggesting explanations of perceived forecast value patterns that
are not accessible to frameworks that focus on isolated variables.
And third, owing to its increased scope and applicability to diverse
decisions, it makes definitive predictions about the dependence of
forecast value on economic and forecasting primitives, and thus
offers strong hypotheses that can be used to empirically test the
usefulness of conventional economic decision theory as a tool for
understanding perceived forecast value. The model thus serves both
methodological and practical goals.

Section 2 outlines the model and its assumptions. The model is
then specialized to a particular stylized decision problem in
Section 3, where an idealized crop-choice decision is presented.
Section 4 analyses the model in order to discern the influence of
wealth, risk aversion, and perceived trustworthiness on perceived
forecast value. The final results section, Section 5, explores the
effects of alternative forecast presentations (forecasts from
ensembles of different sizes, and the effect of the choice of
forecast parameter categories) on perceived value. Section 6
discusses the modeling findings and their policy relevance, and
concludes.

2. Forecast valuation model

The model we investigate is an extension of standard results in
expected utility theory and the economics of information (see e.g.
Gollier, 2001; Johnson and Holt, 1997) to the case of probabilistic
forecasts from an ensemble of numerical climate models. Probabi-
listic prediction systems are firmly entrenched in the contemporary
approach to seasonal climate information (Hagedorn et al., 2005) but
are often cited as a major stumbling block in the uptake of forecasts.
A variety of reasons are posed as an explanation for this, including
cognitive biases in the understanding of probabilities (Nicholls,
1999), difficulties of reconciling deterministic operational decision
making with probabilistic futures, and lack of templates of
probabilistic responses, particularly in farming (Hayman et al.,
2007). On the other hand, some studies suggest that users respond
well to probabilistic information (e.g. Patt et al., 2005). We focus on
ensemble probabilistic forecasts as they are the tools of choice for
generating seasonal forecasts for most of the large forecasting
centres, and are commonly believed to have the most potential for
improvements in skill. In addition, the information they provide is
ideally suited to many risk management applications, as they
provide a full distribution of possible outcomes, and thus allow users
to choose strategies that hedge their risks based on the forecast
probabilities. The example we develop below is designed with this
decision context in mind.

The goal of our modeling work is to quantify the dependencies
of perceived forecast value. Perceived value is of necessity a
subjective quantity, and, as described in the previous section, is
influenced by many behavioural, cultural, and economic factors in
addition to objective scientific measures of forecast performance. A
model of perceived value which attempts to account for several of
these factors was developed in Millner (2008). The model was
applied to a simple cost-loss decision problem (Katz and Murphy,
1997), and the effect of perceived accuracy on perceived value was
determined. Here we apply the model in the more complex case of
a continuous choice between two risky assets (economists refer to
such problems as portfolio problems). This decision problem is
relevant in many real-world contexts, from the crop choices of
farmers and the inventory decisions of small-businesses, to the
strategies adopted by natural resource managers and aid workers.
We perform a complete analysis of the parameter space of the
model for a simple stylized crop-choice problem, and obtain
several new results. Our modeling approach takes a very optimistic
view of the forecast user’s understanding of ensemble probabilistic



2 For an ensemble of size N, and jSj states of the world, there are
N þ jSj � 1
jSj � 1

� �
possible density forecasts. Thus the right hand side of the value equation can have a

very large number of terms. For example, setting N = 20, jSj = 10 gives over 10

million possible density forecasts.
3 We make temperature the independent variable for expositional simplicity. The

reader is free to exchange temperatures for growing degree days. We avoid

precipitation since it is slightly more difficult to represent statistically, however the

results could easily be modified to account for any risks.
4 Note that there is no difficulty in including these effects in our model in

principle. One can simply replace the exogenously specified yield distributions with

revenue distributions determined by the equilibrium conditions of a competitive

market. However, since many crops in the developing world are produced for

export, equilibrium prices are often determined globally, not locally. This makes the

problem of determining prices a very difficult one.
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forecasts, and indeed of her decision making behaviour (users are
assumed to be expected utility maximizers). As such, the results
we report are perhaps most appropriately interpreted as a best
case scenario, providing an upper bound on the perceived value of
forecasts. Despite these optimistic assumptions, and the relative
parsimony of the model, we will see that it generates interesting
hypotheses about the interplay of factors that may contribute to
users’ appraisals of forecast value.

The model specifies the details of the user’s decision problem,
how she makes decisions based on available information, how she
processes new information, and also her understanding of the
details of the ensemble which generates the forecasts upon which
she acts. We outline the formal details of the model below.

Users are assumed to be expected utility maximizers. Given a
set of possible actions X, and a set of states of the world S, users
choose an action x* 2 X which satisfies:

x� ¼ argmax
X
s2 S

pðsÞUðcðx; sÞÞ
 !

: (1)

In this expression U is the utility function, which we choose to
be of the constant relative risk aversion form:

UðWÞ ¼
W1�r

1� r
r 6¼1

ln W r ¼ 1

8<
: ; (2)

where the constant r is the coefficient of relative risk aversion. r

parameterizes the user’s attitude to risk, with values close to zero
implying she is close to risk neutral (i.e. she treats uncertain
consequences as equivalent to their expected value), while larger
values imply a degree of risk aversion (i.e. she treats uncertain
consequences as less desirable than their expected value). The
consequence function c(x, s) is the consequence of taking action x

when the state of the world is s, and thus encodes the details of the
decision problem. p(s) is the user’s beliefs regarding the probability
of state s. Given a probability density forecast p ¼ pðs0Þ, the user is
assumed to update beliefs using Bayes’ theorem:

pðsjpÞ ¼ PðpjsÞ pcðsÞ
qðpÞ (3)

HerePðpjsÞ is the likelihood of receiving forecast p in state of the
world s, pc(s) represents the user’s beliefs in the absence of forecast
information, which for simplicity will be assumed to coincide with
the climatological distribution of the forecasted variable, and the
normalization factor qðpÞ is the total probability of receiving
forecast p. We now assume two levels of democracy in the user’s
beliefs about the trustworthiness of forecasts. We assume inter-
model democracy, i.e. each member of the forecast ensemble is
assumed to be equally trustworthy, and intra-model democracy, i.e.
if an ensemble member makes an incorrect forecast, it is believed to
be equally likely to be a forecast of any of the incorrect states of the
world. Using these assumptions, and denoting the number of
ensemble members as N, we can write the likelihood function as a
multinomial distribution,

PðpjsÞ ¼ N!
Y
s0 2 S

½Lðs0jsÞ�Npðs0 Þ

½Npðs0Þ�! : (4)

where the likelihood matrix L(s0|s), which encodes intra-model
democracy, is given by:

Lðs0jsÞ ¼ lds0s þ
1� l
jSj � 1

ð1� ds0sÞ ; (5)

where ds0s ¼ 1 if s0 = s, and zero otherwise. The parameter l
controls how trustworthy the user believes the forecasts to be,
with l = 1 corresponding to forecasts that are believed to be
infallible, and l = 0 corresponding to forecasts that are believe to
be guaranteed to be incorrect. Finally, the total perceived value V of
an ensemble forecast system is defined by:

X
s2 S

pcðsÞUðcðx�pcðsÞ; sÞ þ VÞ ¼
X
p

qðpÞ
X
t 2 S

pðtjpÞUðcðx�pðtjpÞ; tÞÞ
 !

¼
X
p

X
t2 S

PðpjtÞ pcðtÞUðcðx�pðtjpÞ; tÞÞ; (6)

where x�p̃ðsÞ is the action that maximizes expected utility (1) when
beliefs over states of the world are given by p̃ðsÞ. Thus, the perceived
value of the forecasting service is defined as the fixed amount we
have to increase the consequences of the user’s actions by in order to
make her indifferent between having only her climatological
knowledge and having access to the forecasts as well. Note that
on the right hand side of this equation we sum over the expected
utility of the user’s optimal actions (which differ for each forecast)
for every forecast it is possible to receive, weighted by the total
probability with which the user believes they will occur.2 Thus the
right hand side represents the total expected utility of the
forecasting system, while the left hand side represents the total
expected utility the user achieves without forecasting information.

3. Hedging between two risky assets

In order to explore the dependencies of the value function V a
particular decision problem must be specified. A stylized hedging
decision will be considered, in which a user must decide between
two risky assets. Such decisions, in which the decision maker can
protect herself against variability by holding a combination of
assets with different risk profiles, are regarded as plausible
adaptation measures in the face of climate variability (Cooper
et al., 2008)and have been investigated in the context of seasonal
prediction information, for example in Argentina (Messina et al.,
1999; Podesta et al., 2002) and South Africa (Bharwani et al., 2005).
The structure of this decision problem is relevant to many real-
world scenarios, and also allows the effects of forecast presentation
to be meaningfully investigated.

Below we describe a particular example of such a decision in the
context of making a choice between two crop varieties which have
temperature dependent yield distributions. The example is
however generic to any situation in which users are faced with
the choice between two options with uncertain outcomes.

Suppose that the forecast user is a farmer faced with a choice
between two crop varieties with different responses to average
temperature3 during the growing season. It will be assumed that
the crop varieties fetch the same price on the market, so that all the
farmer cares about is crop yield. Alternatively, one can view the
yield curves as revenue curves, where it is assumed that the
relative prices of the two crops are independent of temperature.
Thus we neglect the general equilibrium effects of climatic
variability for the sake of simplicity.4 See Arndt and Bacou
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Fig. 1. Yield distributions of crops, Aðs̃Þ and Bðs̃Þ, and climatological distribution of

average seasonal temperature, pcðs̃Þ. The yield of crop A is given by the blue curve,

crop B the red curve, and the climatology the dashed black curve. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of the article.)

5 The units of W, the crop yields A and B, and forecast value V, have not yet been

defined. We thus define a baseline unit u ¼
R1
�1 Aðs̃Þ pcðs̃Þds̃, the expected yield of

crop A. This is the average yield that a risk neutral farmer would achieve.

Throughout this chapter wealth and value are expressed in units of u.
6 It is assumed for simplicity that there is no budget constraint—the farmer can

plant any proportion of crops, even if the price she must pay for them exceeds W.

A. Millner, R. Washington / Global Environmental Change 21 (2011) 209–218212
(2000) for an analysis of the general equilibrium effects of seasonal
prediction and climate variability.

Assume that crop A is a high yield variety which achieves
optimal yields when the average temperature is 19 8C. However, it
is relatively sensitive to persistent seasonal temperature varia-
tions, its yield falling off quickly when average temperature
diverges from 19 8C. Crop B generally has lower yields except
when the growing season is cool – its optimum average
temperature is 16 8C. In addition, it is less sensitive to divergences
from its optimal temperature, yielding moderate growth over a
wider range of temperatures than crop A. Assume that the
climatological distribution for average temperature over the
growing season is a normal distribution with mean at 18 8C, and a
standard deviation of 5 8C. The yield distributions and climatology
are plotted in Fig. 1.

What proportion of her land should the farmer plant with each
of the crops? If the farmer were risk neutral (i.e. the coefficient of
relative risk aversion r = 0), she would plant her entire field with
crop A, as her expected returns are greatest for this choice.
However, farmers are concerned not only with the magnitude of
their earnings, but also their reliability (Rosenzweig and Bins-
wanger, 1993). Most farmers would be willing to sacrifice some of
their harvest in order to ensure a steady stream of income. This is
due to the damaging effects of income volatility, especially in
situations in which storage is expensive or prohibited by the
nature of the crop, insurance is unavailable, and in the absence of
other sources of income which are uncorrelated with climate
(Dercon, 2002). This implies that when faced with the choice
between crops A and B, they plant a percentage of their fields with
crop B, the low yield variety. The more risk averse they are, the
greater the fraction of crop B planted, since this provides the least
volatility in their income. Thus planting a mixture of crops
provides a measure of insurance against alternative outcomes. This
discussion is formalized below.

Let the farmer’s expected yields per unit area when the state
parameter is s be A(s) and B(s) respectively. In our example, s

represents a specified range of average temperatures during the
growing season which corresponds to a parameter category of the
forecasts. Let the proportion of her field which the farmer plants
with crop A be x. Assume that the whole field is cropped, and that
the farmer’s initial level of wealth is W.5 The consequence function
is thus c(x, s) = W + xA(s) + (1 � x)B(s). Then the farmer’s decision
problem is,

max
x

X
s2 S

pðsÞUðW þ xAðsÞ þ ð1� xÞBðsÞÞ; (7)

where the farm area and crop price have been normalized to one.6

For the constant relative risk aversion utility function (2), this
implies that x must satisfy:

X
s2 S

pðsÞ AðsÞ � BðsÞ
ðW þ xAðsÞ þ ð1� xÞBðsÞÞr
� �

¼ 0; (8)

where r is the coefficient of relative risk aversion. This equation has
a unique solution since the utility function is concave in x. Thus
given beliefs p(s), the proportion of the field the farmer assigns to
each crop can be computed.

Now that the decision problem has been fully specified we are
able to solve the model for a variety of parameter values and
forecast configurations. The rest of the chapter presents the results
of this procedure and interprets them with respect to forecast
uptake.

4. Effects of user wealth, risk aversion, and perceived
trustworthiness

Much of the attention in the formal forecast valuation literature is
focussed on measures of forecast quality as determinants of forecast
value (Katz and Murphy, 1997). Considerably less attention has been
paid to behavioural and economic constraints on users’ ability to
extract value from forecasting information (exceptions include
Jones et al., 2000; Smith and Roulston, 2004). Yet empirical studies
tell us that such factors can play an important role in determining
rates of forecast uptake (National Research Council, 2006; Roncoli,
2006). It is thus vital to understand the implications of economic
models that include partial representations of these factors, so that
they may be compared with the available evidence, and used to
design new empirical hypotheses.

The behavioural and economic factors we will focus on in this
section are the user’s wealth level, attitude to risk, and perception
of forecast accuracy. There are few empirical studies that
investigate the effects of these factors on forecast usage directly
and quantitatively. Phillips (2003) used a survey methodology to
investigate the effect of asset wealth on the uptake of seasonal
ENSO forecasts in 1997/98 and 1998/99 amongst communal
farmers in Zimbabwe. She found that access to forecasts was
positively correlated with asset wealth in 1998/99, when media
coverage of the La Niña event was low, but that access to forecasts
was nearly universal in 1997/98, when media coverage of the El
Niño event was wide-spread. In 1997/98, when almost all farmers
had access to forecasts, the survey asked which of three strategies –
change of planting area, planting date, and crop mix – the farmers
engaged in based on forecast information. The frequencies of
adoption of each of these strategies were not strongly correlated
with asset wealth in this year. In 1998/99 however, a larger
proportion of farmers in high asset classes planned to change their
cropping area than in low asset classes. While this result suggests a
greater responsiveness to forecast information amongst the
wealthier farmers, it is not sufficient to resolve the effect of asset
wealth on information value. It is necessary to know how much
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Fig. 2. Perceived forecast value as a function of wealth (W) and risk aversion (r) of

the user (l = 0.9, N = 10, tercile categories).
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beliefs and strategies were altered based on the forecast, and not
simply whether there was a change, in order to estimate the effect
of wealth on forecast value.

A different study of pastoralists in Southern Ethiopia and
Northern Kenya (Luseno et al., 2003) found little evidence of
behavioural change based on forecast information. Follow-up work
(Lybbert et al., 2007) showed that this is not attributable to lack of
updating of beliefs in the presence of a forecast. It was found that
the extent to which forecast users update their beliefs based on
forecast information is state specific, with a statistically significant
adjustment of beliefs for forecasts of below-normal rainfall, but not
for forecasts of above-normal rainfall. Thus although there is an
asymmetry between states, beliefs are responsive to forecasts,
although behaviour may not respond commensurably. What then
determines how adjusted beliefs manifest in altered actions?
Clearly this will depend on attitudes to risk, the structure of the
decision problem, and exactly how different updated beliefs are
from prior beliefs. The latter effect is mediated by perceptions of
forecast accuracy. In what follows we examine the effects of these
factors on perceived value in our model.

Consider the portfolio decision problem described above.
Suppose initially that forecasts are issued in tercile categories.7

The yield corresponding to a given category is taken to be the
expected yield over that category. That is, suppose that a category
is defined by the temperature interval [a,b], then the yield A([a, b])
associated with this category for crop A is taken to be

Að½a;b�Þ ¼
R b

a Aðs̃Þ pcðs̃Þds̃

pcð½a; b�Þ
; (9)

where pc([a, b]), the climatological probability of category [a,b], is
just pcð½a; b�Þ ¼

R b
a pcðs̃Þds̃. A similar result holds for crop B. The

forecast value equation (6) can then be solved numerically for any
set of forecast categories, and any set of parameter values. V is
plotted in Fig. 2 for a range of values of r and the initial wealth W,
for the yield distributions described in Fig. 1.

W and V are given in units of u, the expected yield of a risk
neutral farmer. Thus W = 1 corresponds roughly to a farmer who
has one harvest ‘in the bank’. Empirical estimates of the value of r

are notoriously inconsistent (estimates range from r = 0 to 100, and
are based on studies of such diverse activities as financial markets
7 i.e., the range of temperatures is broken into three distinct categories of equal

climatological probability. Each ensemble member makes a deterministic forecast

which falls into one of these categories.
and auctions, insurance contracts, direct choice experiments, and
performance on game shows, see e.g. Binswanger, 1980; Holt and
Laury, 2002; Meyer, 2006), however the range considered here is
roughly plausible (Gollier, 2001).

The figure yields several interesting insights. The first feature to
notice is that when r = 0, information value is insensitive to wealth.
This is clear from the definition (6) – when U is linear (r = 0) the
user’s wealth drops out of the equation. The second notable feature
is that information value is not a monotonic function of risk
aversion. For each wealth level, there is some value of r at which
information value is maximized. Notice also, that the larger W is,
the larger r needs to be before information value begins to decline.
This may seem like a counterintuitive result – it may seem that
more information should be unambiguously more valuable to a
more risk averse individual, since it allows her to better manage
the risks she faces. The reason for the characteristic inverted-U
shaped dependence of information value on risk aversion is as
follows: an increase in risk aversion changes the way the risk is
valued, and also changes the actions of decision makers. Recall that
computing information value requires us to compare the expected
utilities of two decision makers – one who has access to the
forecasts, the other who does not. In general, a decision maker with
access to forecasts will take on more risk than one who does not,
since she attempts to capitalize on the additional information in
the forecasts. For low values of r, an increase in r affects decision
making strongly, giving rise to an increase in information value.
However as r increases, the decision maker becomes more and
more conservative – eventually honing in on the actions that
minimize her exposure to risk. Thus for large r, actions are no
longer affected significantly as r increases. However, as r increases,
the value of the additional risk that the forecast user holds declines,
leading to a decrease in the value of information. The competition
between these two effects leads to the qualitative behaviour
illustrated in the figure. See Gollier (2001) for further discussion of
the effect of risk aversion on information value.

In general, information value exhibits a more sensitive
dependence on r for small wealth levels than for large ones. Thus,
according to the model, poor agriculturalists should be expected to
have widely varying perceptions of forecast value, depending on
their degree of risk aversion. The model would require some fairly
fine-tuned parameter values r � 1 in order to predict that
information value is high for the poor. Thus the model points to
a possible theoretical reason for the empirical fact that many poor
farmers do not make use of forecasts – almost all poor decision
makers perceive information as having low value. It also defines
conditions under which information will be perceived to be most
valuable – wealthy users with high risk aversion, and those poor
users whose risk aversion falls in the right range, are predicted to
value forecasts the most.

These predictions of the model, while presented here for a
particular numerical example, are qualitatively preserved for other
risk distributions. Thus the model makes some fairly strong,
testable predictions which can be used in empirical applications to
assess the veracity of the economic foundations of the model.
Simulated choice experiments with farmers, which attempt to
illicit their degree of risk aversion, and monitor their management
decisions, are a natural test-bed.

Next, we consider the effect of perceived accuracy on forecast
value. In Fig. 3 we plot perceived value, but this time fix W = 1u, and
vary r and l, the perceived accuracy.

The figure suggests that perceived accuracy l can have a large,
nonlinear, effect on perceived value. Notice that the scale of the V

axis is larger than that in Fig. 2. Thus perceived value is likely more
sensitive to perceived accuracy than it is to the user’s wealth level
or degree of risk aversion. The qualitative features of the figure are
readily understood. Recall that l parameterizes the user’s belief
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Fig. 3. Perceived forecast value as a function of perceived accuracy (l) of the

forecasts and risk aversion (r) of the user (W = 1u, N = 10, tercile categories).

[()TD$FIG]

Fig. 4. Effect of ensemble size on perceived value (W = 1u, r = 1).
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that the forecast will be correct, as encoded by her likelihood
matrix. When l = 1/3, all states of the world are perceived to be
equally likely, regardless of which forecast is received, so the
user’s beliefs coincide with the climatology, and information
value is zero. As l increases above 1/3, the user believes that
forecasts are increasingly better than random and so perceived
value increases. Perhaps counterintuitively, when l decreases
below 1/3, forecast value also increases. This is due to the user’s
bayesian updating rule exploiting the negative correlation
between forecasts and observations. Put another way, a l < 1/3
implies that those states which are not forecast by a given model
are believed to have probability greater than 1/3, and this
information can be exploited by the user, giving rise to positive
information value.8 Real forecasts are calibrated (see e.g. Murphy,
1997) so we would not expect an objective measure of l less than
1/3. However, subjective beliefs are not similarly constrained. It
would be irregular, but not inconceivable, to find users who use
forecasts in the hopes of profiting from their consistently poor
predictions.

5. Effects of forecast presentation

5.1. Ensemble size

The presentation of seasonal forecasts has routinely settled on
probabilities of parameter categories as the prime means of
information delivery (e.g. Barnston et al., 2003). Rainfall
forecasts from Columbia University’s International Research
Institute for Climate and Society or the European Centre for
Medium Range Weather Forecasts, for example, are typically
shown as probabilities in categories of 10% ranging from below-
normal through to above normal. Nicholls (1999) has discussed
the possible effects of cognitive illusions or user bias in
connection with the way probabilities are presented, noting,
for example, the possible consequences of anchoring and
adjustment, underweighting of base rates, and overconfidence.
While we believe these cognitive effects are very important, our
8 Note that the more forecast categories there are (i.e. larger jSj), the more

asymmetric the graph of perceived value against l will be, with perceived value for

l close to zero being lower than perceived value for l close to one. This is due to our

choice of likelihood matrix in (5), which implies that perceived value is zero at l = 1/

|S|. This can be verified by evaluating the expression (10) at this value of l to show

that updated beliefs coincide with the climatology in this case.
model cannot address them explicitly. It can however be used to
gain some insight into the relative value of forecasts issued by
ensembles of different sizes. If it is assumed that the outputs
from an ensemble are not ‘dressed’ with a parametric distribu-
tion (Roulston et al., 2003), then in general large ensembles are
capable of issuing forecasts in fine-grained probability catego-
ries, while smaller ensembles give rise to coarser stated
probabilities. In fact the ‘grain’ of the probability categories
scales like 1/N, where N is ensemble size.

The analogy between ensemble size and the precision of stated
probabilities is not, however, a complete description of the effect of
ensemble size on value in our model. The parameter N represents
the size of a sample of random variables (the ensemble members).
Probability forecasts are represented as histograms of the
occupation numbers of the forecast categories for a given sample,
and as such, the intervals of probability in which it possible to issue
a forecast does indeed scale like 1/N. However an increase in N is
not psychologically identifiable with overconfidence effects due to
the precision of stated probabilities. Rather, an increase in N has
two effects in our model. First, it reduces the perceived sampling
error in forecasts – this leads to sharper, less dispersed, posterior
beliefs, as will be demonstrated below.9 Second, it increases the
number of possible forecasts, and makes them more fine-grained,
thus allowing for more precise probabilistic judgements. This
second effect is more closely related to the overconfidence effect
flagged by Nicholls (1999), while the first has been studied
independently by Richardson (2001) and Doblas-Reyes et al.
(2008), who demonstrate the effect of sample size and simplified
probability categories on forecast skill scores. In reality, an increase
in ensemble size will have both these effects on forecast value,
when we consider the forecasting system as a whole.

A graph of perceived value against ensemble size is plotted in
Fig. 4 for our idealized portfolio decision with tercile forecast
categories.

In general, perceived value is an increasing function of
ensemble size. To understand the qualitative features of this
figure, evaluate the expression for the posterior beliefs (3), using
9 Intuitively, the law of large numbers suggests that for N!1, we expect Nl of

the models to make a correct forecast, and N(1 � l)/(|S| � 1) models to predict each

of the incorrect states, almost surely. Thus the likelihoods PðpjsÞ will tend to Dirac

delta functions, and their ratios will either diverge or approach zero. This is

demonstrated explicitly in (10). For finite N, there is a sampling error that distorts

this conclusion – the likelihoods are no longer delta functions, which in turn implies

that the users beliefs are more dispersed.
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Fig. 6. The less users trust forecasts, the greater the relative effect of the position of

the partition between forecast categories on perceived value (W = 1u, r = 1, N = 10).
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Fig. 5. Effect of the position of the partition between two forecast categories on

perceived value (W = 1u, r = 1, N = 10).
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(4) and (5), for a given forecast pðs0Þ and state s. Some algebra
shows that

pðsjpðs0ÞÞ ¼ pcðsÞ
pcðsÞ þ

P
t2 S=fsg ðl=ðð1� lÞ=ðjSj � 1ÞÞÞNðpðtÞ�pðsÞÞ pcðtÞ

;

(10)

Using this equation, we see that

lim
N!1

pðsjpðs0ÞÞ ¼
1 s ¼ argmax pðs0Þ
0 otherwise:

�
for

l> ð1� lÞ=ðjSj � 1Þ; (11)

lim
N!1

pðsjpðs0ÞÞ ¼
1 s ¼ argmin pðs0Þ
0 otherwise:

�
for

l< ð1� lÞ=ðjSj � 1Þ: (12)

Thus for large N the user’s beliefs are minimally dispersed,
giving rise to high values of information. In general, an increase in
N decreases the dispersion of posterior beliefs, hence accounting
for the increasing value curves in Fig. 4. This is due to the resolution
of sampling error as N increases. The effect of increasingly fine-
grained forecasts on value depends on how the user’s decision
alters with the precision of stated probabilities, and thus depends
on the consequence function and the user’s utility function. While
this cannot be captured analytically in general, Fig. 4 incorporates
this effect for our numerical example. Notice, in addition, that
forecast value is a concave function of N, suggesting that there are
decreasing returns to an increase in ensemble size.

5.2. Which forecast categories?

Many of the freely available forecasts provided by national
meteorological organizations are forecasts of standardized catego-
ries of the climate variable in question. Forecasts are frequently
presented as terciles – users are provided with estimates of the
probabilities of above normal, normal, and below-normal condi-
tions, where the categories are determined based on climatological
data so that they have equal historical frequency. Many forecast
users may however require more specialized information in order to
extract value from the forecasts for their particular decision
problems. Consider our idealized farmer and her crop-choice
problem. She may be a rural small-holder who lacks the necessary
funds to purchase proprietary forecasts tailor-made for her decision.
Thus she relies on the forecasts broadcast in newspapers and on the
radio. Assume for simplicity that these are binary forecasts, a simple
‘hot’ or ‘cold’ growing season is forecast with probabilities associated
with each category. What effect does the fact that the forecast
categories are taken from the climatology, rather than specialized to
her decision, have on the value she perceives the forecasts to have?
In order to investigate this question the forecast value model is run
again, this time for two forecast categories. The position (in
temperature space) of the partition between the categories is
allowed to vary, and perceived value calculated for each value of the
partition position. The climatological partition position is at 18 8C,
the mean of the climatological distribution – it is assumed that the
national weather service uses this partition. Perceived value is
plotted as a function of the position of the partition between the
categories in Fig. 5.

The figure suggests that perceived value can be significantly
increased by providing forecasts of categories that are tailored to
the user’s decision problem. Moreover, the less trust the user has in
the forecast, the greater the relative effect of tailoring forecast
information to her needs. To illustrate this the ratio of perceived
value at the optimal partition position to perceived value for a
climatological partition position is plotted as a function of l, the
perceived accuracy of the forecasts, in Fig. 6.

For strongly trusted forecasts, the ratio approaches 1, and not
much is gained by providing tailored forecast categories. However,
as trust in the forecast decreases, the (relative) amount to be
gained from tailoring forecast categories to user needs increases
rapidly.

6. Discussion and conclusions

Although seasonal climate predictions have been available for
many years now and although forums for the generation of
consensus forecasts have been operational in some regions for
more than a decade (Patt et al., 2007), sustained uptake and use of
forecasts in decision making is rare. Economic and behavioural
constraints on decision making may well form an important part of
the explanation for the neglect of such climate information,
specifically in developing world agriculture. Using a theoretical
model, we inspected the constraints imposed by a variety of



11 Patt et al. (2007) say that ‘a partnership between the African Union, the United

Nations Economic Commission for Africa, the African Development Bank, the

United Kingdom Department for International Development, and the Global

Climate Observing System, intends to spend up to $200 million over the next 12

years to spread out the use of climate information to help achieve the U.N.

Millennium Development Goals.’ Compare this to the estimate in Pielke and

Carbone (2002) of $5 billion per annum spent on operational and research aspects of

weather forecasting in the US alone, and the $2 billion requested budget for the US

Climate Change Science Program in 2009 (CCSP, 2008).
12 This is a danger since it is not clear that outputs from ensembles should be

interpreted as probabilities at all (see Smith, 2007). It may thus be good practice to

settle on reporting intermediate probability intervals, for example 10% intervals for
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economic, behavioural and seasonal prediction related parameters
on decision making. The approach forms one end of a spectrum, the
counterpart of which is empirical field based investigations. While
both are necessary to ensure a fuller understanding of seasonal
prediction, the latter are time consuming and resource intensive
and necessarily regionally (and probably event) specific. The value
of theoretical considerations such as the model considered here, is
that they offer hypotheses which can be empirically investigated
and therefore have the potential to guide the direction of field
studies. While previous models of forecast value based on
economic decision theory exist, none has explicitly incorporated
the diverse set of determinants that our model allows for. We
believe that the increased complexity of the current model allows
its predictions to be more immediately applicable in real-world
decision contexts, thus allowing for meaningful tests of the
legitimacy and usefulness of the standard rationality assumptions
upon which it is based. Irrespective of the empirical veracity of the
model’s predictions, it can still play a useful role as a conceptual
guide to understanding how the set of factors it represents interact
in determining forecast value. The model shows that these
interactions can be quite intricate, and often lead to nonlinear
relationships between perceived value and underlying indepen-
dent variables. It is often difficult to pick apart the relationships
between different explanatory variables in understanding field
data – we hope that models such as that presented here will
contribute to this vital task. It is important to be clear, though, that
models are not stand-alone tools for policy generation, and cannot
substitute for empirical research. It is with this understanding that
the discussion proceeds.

The model has been used to assess the constraints on perceived
forecast value imposed by the extent of the resource base (wealth)
of farmers and their aversion to risk. It shows that perceived value
is non-decreasing in wealth, and non-monotonic in risk aversion.
Fig. 2 suggests that for a plausible range of risk aversion
parameters the non-monotonicity is most apparent for low wealth
values. The consequences of this result for understanding forecast
uptake patterns are two fold. First, the model suggests that, ceteris

paribus, we should expect greater variability in uptake patterns
amongst relatively poor forecast users than rich ones. Provided
that the distribution of risk aversion within populations at
different wealth levels is constant, this result will hold true. There
is however some reason to suspect that poor farmers are on
average more risk averse than rich ones. Since the model suggests
that the range of risk aversion parameters for which poor farmers
consider information to be valuable is quite narrow, with a peak at
r � 1 in our example, one might expect poor farmers to have lower
subjective valuations than their richer counterparts. Irrespective of
wealth effects, the model suggests that risk aversion can have a
substantial effect on perceived value.

In order to understand the relevance of these conclusions for
informing interventions aimed at improving forecast uptake,
consider the interactions between insurance provision and
forecast usage. When the price of insurance is actuarially fair,10

risk averse agents will always prefer complete insurance to holding
any risk. Moreover, risk averse agents who have access to fair
insurance act as if they are risk neutral. Their production decisions
aim to maximize profit as all the risk they face is removed by
insurance. What then would the consequences of coupling
insurance with prediction systems be? Our model suggests that
a reduction in risk aversion is likely to decrease perceived forecast
value for all but the poorest farmers. Thus the presence of
insurance would be expected to have an adverse effect on forecast
uptake. This is not in and of itself a negative outcome – users may
well be better off having access to insurance and making little use
10 i.e., the insurance premium is equal to the expectation of the agent’s risks.
of forecasts than the converse. Nevertheless, this result may serve
to highlight interactions between these two climate risk manage-
ment tools. The interactions between forecasts and insurance are
however complicated by the possibility of skillful forecasts giving
rise to inter-temporal adverse selection in the insurance market
(Luo et al., 1994; Carriquiry and Osgood, 2008). Thus it is possible
that users may utilize forecasts to exploit insurance contracts that
are unresponsive to predictable seasonal variability, in addition to
using them to inform their production decisions.

The model also shows that perceived accuracy has a strong,
nonlinear, effect on perceived forecast value (Fig. 3). Objective
forecast skill is only one contributing factor to the user’s overall
level of trust in the forecasts. Means of increasing the user’s trust in
objectively useful forecasts other than increasing forecast skill,
should be explored. Participatory educational sessions in which
users gain familiarity with the products, have been shown to have a
positive effect on rates of forecast uptake (Patt et al., 2005), yet are
significantly under-funded when compared with efforts to
increase forecast skill.11 Interventions such as these may be more
cost effective, and more successful than scientific improvements.

Whereas economic factors relating to wealth, risk aversion, and
insurance are all recognizably beyond the remit of the science of
seasonal forecasting, the model discussed in this chapter also
allows for assessment of parameters well within the control of the
World Meteorological Organizations’s recognized Global Produc-
ing Centres and the Regional Climate Outlook Forums. First we
considered the influence of ensemble size on perceived value
(Fig. 4). The model suggests that perceived value is an increasing,
concave function of ensemble size. Since reported probability
categories become more fine-grained as ensemble size increases,
marginal improvements in perceived value diminish as probability
categories become smaller. There is evidence from the psychology
literature (Janiszewski and Uy, 2008) that people tend to anchor
their risk assessments to the grain of reported probabilities,
implying that fine-grained probabilities may lead to overconfi-
dence in the stated forecasts.12 An intermediate strategy could
successfully offset the negative consequences of this effect without
losing much of the informational content of the forecasts.

In addition to the size of probability categories, the choice of
forecast parameter categories themselves can have a marked effect
on perceived value. We used the model to examine the effect of
changing the position of the partition between two parameter
categories on perceived value. It was shown (Fig. 5) that tailoring the
forecasted parameter categories to the user’s decision problem can
have a large positive effect on perceived value. Moreover, the less
users trust the forecasts, the greater the relative size of this effect
(Fig. 6). This suggests that when attempts are made to increase
forecast uptake, significant effort should be directed towards
understanding the details of users’ decision problems. Intimate
knowledge of the decision problem could allow forecasters to
present information tailored to user needs, thus increasing the
chances of forecast uptake. Fig. 6 suggests that this may be especially
important for forecasts that are perceived as inaccurate. Such
tercile forecast categories. As such, it is probably best to discourage users from over

interpreting numerical probabilities.
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forecasts may be accurate enough to carry objective value for
decision making, yet users may not make use of them since their
perceived value is low. Perceived value may be increased by simply
tailoring the forecast categories to the user’s needs – the forecasts
may still be seen as inaccurate, but no longer irrelevant.

With recent evidence (Kerr, 2008) suggesting that scientific
progress on increasing forecast skill has been slow at best, it seems
prudent that increased attention should be paid to other factors
that may affect the use and value of forecasts where they have been
shown to be genuinely skillful. The model presented here suggests
that there may be a variety of possibly low cost changes in forecast
delivery strategies that could positively affect rates of forecast
uptake. In addition, it suggests that linkages between forecasting
products and other developmental interventions, such as insur-
ance, need to be more fully explored, since there may be
opportunities for mutual reinforcement between them. In general
however, detailed knowledge of the particularities of the intended
users’ economic circumstances and decision problem are neces-
sary prerequisites for understanding the impediments to forecast
adoption, and designing interventions that will ultimately increase
users’ welfare. Hopefully careful field investigations, when
combined with theoretical insights from empirically validated
models with sound behavioural foundations, can provide these
details, and lead to genuine gains for users.
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